
Computer Networks and Internet Protocol
Prof. Sandip Chakraborthy

Department of Computer Science and Engineering
Indian Institute of Technology, Kharagpur

Lecture - 20
Transmission Control Protocol - II (Connections)

Welcome back to the course on Computer Network and Internet Protocols. So, we are

looking into the details of Transmission Control Protocol or TCP.

(Refer Slide Time: 00:22)

So, in this lecture we will look into the details of TCP connection establishment and how

TCP chooses the initial sequence number, based on the concept that we discussed earlier

and then in the subsequent lecture. So, we will go to the flow control mechanism in TCP

in detail.

(Refer Slide Time: 00:43)

So, TCP connection establishment, it is a three way handshaking based mechanism it is

utilizes a special connection request message called SYN a short form for

synchronization we call it as TCP SYN message. So, the connection establishment using

3 way handshaking mechanism that is something like this like Host A and Host B wants

to communicate with each other. So, Host A and Host B wants to communicate to it each

other Host A initiates the connection establishment.

So, Host A sends a SYN message with certain initial sequence numbers. So, in a moment

we will discuss that how TCP chooses this initial sequence number. So, it sends a SYN

message with the initial sequence number as x then Host B sends an acknowledgment

message along with also a SYN message, so this SYN message from Host B to Host A it

is used to ensure the bidirectional connection in TCP. So, if you remember in the last

class we have talked about that TCP connection is bidirectional. So Host A can

communicate with Host B at the same time Host B can also communicate with Host A

and because of this reason Host B also sends a same packet with an initial sequence

numbers. So, here in this example Host B sends this SYN message while sending back

the ACK.

So, we are basically piggy backing SYN and ACK together piggy backing means we are

combining 2 message together in terms of TCP header, you need to set bit 1 for both the

SYN flag and for the ACK flag. So, this SYN plus ACK message it is sending a new

initial sequence number, so this sequence number y it will be used for B to a data transfer

and earlier proposed sequence number from A to B that is x will be used for A to B data

transfer and in acknowledge with this x, so it sends a acknowledgement number of x plus

1.

Now, if you remember the connection establishment procedure 3 way handshaking

mechanism that we have discussed earlier in the case of general transport layer service

model. Host A can see this message host a can find out that the acknowledgment number

it corresponds to the SYN message that it has transmitted and if it corresponds to the

SYN message that is transmitted it takes this SYN plus ACK as a feasible one or a valid

one. And then it sends a acknowledgement message finally to B and in that

acknowledgement message it sends a sequence number of x plus 1 incrementing the

previous sequence that it has initiated and acknowledges this acknowledgement number

y plus 1.

So, with this 3 way handshaking mechanism Host A and Host B initiates the connection.

Now the question is that how will you choose the initial sequence number. So, choosing

the initial sequence number is an important aspect that we have looked into a generic

discussion of a transport layer service models. So, while choosing the initial sequence

number the objective is to avoid the delayed duplicate. So that you can identify a

message by looking into your sequence number whether that message is a delayed

duplicate or it is just like the application has crashed and the application has initiated

another connection at the same port with the difference sequence number.

So, to do that what you need to ensure that well, the initial sequence number that you are

choosing that initial sequence number should not fall within the forbidden region of the

previous sequence number. Now how will you ensure that to ensure that earlier we have

seen that well, whenever you are choosing the initial sequence number you have 2 ways

to choose the initial sequence number. So, just try to remember the concepts that we

discussed earlier, so just briefly explaining it again for your convenience.

(Refer Slide Time: 04:42)

So, whenever you are choosing this initial sequence number. So this is the time axis and

this is the sequence number axis. So, this was the earlier connection if this was the earlier

connection then this was say the forbidden region for this particular connection. So, this

is the connection 1 and this is the forbidden region for connection 1.

Now whenever you are initiating a new connection say at this point connection 1 got

crashed here, so once connection 1 got crashed you want to initiate a new connection.

And whenever you are initiating a new connection you need to ensure that you are not

starting the new connection say; this is your new connection, connection 2 you are not

starting this connection 2 at a point such that the forbidden region for connection 2

overlaps with connection 1 so this we do not want.

