
Computer Networks and Internet Protocol
Prof. Sandip Chakraborthy

Department of Computer Science and Engineering
Indian Institute of Technology, Kharagpur

Lecture - 14
Transport Layer – IV (Reliability)

Welcome back to the course on Computer Networks and Internet Protocol. So, in the last

classes you have looked various services in transport layer of the protocol stack, and we

have looked into in details the connection establishment and the connection termination

procedure. So, today we look into the second service which is the flow control and the

reliability in transport layer.

(Refer Slide Time: 00:40)

So, the flow control and reliability ensures that whenever you have establish certain end

to end connection between the two remote host; so, on top of that connection; now you

need to send a sequence of data base.

So, in transport layer in TCP kind of protocol you send it in the form of sequence of

bytes. On the other hand in certain version of transport protocols the data is transmitted

in the form of sequence of packets or sequence of segments. So, in this end to end

connection which is being established on the two end of the devices; the two end

devices. Here what objective is the first objective is that the sender should not send more

data compare to what the receiver can receive.

So, this particular methodology or this particular philosophy, we call it as a flow control

algorithm. So, the flow control algorithm ensures that the sender is always aware about

what a receiver can receive or how much data the receiver can receive. And, accordingly

the sender adjusted its rate of transmission; such that it does not overshoot the rate at

which the receiver can receive. At the same time as we have discussed earlier that the

lower layer of the protocol stack is kind of unreliable.

So, whenever the network layer forwards packets or forwards data to an remote host, the

network layer does not ensure that there is a kind of guaranty or assurance that your data

will be delivered at the other end. So, it makes a best try to deliver your data based on

your destination at this and finding out the intermediate hubs through which the packet

need to be delivered. But on the other hand this network layer it does not bother about

that who much data need to be push to the network or how much data need to be

transferred.

And as a result what happens in a packet switching network that I described in the last

class that the intermediate buffers, at the intermediate network devices that at the routers.

They may get filled up and you may experience a buffer over flow from those

intermediate routers. And because of that whenever you are delivering a data through this

network layer using the IP delivery method, there is always a possibility that a

considerable number of data frames or data segments; they are getting dropped from the

from the network layer.

Now, the task of the transport layer is to consider that to find out or to sends whether

certain data has been transferred correctly at the other end or not and if it is not transfer

at the other end correctly. Then apply this reliability mechanism to ensure that every

message which is send by the application layer that is getting delivered at the other end

eventually.

So, the broad idea is that you send the channel, you sends the media to find out whether

the data is being transmitted correctly or not, if the data is not being transmitted

correctly. That means, the other end is not able to receive the data if you are able to find

it out, then retransmit the data to make sure that eventually the data is received by the

other end receiver.

Now, in a typical transport layer this flow control and reliability are implemented

together. So, we look into the different mechanism through which we implement the flow

control and the reliability algorithms over the transport layer of a TCP IP protocol stack.

So, let us proceed with the detail mechanism of that one.

(Refer Slide Time: 04:25)

So, this is the broad idea of ensuring reliability. So, as I have mentioned that your

network layer provides you an unreliable channel. So, the network layer does not

guaranty that the packet that it is trying to deliver at the other end it will be eventually

transmitted. So, there is always a possibility of buffer overflow from the intermediate

routers because of which there is a possibility of data loss.

Now, we are we are having some hypothetical function or hypothetical method which is

through which we are making a interaction among different layers to make you

understand about the entire procedure. Now if you just think about from the application

perspective, the application always wants or the application always try to have an

methodology through which you will be able to ensure reliability.

So, that means, the application always wants that if a sender is or a sending process is

sending certain message or certain data that data will be eventually received by the

receiver. So, the receiver will receive all the messages. So, you can just think of an

application like a file transfer. So, the entire large file is divided into multiple chains and

then the sender process sending the data bits for that file.

Now, at the receiver end you need to ensure that all the data that is send by the sender

that is received eventually otherwise you will not be able to reconstruct the entire file.

So, that is why from the application perspective reliability is at most importance for

many of the application. But as I have mentioned earlier that they are exist a certain

group of applications where reliability are is not that much important; rather delivering

the data or delivering the messages more important within a pre defined time or duration.

