
Computer Networks and Internet Protocol
Prof. Sandip Chakraborty

Department of Computer Science and Engineering
Indian Institute of Technology, Kharagpur

Lecture – 13
Transport Layer – II (Connection) (Contd.)

Welcome, back to the course on Computer Network and Internet Protocol. So, we are

looking  into  the  transport  layer  and  the  connection  establishment  mechanism in  the

transport layer. So, in the last class we have seen that well whenever you are setting up a

logical connection between 2 N host of a network the challenge is the delayed duplicate

packets.

(Refer Slide Time: 00:52)

So,  the delayed duplicate  packets  may create  a  confusion like during the connection

establishment phase that whether the packet that you are being received see if you have

received the delayed duplicate message whether that delayed duplicate message is or in

other words if I say it more clearly like whenever you receive up duplicate message you

do not be sure or duplicate connection establishment request you cannot be sure whether

that duplicate message is a delayed duplicate of the earlier one. Or the client has crashed

and it has reinitiated the connection with the server and that connection request message

is coming from that one.

https://en.wiktionary.org/wiki/II


So, what we have looked till now that will the way we can mitigate this problem is by

utilizing a virtual clocking mechanism with the help of sequence number where we are

utilizing the concept of bite sequence number that every bite in the network will have a

unique sequence number. And during the connection establishment  phase we need to

generate  the sequence number in  such a way so,  that  the  other  end like  here in  the

exampled a  server  can correctly  identify from a duplicate  message that  whether  this

duplicate connection request is the delayed duplicate of the old connection request or it is

a new connection request after the client has crashed.

So, to do that it can look into the sequence number field and it can find it out, but we

need to ensure here that this connection request sequence number, the initial sequence

number that has been utilized for connection request it is not going to re-use within a

time duration T which is the maximum packet life time in the network. So, you need to

ensure that with this time of duration T every instances of a segment or here we are using

bite sequence number. So, every instances of a bite with the sequence number is only one

such instances outstanding in the network. There are not more than one instances of the

same bite in the network same bite means the bite with the same sequence number in the

network which can create confusion for the other end for the receiver.

(Refer Slide Time: 03:09)

So, we are looking into this problem from the context of this forbidden region. So, what

we see that whenever connection one connection selects one sequence number. So, this



particular dark black line indicates. So, this line indicates the sequence number that a

particular connection is going to use with the respect of time. Now, if it is using this set

of sequence number so, every bite with that sequence number they have a life time here

this life time is T. So, within that life time the packet or the bite can be outstanding in the

network.

Now, in a scenario when this connection is  being crashed and you want to initialize

another connection during that time if this region of the old connection and the forbidden

region; so, this region we call as the forbidden region. So, the forbidden region of the old

connection and the forbidden region of the new connection if that gets overlapped then

there is a they are may be a problem of confusion. Why? Because at this time instance

you have you may have two different instances of the same sequence number in the

network.

So, one sequence number is from the old connection another sequence number is from

the new connection. So, you can have one sequence number from this old connection

another sequence number from this new connection and we want to avoid that. Now, to

avoid that the solution mechanism that we can employ is something like this, like either

you make it separate with respect to time.

(Refer Slide Time: 04:48)

That means, you wait for some amount of time before initializing the new connection

such that you become ensured that this particular sequence number which was there say



this sequence number it was completely gone out of the network. So, it is like that this

the same sequence number which was there for this connection 1, that sequence number

had a lifetime up to here. So, that sequence number is out from the network and that

cannot create a confusion invoke.

So, you wait for certain duration. So, here this is the wait duration and then you initiate

with say this is the wait duration. So, you wait for this wait duration and then initiate this

new connection such that this forbidden region does not overlap with each other. So, if

this forbidden region do not overlap with each other, you will be stored that, there is

always a single instances of a particular sequence number outstanding in the network.

that is one way by shifting the connection in the time skill.

(Refer Slide Time: 06:18)

Another way is to shift the connection another way is to shift the connection in the in the

sequence number skill. So, you use the sequence number which is high enough of the

sequence number that was utilized for connection 1. So, that you became sure that well

the sequence number fill that you are going to use for connection 2 that does not have a

overlap with connection 1.

So,  here we are utilizing  this  piece.  So,  we are we are making gap in  the sequence

number, such that we become sure that whatever sequence number that we are going to

use that particular sequence number has not been used by connection 1. So, this are two

feasible way of setting the initial sequence number in the network.