So, to prevent that what we do that to prevent that we want to initialize connection 2,

such that these 2 forbidden region does not overlap with each other. Now to do that you

have 2 options the first option is the first option is just, so the first option is you make

shift at the time domain and the second option is that to make a shift at the connection

establishment domain. That means, the sequence number domain. So, the first step is that

you start it after giving a gap so this is connection 2. So, you start it after giving a gap, so

that these gap will ensure that the sequence number space do not overlap.

So, you wait for certain amount of time to ensure that all the packets for connection 1

which was transmitted in the network they have bide off and no traces of that those of

they are in the network and then only you try a new connection, otherwise the option is

that you choose the initial sequence number in such a way which will be high enough.

So, there would be difference here from the last sequence number which is used by

connection 1 and a new sequence number that you are using from connection 2. So, there

is a difference here such that you will be able to ensure that this sequence number space

which was been used by connection 1, you are not going to use that sequence number

space for the connection 2 for the data of connection 2.

Now TCP uses the second principle, so TCP ensures that whenever a connection say

connection 1 crashes, so this was connection 1 whenever connection 1 crashes whenever

you are starting connection 2 you choose the connection 2, the initial sequence number

of connection 2 in such a way that there is a gap in between so this is for connection 2;

there is a gap in between and there is no overlap between the sequence number which is

being used by connection 1 and which is being used by connection 2.

So, for that TCP uses a clocking mechanism, so TCP generates the sequence number

based on a clock. So, that was the first implementation of TCP or the earlier version of

the TCP, it used the sequence it used to generate the sequence number based on a clock

mechanism. So, the methodology was something like this, so this original

implementation of TCP it used a clock based approach. So, the clock ticked every 4

microseconds, so whenever the clock is ticking you are generating a new sequence

number if you have a byte 2 set and the value of the clock it cycles from 0 to 2 to the

power 32 to minus 1.

So, you remember that TCP uses a 32 sequence number, so your entire sequence number

space is 0 to 2 to the power 30 to minus 1; so that means, at every 4 microseconds you

are generating a new sequence number and whenever a connection crashes and get

restarted then you will use the sequence number which is being generated by the clock.

So, that is used for generating the initial sequence number, then the sequence number

will incremented based on the bytes that you are receiving and you are transmitting

based on your flow control and the congestion control algorithm. So, this value of the

clock it gives the initial sequence number which will be being used.

(Refer Slide Time: 09:29)

So, with this clock based mechanism what you are ensuring; that means, whenever a

previous connection say get crashed here the connection get crashed here and you are

restarting the connection by the time the clock value will increase. And because the clock

value is increasing you will obviously get a initial sequence number here, which has

certain gap from the sequence number filled which was used by the previous connection.

So, you will start from here and you will be able to ensure that the forbidden region of

the sequence number which is been used by connection 2, so this is connection 2 that is

not overlap with the forbidden region of connection 1. Now, with this particular approach

we have a problem like this sequence number generation becomes little bit deterministic.

(Refer Slide Time: 10:17)

So, if you know that well the clock is ticking at every 4 microsecond and at every 4

microsecond you are generating a new sequence number; that means, an attacker will be

able to understand by looking into the previous sequence numbers that, what is the clock

recreate current clock recreate. And when the previous connection got crashed how much

time has been passed in between divided by the 4 microsecond that should be the initial

sequence number of the next connection. If that is the possible that is the case then there

is the possibility of SYN flood attack which can happen in case of TCP.

So, in case of TCP the SYN flood attack is that you are continuously sending this kind of

spurious SYN connection to a node and that particular node will accept those connection

at a genuine connection and they will get a blocked here, because, they will think of that

that particular initial sequence number which is been generated it is it is indeed a correct

initial sequence number based on my clock input, so it will accept those SYN

connection. And if you are sending multiples such SYN connections from multiple

computers that translates to a denial of service attacks. So, the computer and a server will

only become busy to response to the SYN packets, it will not be able to say in the any

data packets in further.

So, that is a possibility of a SYN flooding attack to launch a denial of service over TCP.

So, that is why the later function of the TCP or indeed the current version of the TCP

what it does, that it uses the cryptographic function to generate the initial sequence

numbers. So, it is like that your clock value will give 1 one function 1 value. So, say the

clock value is saying that your initial sequence number should be x, if your initial

sequence number is x then you apply a cryptographic function to generate a initial

sequence number such that your initial sequence number y it is more than x and because

this is generated from a cryptographically secured function, so the attacker will not be

able to predict the value of y.