And in that cases we use UTP type of protocols where reliability is not a concern or

reliability is not used. But for the application for the set of applications when reliability

is a concern during that time the application always expects that the data or the message

that we transferred from the application. They will be eventually received at the receiver

side.

Now, the application here expects a reliable channel. So, the question comes that your

network layer is unreliable. So, on these unreliable channels, how can you express or

how can you write a methodology to ensure reliability. So, the idea is there that at the

transport layer, you have this reliable data transfer protocol at the sender side and the

receiver side.

So, this sending process at the network layer it is unreliable send udt send that express a

unreliable way of sending the data. On top of that you are implementing this reliability

mechanism which is ensuring that reliable data send on top of the transport layer.

So, whenever you are making a interfacing between the network layer at the transport

layer, there you have this unreliable data send and at the interface of transport layer and

the application layer, you have the interface of reliable data send.

Now, at the other end it receives the data in a reliable way because of this reliable data

send mechanism which is there and this reliable data transfer protocol at the receiver

side; eventually it will receive the message and it will deliver the data to the application

layer.

So, that way the application layer will always expect a reliable delivery of the messages.

And here we will see that in the transport layer, how can you implement this two

mechanism at the sender side, and at the receiver side which will help you to ensure

reliability in the system.

So, let us look into this process in details. So, as I discussed earlier during the discussion

of a different layer of the TCP IP protocol stack that certain services are implemented in

multiple layers of the protocol stack. So, this flow control and error control these are the

two mechanism which are implemented both at the transport layer and the data link layer.

So, the questions come that; why do we need to implement flow control at the transport

layer as well as the data link layer.

So, if you if you just ask the question in this way that let us assume that I have my flow

control algorithm in the data link layer which being implemented, do I need to have the

flow control algorithm at the transport layer itself?

(Refer Slide Time: 09:05)

So, let us look into one example where you have this flow control algorithm at the data

link layer. So, the data link layer ensures this hop by hop flow control algorithm. So, as

we have leaned already that your data link layer protocol. It ensures the hop by hop

principles the hop by hop transmission of data where as the transport it ensures the

complete end to end delivery of the data. Now whenever we are saying that the flow

control algorithm is implemented at the data link layer, it is like that this hop by hop flow

controls are implemented.

So, if you think about this as the intermediate routers R1, R2, R3 and this is the source

and this is the final destination. So, these flow control algorithm at the data link layer; it

ensures that you have flow control mechanism between S and R R1 between R1 and R2

between R2 and R3 and between R3 and the D.

Now so, this hop by hop flow control algorithms are there. Now the questions comes if I

have this hop by hop flow control algorithm, do I still need to have a flow control

algorithm at the transport layer? Now just think of a scenario that well this link from S to

R1, it is 10 mbps; the link from R1 to R2, it is 5 mbps; the links from R2 to R 3, it is 3

mbps and the link from R3 to this D this is 1 mbps.

Now, what happens here that whenever you are implementing this hop by hop flow

control at the data link layer, then from S to R1, the S finds out that well I can send the

data at a rate of 10 mbps. So, it sends the data at a rate of 10 mbps. But then R1 finds out

that it will not be able to send the data to R2 at a rate of 10 mbps, although it is receiving

the data at a rate of 10 mbps, but it requires 3 mbps of transmission. Similarly R2 it finds

out that it will not be able to send data at a rate of 5 mbps; rather it need to sends the data

at 3 mbps and finally, from R3 to d it can only send the data at a rate of 1 mbps.

Now, if S does not know that this entire so, if you look into the effective rate of this

entire end to end path. So, this effective rate of this entire end to end path will be equal to

1 mbps. Now if S does not get this information, it will try to push the data at a rate of 10

mbps and what will happen that R1 will not be able to deliver the data to R2 and so on.

So, that way that additional data which is coming to R1; so, R1 is receiving the data at a

rate of 10 mbps, but it is only able to deliver the data at a rate of 5 mbps. So, that as a

result this additional data that it is receiving it will get on filling up the buffer space

which is available at R1 and eventually what will happen that eventually we will

experience the data loss from the buffer due to buffer over flow.

