
Computer Networks and Internet Protocol
Prof. Sandip Chakraborthy

Department of Computer Science and Engineering
Indian Institute of Technology, Kharagpur

Lecture - 18
Transport Layer Primitives

Welcome back to all of you in this course on Computer Network and Internet Protocols.

So, till now at the transport layer we have to looked in to different kind of service

primitives.

(Refer Slide Time: 00:25)

So, going from there now we will look in to that how you can combine all this service

together and develop and complete n to n transport layer protocol. So, we look into this

combination of multiple service together here and then will go to the details of the TCP

protocol in details.

(Refer Slide Time: 00:45)

So, as we have discussed earlier like at the transport layer whenever you are interfacing

it with the application layer with specific application service. So, the transport layer it is

providing you the n to n connectivity. So now when the transport layer is providing you

the n to n connectivity it may happen in a hypothetical scenario that there are say one

single machine which is trying to communicate with another machine.

(Refer Slide Time: 01:14)

So, this is one desktop D 1 this is another desktop D 2 we have communicate over the

internet. So, this is my internet cloud and there are other machines which are available

there say D 3 and D 4. Now on this machine and a single machine there can be multiple

application which can be running all together say this is A 1 this is A 2, here you are

running again 1 application A 1 other application A 2 here you are running say 3

applications A 1 A 2 A 3 here you are running 1 applications say A 4.

So, that way on a single machine because we are utilizing this kind of malty tasking

environment, they are can be multiples such applications which are running all together.

Now it may happen that in transport protocol that application at D 1, so application at D

1 once to make communicate with application to at D 3. So these 2 application need to

communicate with each other. So, at the network protocol stack what you have to do you

have to first uniquely identify this machines that D 1 and D 3 want to communicate and

that is not sufficient at the same time you need to ensured that the application 1 at D 1

once to communicate with application to over D 3.

So, A 1 over D 1 once to communicate with A 2 over D 3 so these communication part

need to be established. So, the question comes that how will you uniquely identify a

machine and then how will you uniquely identify an application running on top of a

machine. So, to look into that we use 2 different addresses here, so we have the network

layer on top of the network layer we have the transport layer and on top of the transport

layer I have the application layer and as we discussed earlier that this part it is

implemented as a part of your operating system. And then the transport layer they are

sending these n to n segments. So, the packets are going where the network layer, but we

are considering transport layer pipe a logical pipe between these 2 transport layer entity.

(Refer Slide Time: 03:45)

Now, to identify these transport layer entity we use this port number, so the port number

uniquely maps this transport entity to a particular applications. So, the example that we

are talking about that application 1 or D 1 once to talk with application 2 at D 3. So,

these individual applications they are identify over the network with the help of this port

number. Similarly individual machines at the network that are identified by the IP

address, so we buying the IP address with this network layer and we buying the port

number with the transport layer.

So, this transport layer header it uses this source port number and the destination port

number that will look in to when you look in to the details of the TCP protocol and a

UDP protocol that are the transport layer header you have to provide the source port

number and a destination port number. So, this source port number and a destination port

number will uniquely identify the application, which is trying to send the data or which

is trying to receive the data. So, that is the usefulness of the port number.

(Refer Slide Time: 04:58)

Then on top of this transport layer we logically define a pipe, so this is again a logical

pipe and you want to implement all the services transport layer services on top of this

logical pipe. So, it is just like in the telephone call you are making a hello, so whenever

you are making a hello you want make sure that the other person is correctly receiving

your message and whenever you are saying something that hi how are you wait for some

amount of time if you are getting the respond that hello I am well, so you are happy that

the other end has saved your message.

If you have said that hello how are you and you are waiting for some 2 minutes and no

response is coming, then again you will say that hello are you hearing, so those are the

protocols those are the kind of logical channels which you are establish establishing.

Now all your messages like whenever you are saying: hello, how are you this message is

embedded to a signal, and then transferred over the physical where which is to connect

your telephone network.

So, the same way things happens in the data network, whenever sending data from the

transport layer the transport layer is assuring n to n that you are able to send the data

correctly at the other end of the system and the other end of the system is receiving the

data correctly, because as we are looked into that the lower layer of the protocol stacks

starting from the network layer and the below their on reliable, so packet may get drop

from there. So, because packet may get drop from their at the transport layer actually

since that whether the packet is getting drop from their and if packet is getting drop it is

identified with the help of that sequence number, if the packet is getting drop then you

retransmit the packet over the same pipe.