So, that way you are ensuring that well in case of a previous connection, when the

connection got crashed here and you are trying to generate a new sequence number, your

clock value says that you should generate the new sequence number from this point. But,

then whenever you are restarting a connection you should generate it from this point, but

then the cryptographic has function generates another value which is more than this

particular point say for yet here. And you are starting your new connection from that

point.

So, that way it will ensure because you are going higher of that, it will ensure that there

is no overlap between the forbidden region of this new connection and the forbidden

region of this old connection, and at the same time because this value was

cryptographically generated the attacker will be not be able to guess that. So, that way

you will be able to safeguard thus in flood attack in a TCP ok.

(Refer Slide Time: 13:28)

Now, TCP connection release it again uses the 3 way handshaking mechanism. So, we

have 2 Host, Host A and Host B now Host A want to close the connection when Host A

wants to close the connection at it initiates this connection closer we call it as an active

close. So, in case of active close Host A will send a FIN message FIN is the full form of

finish.

So, you want to close the connection send a FIN message with a current sequence

number and a current acknowledgement number, then Host B wants it receives the FIN

message it again go to the close connection closer it this passive close. So, in the passive

close it sends a FIN message, it sends an acknowledgement message to this fin, so that

Host A can close the connection in that acknowledgement it acknowledges this FIN

message with n plus 1. And at the same time it Host B once to close the connection itself,

so this FIN message from Host A to Host B it is closing the connection from A to B.

Now, if B wants to close the connection as well, so we have a bidirectional connection B

also B to A now if B wants to close this connection B sends this FIN message. If B does

not want to close it immediately then what B can do that B can only sends the

acknowledgement message and later on when it wants to close the connection it can

sends the it is own FIN message that is also possible. Now, once Host A receive these

acknowledgement message it starts a timeout, this timeout is to prevent these data loss

due to the symmetric nature of the closer. So, if you remember we have looked into

earlier that asymmetric closer insight and unreliable network is not possible so we want

to implement a symmetric closer with a timeout value.

So, this timeout value ensures that well if you are still receiving some packets from B,

then you can continue receiving that packet once this timeout occurs you completely

close that connection you will not accept any packet after that. Even if you get any

certain packets after that, but those packets will get lost you cannot do anything with

those packets and 1. Similarly Host A sending the acknowledgement message against a

FIN message or FIN plus acknowledgement message send by Host B and it updates the

acknowledgement number accordingly against these sequence number, and sends back

the acknowledgment to Host B, so Host B again closes the connection and do not send

any data.

So, you can see that the timeout is here in case of the active close, but for passive close

we do not require any timeout because, that is the last entity which is going to close. We

require this timeout for active close because it may happen that when Host A is initiated

this closer, Host A after getting the acknowledgement Host A can still receive some data

from Host B because, Host B has not sent any FIN message with it or even if it has sent a

FIN message it may happen that because of these reordering of the packet you may

receive certain packets after that.

So, we apply this timeout mechanism at the active close side, but at the passive close

side we do not require the timeout because, in the passive close side whenever you are

getting an acknowledgement from Host A. You know that Host A has already closed it is

connection, Host A has send a FIN message itself. So, it is just like that your friend has

closed the door and your friend has not do not want you to enter his room. So, you do not

want to wait any more.

So, so that is the reason here that Host A has already initiated that finish message. So,

Host A will not send any more data Host B knows that, so for the passive close case you

do not need to wait for the timeout value, whereas for the active close case I am

forcefully trying to close the connection. So I am giving an opportunity for the other in to

send few more data to me if it wants, so that is why we have this timeout value here.

Now as you have looked earlier for that hypothetical transport layer protocol that these

entire transport layer protocol follows a state transition diagram. So we also have a state

transition diagram for TCP.

(Refer Slide Time: 17:48)

So, let us look into the state transition diagram of TCP in little details because, that is the

important concept for TCP. So, this entire state transition procedure start from this close

state; that means, the server and the client both of them are closed, so they are they have

not started any TCP socket yet.

So, this are the notation that you see that everything is written by 1 message slash

another message, so this is the event action appear. So, that first 1 is the event and second

1 is the action then, this dashed line is for the server. So, this dashed line which is being

followed that is for the server and solid line is for the TCP client.