So, there will be a huge amount of data loss because source is transmitting data at a rate

of 10 mbps, but the receiver the other end, receiver is only able to receive data at a rate

of 1 mbps. And as a result this 9 mbps of data that will get accumulated over the different

layers of buffers at different intermediate routers; and after some time it will experience a

drop of data from those intermediate buffers, and this the reason that we are not able to

implement. If we implement this flow control algorithm only at the data link layer for

hop by hop flow control, it is not sufficient we have to implement it at the transport layer.

Now, let us look into the other way around like you have this end to end flow control

algorithm and in that case, still we still we require that this flow control algorithm at data

link layer or not. Now in transport layer; what happens that you are only ensuring the end

to end data delivery or end to end flow control algorithm?

(Refer Slide Time: 13:03)

So, you have one router with which your source is getting connected. Then you have this

intermediate network, then another router and then your destination which is there. And

you are only ensuring the flow control among these two end host and just think about the

earlier example that you are sending data at a rate of 1 mbps.

Now, you just think of two intermediate routers here in the network. Now this router has

multiple incoming ports. So, it is just like a road network that you are getting data from

multiple parts all together. So, you are getting data from this link, you are getting data

from this link, you are getting data from this link and so on.

So, that way it may happen that which link is pushing data at a rate of 1 mbps, but this

individual links may push data at a rate of 2 mbps and say this link is pushing data at a

rate of 5 mbps. But this out going link it only has a speed of say 3 mbps. In that case

because this multiple incoming link are getting converged in a intermediate router, it may

happen that the total incoming rate which is being there from multiple others incoming

links that is exiting the total out going capacity that the router has. And because of that

this end to end flow control algorithm, it may perform poorly in this kind of scenario. So,

that is why to make it control to have a control, you need hop by hop flow control

mechanism in the network. But here you will see by applying this hop by hop flow

control algorithm in the network. So, what your task would be your task would be to

reduce the incoming rate at every individuate hop such that intermediate routers is

experience less congestion less amount of congestion

So, by doing that you are effectively improving the performance of the system, but

remember that by even after implementing the hop by hop flow control, it may not be

possible to possible to ensure complete reliability that a complete elimination of data

loss. Because you are receiving data from multiple hops and every, where there is a kind

of estimation going on that what should be the ideal rate at which the one ensure send the

data at the other end, and this is the estimation takes some time. So, before the systems

moves to the convergence there is always a possibility of having a significant amount of

data loss.

So, you will not be able to completely eliminate the data loss by applying this hop by

hop flow control mechanism, but certainly you can improve the performance. And that is

the reason we say that flow control mechanism, the error control we will discuss later on.

(Refer Slide Time: 16:03)

The flow control and this error control mechanism at the transport layer; they are

essential whereas the flow control and the error control mechanism and the data link

layer they improve the performance of your protocol.

Now, let us look into different type of flow control algorithms and before going to that,

why do we require this different kind of end to end protocols in the network. So, for that

I suggest all of you to read through this particular paper which was which was published

by Saltzer Reed and Clark. So, it is a fundamental paper in Computer Networking that

talks about that, why do you require this kind of end to end protocols in the internet

when there is this hop by hop protocols already existing. So, I suggest all of you to read

this particular paper to get more details about the principles which you are adopted in the

TCP IP protocol stack to implement this kind of end to end protocols over the internet.

(Refer Slide Time: 17:02)

Now, let us look into this flow control algorithm. So, the simplest flow control algorithm

that we have, we call it as a stop and wait flow control algorithms. So, the stop and wait

flow control algorithm in a error three channel works as follows. The protocol is pretty

simple that you send a frame or you send a packet and then, you wait for its

acknowledgement.

So, once the receiver receives this frame, it sends back an acknowledgement and the

sender it waits for the acknowledgement before sending the next frame or the next

packet. So, once you are receiving this acknowledgement, then you only send the next

frame. So, that way every frame has an acknowledgement associated with it and only

when you receive the acknowledgement you transmit the next frame.

Now, if it is a error free channel it is always guaranteed that eventually the receiver will

receive the frame and it will be able to send you back the acknowledgement and the

sender will eventually receive the acknowledgement, because it is an error free channel

and there is no loss. So, once you are receiving the acknowledgement, you are sure that

the receiver has received this particular frame and so, you transmit the next frame.