So, unique pipe here between 2 transport layer entity it is identified with the help of this

address which is the network layer address. So, at the network layer I have this IP

address and here I have the port number. So, I have this source IP I have source port, I

have destination IP, I have destination port which is uniquely identified this pipe, but

remember another point that we have discussed earlier like if a system is getting crashed.

And it is restarting you have to also have an initial sequence number and to avoid the

delay duplicate you need to ensure that that sequence number initial sequence number

which you are generating, it is not using any sequence number of the forbidden region

from the previous connection, which is utilizing the same source IP source port

destination IP destination port pair. So, that is why this initial sequence number say

source sequence number and this destination sequence number they also become part of

uniquely identifying this logical pipe.

So, in TCP or in transport layer protocol TCP kind of transport layer protocol we identify

this logical pipe with the help of this 6 staples, the source IP the source port the source

initial sequence number the destination IP the destination port and a destination initial

sequence number.

(Refer Slide Time: 08:18)

Now, let us look in to some hypothetical primitive to enable user to right a transport layer

application. So, the thing is that if you again remember that at the operating system label

I have the implementation of the transport layer and then the network layer and then the

lower layer of the protocol stack and these part is implemented in your insight your

operating system and in the users space you can write your own application. Now if your

application say if you are building a chat application and in that chat application if you

want to send data over the network then your application need to directly interface or

directly interact with the transport layer.

Now whenever you are saying that you need to directly interact with the transport layer,

your operating system should provides certain primitives through which you will be able

to make your transport layer active and then send the data to your transport layer; after

that everything will be taken care of by the transport layer and other lower layers of the

protocol stack, but from the application layer you should ask for the specific service that

you want from the transport layer. Now to get those service let us first try to design a

hypothetical transport layer protocol, by utilizing the various services that we have learnt

till now and after that we look in to the TCP protocol in details.

So, that way understanding TCP will be much easier for you. So, to look in to this

hypothetical protocol we are thinking of a client survive is application. So, I have a

server that server is ready to accept the connection, then I have a client the client can

send certain messages to the server. For the time being just think of a hypothetical

protocol were the client will send the server as a message like hello server and the server

will listen that message and reply back to a client that I am fine. So, to do that what the

server has to do the server has to fast to be in the listen state, what is this listen state?

That the server here it is waiting for an incoming connection because, see whenever you

want to connect to something if the machine is not in the listen state, you will not be able

to initiate a connection, you will not be able to randomly initiate a connection with any

of the machine in the world, the machine need to be ready to accept the connection. So,

whenever you say that is the server is in the listen state what we are ensuring we are

ensuring that the server is ready to listen some message. So, initially the server is in the

listen state then we have the connect states, so in the connect state from the client you are

sending so the server and this is the client.

(Refer Slide Time: 11:00)

So, the server is in the listen state, now from the client sight you are making a connect

call whenever you are making a connect call, then you are actually asking the transport

layer to initiate a n to n connection, so the transport layer will initiate a connection. So, if

it is A 3 way hand shaking that we have learnt earlier it will used at 3 way hand shaking

for initiating the connection, then once this connection is establish then you can call the

send function from your application program to send the data send the data to the

corresponding server.

Now once the server gets this data, so server need to accept the data from the transport

layer. So, if you remember earlier the diagram like the data will come and the data will

keep on waiting or the receiver buffer at the transport layer. And from the application you

have to make certain function call to get the data from that transport layer buffer. So, for

that we have this receive call, so the server will make a received call to receive the data

from the transport layer buffer. Now that way you can send that hello message and the

server can say I am fine server can again make a send call to send server can again make

a send call to send for the data and that way this call can go on.

So, once this data transfer is complete, then you send the disconnect message or

disconnect function call to disconnect this particular connection. Now here the

interesting point is this connect and the disconnect call. So, in a transport layer if you

want to get the transport layer services along with connection establish state. So, what

you have to ensure that whenever you are making a send call or the received call you are

there in the connect state. That means, before you have made a send call and a received

call you need to ensure that well the system has already established the connection.

(Refer Slide Time: 13:17)

So that means to initiate a connection what you have to do, you have to write the code in

this way that if connected I am just writing some pseudo code, then send else wait so that

is at the sender side ok. Similarly at the receiver side it will be if connected then make a

receive call else wait for the connection. Now in this case you can see that well every

time you want to make a call to the send or receive you have to check that the system is

in the connected state. So, if only the system is in the connected state then only we will

be able to make a call to this send the receive function.