(Refer Slide Time: 18:43)

So, the client as you know that in a client server OSI model, the server remains in the

listen state for getting a connection getting a connection request from a client. So, the

client initiates the connection request and once connects client receives sends a

connection request and a server receives it starts processing with that connection.

So, let us see that how this entire team moves using this state transition diagram using

TCP state transition diagram. So, from this close state let us first look into the client side.

So, the client initiate the connect system call and sends the SYN message. So, that is the

first step of the 3 way handshaking procedure and then the client moves to the SYN sent

state.

So, at this state the client has sent a SYN message and it is waiting for the

acknowledgement from the server. Now from this SYN state sent state client can decide

after sending the SYN that I do not want to send any more data want to immediately

close the connection, so it may use a close message to close the connection immediately

and move to the close state.

So, whenever it is in the close state even if the server receives the SYN message and

send back to it an acknowledgement it will not accept that acknowledgement, it will

simply drop the acknowledgement. And, will not send any more data because it is in the

close state and the server will wait for some amount of time get a time out and again

move to the close state. So, that is for SYN sent state.

(Refer Slide Time: 20:29)

Now, after you have send a SYN then you can in that 3 way handshaking mechanism

from the client to server first you have to send the SYN message, then you will receive

an ACK from the server along with the SYN from the server as well and finally you will

send the ACK message.

So, here in the second stage you have received SYN plus ACK message from the server.

So, once you have received these SYN plus acknowledgment message from the server,

then you send an acknowledgement message and move to the established state. Similarly

the server from the close state it first makes this listen system call and moves to the listen

state. So, at the listen state it is ready to receive any connection establishment message.

So, once it receives a SYN message it sends back with a SYN plus acknowledgment

message.

So, this is the second step of the 3 way handshaking mechanism. So, the server has

received the SYN message and then sending a SYN plus acknowledgement message and

this is the third step of the 3 way handshaking where the client is receiving the SYN plus

ACK from server and sending back with the final acknowledgement and once the client

has done that client is moving to the established state and it is ready for data transfer.

Now, from this listen state again the server can execute a close and close the connection

immediately, when the server has received a send SYN message and send back a SYN

plus acknowledgement message, server moves to the SYN receive state. So, from the

SYN receive state it can make a reset call and reset the connection to the listen state.

So, this reset call is that server somehow decides that it do not want to continue the

connection any more, that is sometime required to prevent the attack whenever you are

receiving multiple SYN messages from the same client like a SYN flooding thing to

prevent that you can have a reset call or maybe for some application requirement or

based on the application programming or certain exception in the application side you

want to reset the existing connection.

So, from the SYN received you can call a reset call and again move to the listen state and

ignore these SYN you have already received. Now, there is there can be 1 case where

both the server and the client are initiating the connection together, so in that case that is

we call as a simultaneous open.

(Refer Slide Time: 23:07)

So, it is just like that from the server and client, the client has send a SYN and at the

same time the server has also sent a SYN. So, if that is the case like you are getting a

SYN message from the server, the client is getting a SYN message from the server

because ideally the client should sent a SYN and after that get the client should get a

SYN plus acknowledgement. But if it is just getting the SYN message from the server, it

sends a SYN plus acknowledgement message and the client can also move to the SYN

receive state.

So, it is just like that you have sent a SYN message to the server, but rather than getting a

SYN plus acknowledgement the acknowledgement to the SYN that you have sent you

are getting a SYN message and not the acknowledgement message, so you are the client

is moving to the SYN receive state. At this stage whenever you are getting an

acknowledgement message you are moving towards the established state. So, the server

is moving server is getting this acknowledgment final acknowledgement message for the

3 way handshaking and it is moving to the establish state.

So, that way through this procedure everyone is moving towards the established state and

from this establishment state data transfer can get initiated. So, this is for the connection

establishment of TCP that it moves to this multiple states, and finally reaches to the

establish state when you can initiate data transfer. Now the data transfer can goes on

based on the principle that we have shown you earlier that if established then sent then

send data or if established and receive data. And after this connection established state

then after this data transfer is over say you want to move to the connection closer state

you want to close that connection.