So, that is the broad idea of this; stop and wait the protocols. So, you stop after sending

transmission, start sending the next frame, after sending one frame then, wait for the

acknowledgement; one you have received the wait, then you send the next frame.

(Refer Slide Time: 18:21)

Now, let us look into this flow control algorithm in a noisy channel the same Stop and

Wait protocol. So, here we use the concept of sequence numbers to individually identify

each frame and the corresponding acknowledgement. So, every frame is associated with

one sequence number. So, if you look into this example this frame 0 is associated with a

sequence number. So, this 0 is the sequence number for this frame and then, we are

getting an acknowledgment. So, this acknowledgement mechanism it is sending

acknowledgement 1; it is sending acknowledgement 1 means that B has correctly

received frame 0 and then it is expecting for frame 1.

So, then you send the frame 1. So, once you have B has receive frame 1, then it sends

acknowledge 0; that means, B has received frame 1 and it is waiting for the

acknowledgement 0. So, that way in a noisy channel, the first reason is the first principle

is that you separate out every frame with by using the a corresponding sequence number

which will be uniquely identify every frame in the channel.

Now, because it is a noisy channel, there is a possibility of having a frame loss because

this frame is being lost from the network. So, if there is a frame loss, so we will not send

back any acknowledgement. So, you wait for a timeout value. So, A will wait for a

timeout value and once this timeout expires, then a will returns with the frame.

Now, one interesting question here is that what can be the maximum size of the sequence

number in stop and wait. So, in stop and wait you can see that at one instance of time,

only one frame can be outstanding in the network. So, whenever you have send frame 0,

unless you are getting the acknowledgement from that frame; you will not send the next

frame. So, that is why 2 bit sequence number will be sufficient and because of this reason

you can see from this diagram that, every frame is associated with one sequence number

and the sequence numbers are 0’s and 1’s. So, repeated 0’s and 1’s so; that means,

whenever you have send frame 0, unless you are getting this acknowledgement with the

expected frame 1; you will not send frame 1.

So, you can always be sure by looking at the acknowledgement that which for which

frame this acknowledgement corresponds to. If you are getting an acknowledgement 1;

that means, you have correctly received frame 0 and you are expecting from for frame 1.

So, that is the reason that we use to bit sequence number for a this flow control algorithm

using stop and wait and this kind of algorithm where we are utilizing the concept of

sequence number. And applying flow control algorithm in case of a noisy channel and

you can see that by applying this flow control algorithm in a noisy channel. We are also

ensuring reliability in the system.

So, we are also ensuring that the receiver receives all the frames correctly. So, if there are

if a timeout occurs then you retransmit that frame again. So, that this frame 0 eventually

receives by the receiver B. So, that way you are also ensuring reliability in the system

and this flow control and reliability algorithm all together, we call it as a automatic

repeat request or ARQ algorithms.

So, now onwards we look into these ARQ algorithms in details; the different versions or

the different variance of ARQ algorithms.

(Refer Slide Time: 21:41)

Well, so this is a kind of sender side implementation of this stop and wait ARQ algorithm

in the form of a straight transition diagram. So, here the thing is that this you can think of

the initial state.

So, the initial state talks about that you wait for call 0 from above; that means, you are

waiting for frame 0 initially. So, the event which is there it is in the sender side. So, you

are from the application layer you are sending a reliable data delivery. Now once this

things happens. So, at the transport layer side, you are making a call to reliable data

delivery to send with this data.

Now, how it ensures the reliable data delivery? So, you need to map this rdt to the

corresponding udt call because if you remember that earlier, we have seen that at the

network layer the calls are unreliable calls like this udt calls. So, for that what you are

doing that you are appending one sequence number with this packet you are providing

the data and some checks some checksum, we will discuss later on to ensure the error

free transmission of the data. Then you are sending the data over unreliable channel and

starting the timer

Now, whenever you are waiting for the acknowledgement 0, you are moving to the state

that you have sent the packet 0. So, you are waiting for the corresponding

acknowledgement. So, here once you are receiving a packet and if you are finding out

that the packet is corrupted and in that case, you are in the same loop you again wait for

an acknowledgement. If a timeout occurs, then again you send the packet you retransmit

the packet through this udt send mechanism. You retransmit the packet and start the timer

again. And then once you are receiving the acknowledgement, then you move to this

state that wait for call one because you have received that acknowledgement. Now you

want to send the next frame that is frame 1.