(Refer Slide Time: 14:25)

So, that way that way this particular primitive is important because, what we say that the

transport layer needs to remember the state of the pipe the pipe logical pipe that we have

defined earlier, so that appropriate actions can be taken. So, if you are making a send call

before initiating the connection so that call is not a valid call. So, we need a state full

protocol for a transport layer, so what is mean by a state full protocol that with every

connection you will remember that what was the state of that particular pipe through

which you are going to send the data.

(Refer Slide Time: 14:56)

So, first you have to initiate the connection. So the system is in the connect state the

example that I have given you that the client is in the connect state the server is in the

listen state you have sent a connection request and got an connection acknowledgement

both are in the establish state.

Establish state means the connection has established then you can send the data make a

send call to send the data, the server can make a receive call to receive the data even if

after that the some server wants to send the data server can make a send call and the

client can make a receive call. And once this is done then you can make a disconnect call

to disconnect this particular request. So, this established is the state that the server and

the client need to remember before making the send call and the received call.

(Refer Slide Time: 15:50)

So, this entire thing we can represent in the form of a state transition diagram. So, this is

an important concept with the on concept of this transport layer, where if you want to

maintain transport layer services you need to maintain this state of your pipe logical pipe

that you are defining on top of the transport layer. So, these state transition diagram will

tell you that on receives and of which message, how you are moving from 1 state to

another state. So, let us look in to this example in details, so initially you are in the idle

state now in the idle state so you make a connect call.

So, once you have connect call so this solid line is the client side and this doted line is

the server side. So, you have make a connect call, so once you have make the connect

calls did that time this is you have made the active establishment, active establishment

means you have initiated the connection; similarly the server it has received the

connection request segment. So, once the server has receive the connection request

segment it is in the passive establishment state; that means, it has got a connection

request message they need execute the connection primitive; that means, if it is A 3 way

hand shaking it execute that 3 way hand setting otherwise it send the acknowledgement

and it moves to the establish state.

Similarly the client when it gets the connection accepted segment it received these

connection establish segment accepted segment and it moves to the established state and

this established state you can start transmitting the data whenever you are in the establish

state.

Now to come out of the establish state you have disconnect the things, then again if the

client initiate the disconnection message, so connect that the client execute the

disconnect primitive; after the client execute disconnect primitive the client has executed

it. So, it is the active disconnection after that similarly at the server side the server, if it

receive the disconnection request segment. So, it moves to the passive this connection

then once it execute the disconnect primitives send the acknowledgement, the server

moves to the idle state; similarly when the client receive this disconnection request from

the server that gives an acknowledgement to it is request it moves to the idle state.

So, that way so this client by executing this connection primitive it moves to the

established state, the server moves to the established state and you execute the

disconnect primitive and move to the idle state back again. And here you can see that this

state transitions are initiated by sending some messages or receiving some messages and

whenever you are in a proper state then only you are allowed to do further task. For

example, whenever you are at the established state then only you are able to execute the

send and a received call, otherwise you are not allowed to do that.

(Refer Slide Time: 19:08)

Well, so this is the server side and this is the client side that we have discussed.

(Refer Slide Time: 19:16)

So, in the context of transport layer till now I have use this terms segment packet frame

interchangeably everything to point that a network packet which is going over the link,

but technically we make a differentiation between the segment the frame and a packets.

So, in general at the transport layer whatever you are getting, so that is called a segment.

So, at the segment is the concept at the transport layer now after getting a segment at the

transport layer, you adopt the segment header at the transport layer and pass it to the

lower layer that is the network layer. So, this entire thing that you are passing to the

network layer that becomes the network layer payload and in the network layer that

concept we call it as a packet.

So, packet the term packet is normally used to denote the primitive at the network layer,

with that you adopt the packet header and send this entire thing to the data link layer. In

the data link layer this entire thing that you are receiving from the network layer that is

termed as a frame, so this is the frame payload at the data link layer you adopt the frame

header with the frame payload and send it to the physical layer for physical transmission.

So, the segment it is used at the transport layer, so in the transport layer the data

primitive we call it as a segment at the network layer, the data primitive we term it as a

packet or in the contest of UDP we call it as a data gram and then at the data link layer

we call it as a frame. So, till now you have use the term interchangeably, because this

terminologies has not been define to you, but now onwards will use this terminology

whenever we are there at a particular layer of the protocol stack. In the context of flow

control I have used the term frame and segment interchangeably because as we have seen

that this concept of flow control is there at the transport layer as well as at the data link

layer. So, the flow controls are executed on top of segment as well as it is executed on

top of frames, so we should not have any confusion there; but for the other primitives try

to utilize this proper term which is there, ok.