(Refer Slide Time: 24:54)

Now, whenever you are wanting to close that connection the client can initiate the

connection that particular connection we call it as an active close, because the connection

closer is initiated by the client and for the server who is receiving that finish message

FIN message we call that as a passive close. So, we have seen that earlier.

Now, in case of the active close, the client send an client execute the close primitive and

send a FIN message. So, whenever it has SYN send a FIN message it moves to this FIN

wait 1 state, then after sending this FIN message you think of the connection released

phase from the client to the server; you have sent a FIN message after sending a FIN

message there are 2 possibilities, 1 possibility is that you get a FIN plus ACK. And the

second possibility is that the client and the server the client has send a FIN message and

it is not getting an ACK it is it is not getting a FIN it is just getting the ACK. So, if it is

this case that you are not getting the finish from the server. That means the server is

believing that it has more data to send you just receive an acknowledgement message

and you move to the FIN wait 2 state from FIN wait 1 state, because you have not

received a FIN plus ACK.

Now, if you are receiving the FIN plus ACK message after receiving this FIN plus ACK

message you go to this time wait state. So, you remember that for the active connection

active closer we have this time out value, where after receiving this FIN plus ACK you

wait for a timeout value once the time out happens then you clear the connection, so it

moves to this time wait state.

Similarly this FIN wait state it has received the acknowledgement, but it was waiting for

getting the FIN from the server, once it get this FIN from the server it sends that ACK

and moves to the time wait state. Now there can be another case like it has sent a FIN

message to the server, but without getting an ACK it has received another FIN message

from the server itself.

(Refer Slide Time: 27:22)

So, it is a case of so this case is simultaneous closer case, where the client has sent a FIN

message to the server and server has sent another FIN message to the client without

sending the ACK. So that means, the server is believing that it has more data to receive,

so in that case the client moves to the closing state by sending a ack. So, you get the

finish message because you are anyway ready to finish so you send that

acknowledgement message and move to this closing state. In this closing state you are

basically waiting for the acknowledgement from the server for this finish message that

you have sent.

Now, after that if the server sends this acknowledgement message to you, then you move

to the time wait state and after the time out occurs you move to the close state. In case of

passive close things are pretty simple that you are in the close wait state because, you

have received the FIN message and you have send back with an acknowledgement

message and in the passive wait state you finally make a close call, so the server here is

making a close call here you sent your own FIN message, server is sending it is own FIN

message and waiting for the last acknowledgement message.

So, once it server gets the last acknowledgement message it close the connection and

again it goes back to the initial state that is the starting of the connection. So, this is the

entire state transition diagram of TCP. The important aspect here is this time wait state

that means, after getting the final acknowledgement, in case of the active close the node

which is initiating the closer it will wait for certain timeout duration and once the timeout

occurs then only it will close the connection and another interesting state is this closing

state where you have sent a FIN message to the server, but rather than getting an

acknowledgement you have received the FIN message from the server.

So, it is just like that you want to close the connection the server also wants to close the

connection, but server is not immediately acknowledging because, it has a belief that it

may receive some more data or it is waiting for some other processing. So, this are the 2

interesting steps here in case of connection closer and this connection closer is

interesting because, here our objective is to prevent the data loss as much as possible.

Because of a result of this impossibility principle that we talked earlier with the example

of these 2 army problem that, if you have a unreliable channel then over that unreliable

channel you will be never be succeed to have a protocol of simultaneously closing the

connection or getting a consensus over this unreliable channel if the system is

asynchronous.

So, we need to go for this synchronous closer and in case of synchronous closer to

prevent the data loss as much as possible, TCP has taken this steps and in this particular

steps the interesting part is this timeout for active closer that once all the things is over

the node which is initiating for the closer it waits for certain amount of time. Once the

timeout occurs they close it, but for the passive close you do not require the timeout

because, for the passive close the other end has already closed the connection, so you

know that it is not going to send anymore data to me.

So, this is the entire connection modeling part of TCP protocol and in the next class we

look into the flow control algorithm. So, this connection establishment it has helped you

to set the initial sequence number. So once it is initial sequence number has been

established then you can use that initial sequence number. So, you are at the established

state and with that established state and the initial sequence number that has been agreed

upon during the connection establishment phase; you can use that for further data

transfer using you flow control algorithm.

So, in the next class we will look into that flow control algorithm in details.

Thank you all for attending this class.