So, in that case you have receive the packet from the upper layer and once you have

receive that packet and that packet is not a corrupted packet and it is the

acknowledgement corresponds to frame 0. So, you are moving to this state. Once you are

in this state in that case, you are waiting for receiving the packet from the upper layer.

So, once you have received the packet from the upper layer, then you make this send call

with the data with this frame 0 and the same process gets repeated that you append this

sequence number; sequence number 1 along with the data and the corresponding

checksum and then send the packet through the unreliable channel. And you move for

waiting for that corresponding acknowledgement. And the same process gets repeated

that if you are receiving the data and the packet is corrupted, you are in this loop. If a

timeout occurs, then you transmit the packet again and start the timer again and then

whenever you are receiving the acknowledgement; that means, you are receiving a non

corrupted packet and you have received the acknowledgement corresponds to frame 1;

then you stop the timer and wait for this frame 0.

So, that way you send this frames one after another frame 0’s and frame 1’s, one after

another and you move through this state transition diagram to send the packets one after

another. And ensure proper flow control along with the reliability in the system.

(Refer Slide Time: 25:19)

Well so, let us look into the problems which are associated with stop and wait type of

flow control or ARQ algorithm. In stop and wait ARQ, first of all every packet needs to

wait for the acknowledgement of the previous packet. So, until you are receiving the

acknowledgement for the previous packet, you will not be able to send the next packet.

Now, for if you think about bidirectional connections; for bidirectional connection, you

can use two instances of stop and wait. One instances of stop and wait will ensure one

instances of stop and wait will ensure transferring of data from A to B and another

instances of stop and wait will ensure transferring data from B to A, but this will again

result in a significant ways of network resources that for both the side you have to wait

for the acknowledgement.

So, one possible solution to solve this particular problem is that you can piggyback data

and acknowledgement from both the direction. But even if you are piggybacking data

and acknowledgement for the both the direction, so piggybacking here means that

whenever you are sending a data frame along with the data frame. You also adds up the

acknowledgement.

So, this data is say this is going for sequence one and along with the data with sequence

one you send the acknowledgement for the previous one which is coming from B to A.

So, it is like that say this is B and this is A. From B to A you are sending one data packet;

for B to A whenever you are sending a data packet say A has earlier send a packet to B.

You are sending the acknowledgement along with whenever you are sending the data

packet to A.

So, although this piggybacking mechanism is more efficient compare to compare to this

using these two instances of stop and wait, but still it is wasting a huge amount of

resource because for all packets you need to wait for the acknowledgement.

So, you will not be able to parallelly transmit the packets in the network. So, to solve this

problem we use a class of flow control algorithms which we call as the sliding window

protocol. So, sliding window protocols are a pipe lined protocol where you can send

multiple frames or multiple packets altogether without waiting for the corresponding

acknowledgement. So, you can send multiple frames and all the frames can go in a

pipelined way.

(Refer Slide Time: 27:49)

So, a broad idea of this sliding window protocol is something like this. If you look into

the stop and wait protocol, so the stop and wait protocol you are sending only one data

packet. So, only one data packet can be outstanding in the network.

So, once this data packet is received by this receiver, then this receivers send back the

ACK and once you are receiving that ACK at the sender, then only you will be able to

send the next data packet. In case of my pipeline protocol or the sliding window

protocol, what we do that we can send a sequence of packets and parallelly we can

receive the sequence of acknowledgement.

So, that way we will be able to use this pipeline concept over the network where you

could be able to send a sequence of packets all together and parallelly you can receive a

sequence of acknowledgement. So, that way, you will be able to utilize the network

resource more efficiently because nowadays. Now with this particular approach of

sliding window protocol; you will be ensuring that more number of packets can be push

to the network if the network has that much of capacity. And parallelly we will be able to

receive the acknowledgement and you will be able to adjust your transmission rate

accordingly so that you can receive the packets correctly at the other end.

So, this is the broad idea of the sliding window protocol. And in the next class we look

into this sliding window protocols in details.

Thank you all for attending the class.