(Refer Slide Time: 21:33)

Now, let us look in to this entire transport layer process flow by combining all the service

primitives that we have learned. So, initially you need to have this connection

establishment. So this connection establishment it initiate a connection by selecting the

initial sequence number. And whenever you are selecting the initial sequence number

you need to ensure that this initial sequence number do not fall within the forbidden

region of the previous connection between the same source IP source port destination IP

destination port pair. And that is why we include the sequence number as a part of

identifying these n to n type, which we normally call as socket in the terms of unique

later on will look how we do the programming on top of a socket.

So, this same logical pipe is termed as a socket, so we defined uniquely identify a

connection uniquely identify a socket with the 6 tuples, the source IP source port source

initial sequence number destination IP destination port and destination initial sequence

number.

(Refer Slide Time: 22:39)

Then comes the flow control and reliability, once you have set up these initial sequence

number then that initial sequence number will be used further to ensure the flow control

and reliability with the help of your Q protocols. So, this ARQ protocols see it ensures

the flow control and reliability, so the sender will not send data at a rate higher than the

receiver rate; as well as in the congestion control prospective we have seen that the

sender rate should be minimum of the network supported rate.

That means, the congestion rate and the receiver rate, then the sequence number they are

used to uniquely identify each bite for a bite sequence number or if you designing a

protocol with the packet sequence number with fix size packets, then this, this sequence

number will denote uniquely identify a packet and loss in the communication part it is

handle to this transmission in the flow based flow based control mechanism in the based

flow control mechanism. So, you make a retransmission to re transmit the packet over

that same connection, then we have the congestion control the congestion control

algorithm it reduces the transmission rate once congestion is detected.

So, we have seen that the sender rate I am writing it has Srate is minimum of the network

rate and your receiver rate. So, this receiver rate is something that is advertised by the

receiver with every individual acknowledgement and this network rate the idea is that

you apply this a IMD protocol additive increase multiplicative decrease protocol to

ensured both efficiency and free on a simultaneously. And with this help of the a IMD

protocol what you do in case of congestion control, you gradually increase the rate and

you see that this rate will gets saturate when it will reach at the receiver rate. So, ideally

let me try to draw a proper diagram so that the things become easier for you to

understand.

(Refer Slide Time: 24:45)

So, initially you increase that so I am I am here with respect to time I am plotting the

sender rate for congestion control algorithm. So, initially which increase the sender rate,

so once so my formula is that sender rate is equal to minimum of network rate and

receiver rate. So, initially you start network rate with a very low rate say some 1 kbps.

And gradually try to increase it, so whenever you are increasing it the minimum is

becoming the network rate after that when the network rate will exceed the receiver rate

it will get saturated here, so this is my receiver advertise rate.

So, after that once you are experience a packet loss you are experiencing a packet loss

here, so once you are experiencing a packet loss you apply this a IMD concept additive

increase multiplicative decrease concept to drop the rate again and start this procedure

again gradually increase the network rate ok. At this point if the receiver advertise some

different rate it will get saturated here, after that if the network again advertise that well

it can support higher rate again you start increasing it based on the network rate it will

get saturated here, based on the receiver rate and then it increases again and some time if

there is a congestion detection with the help of a loss with the detection of a packet loss

you again drop the way.

So, that way the sender rate gradually increases in a transport layer and it helps you to

find out to handle the congestion as well as the flow control simultaneously. So, here we

can see that this is the flow control algorithm and the congestion control algorithms are

couple together.

(Refer Slide Time: 27:04)

So, this congestion control it reduces the transmission rate once transition is detected and

as you have seen that it improves the performance for n to n data delivery. So,

dynamically based on this rate you start sending the data other in to receive the data send

back the acknowledgement and accordingly will pause it and once you want to close the

connection the data transmission is over. Then you execute this connection closure

primitive that close the connection when the data transmission is complete. And as we

have seen earlier that although a synchronous closure is good, but a synchronous closure

is not possible to implement in a distributed system with unreliable channel. So we go

with synchronous closure with time out.

So, that is all about the basic service primitives of transport layer, in the next class

onwards will start looking in to the transmission control protocol of the TCP protocol in

details which is widely used in the network. So, around 80 percent of the traffic over the

global internet it uses this TCP protocols; so will look in to the TCP protocol in details

which is a widely accepted transport layer protocol.

Thank you all for attending this class.