(Refer Slide Time: 07:11)

Now, let us see that. How you can handle the delayed duplicates during the connection

establishment by mitigating this two problem. So, if we ensure this kind of things now

when a receiver receive two segment having the same sequence number within a time

duration T the receiver knows that one packet must be the duplicate. Say it happens that

well  the  sequence  so,  you are  always  ensuring  that  within  that  time  duration  T the

receiver cannot receive a packet cannot receives a two different packets with the same

sequence number or two different bites with the same sequence number.

Now, if the receiver is receiving two different bites with the same sequence number with

the duration T then the receiver can correctly decode that the second one is the delayed

duplicate of the first one or the visa versa anything can happen and, but you can you in

that case the receiver can accept one and can describe the second one that it has received.



(Refer Slide Time: 08:23)

Now, for a crashed device, then the transport entity that remains idle for a duration T if

you are just utilizing this time skill at time period based sequence numbering to ensure

that  all  the packets  from the previous  connection  are dead.  So, here actually  we are

utilizing the first solution that I was mentioning that you wait in the time skill and ensure

that by that time all  the instances of the previous sequence number is dead from the

network.

So, whenever you are going to use a sequence number there is no possibility that there

are two bytes with the same sequence numbers are outstanding in the network, but this is

not a good solution because you have to wait for certain amount of duration. So, for that

you can also choose the sequence number in such a way we will see that in the constant

of the TCP that you can choose the sequence number in such a way so, that you are

significantly high above the forbidden region of the previous one and you can be sure

that  the  sequence  number  has  not  been  utilized  by  the  previous  connection,  for

connection establishment.



(Refer Slide Time: 09:34)

Now, the solution here is you adjust a initial sequence number properly; that means, a

host does not restart  with the sequence number in the forbidden region based on the

sequence number it used before crash and at the time duration T. So, it is just like that if

the if you have if the system has crashed then whenever whatever sequence number was

there the new sequence number that you are going to generate you generate in such a

way, so that is above the previous sequence number. So, we will see that how we can

generate this particular sequence number.

(Refer Slide Time: 10:12)



Now, there can be two different source of problems whenever there are two connections

like whenever one connection has crashed and another connection is going to going to

use a initial sequence number field. So, let me just give you one example here. So, it is

just like that one connection it has used this sequence number and then it got crashed and

this is the forbidden region for this old connection, say I name it as connection 1.

Now, say there is second connection. The second connection is start from here with the

initial sequence number. Now, if the second connection starts from here with the initial

sequence number and follow this line the sequence number space then this would be the

forbidden  region,  there  is  no  overlap  my  life  is  happy,  but  if  this  particular  new

connection starts sending data at a very fast rate. So, if it follows this line rather than the

dotted line that  I  have drawn earlier  then,  you see that  these becomes the forbidden

region and here for some packets you have a overlap. So, you have certain overlap here

in this region.

So, in this region there can be still the confusion about the sequence number whenever

you  will  receive  a  packet  whether  the  packet  belongs  to  connection  1  or  this  new

connection, connection 2 so, if you increase the sequence number space too fast then that

can become a problem. So, that is why the sequence number need to be increased at a

constant rate or at a bounded rate. So, that the sequence number space of this increase of

the sequence number for the new connection does not overshoot the sequence number

space of the previous connection. So, that they do not overlap with each other.



(Refer Slide Time: 12:33)

Another problem is there for selecting this initial sequence number that the data rate is

too slow. If the data rate is too slow like in this example say the initial sequence number

was used like this then the data rate was too slow. So, it started generating the initial

sequence number at a very slow rate and after that it crashed and the new system it just

start using this initial rate that say if I name it as connection 1, that connection 1 used and

this one as connection 2 that connection was 1 used then again there is a possibility of

having a overlap here.

So, both are fast connection and a slow connection can create a problem. So, we need to

ensure that the sequence numbers are always generated at a bounded rate. So, that this

kind of overlapping of sequence numbers between two connection does not happen.



(Refer Slide Time: 13:30)

.

So, how will you do that? So, you can do that that you can bound the maximum data rate

that you can sale over a transport protocol. So, the maximum data rate on any connection

we bound it as one segment per clock tick. So, here we used the hardware clock, but only

the hardware clock of my machine.  So, here we will  see that  we do not require  the

synchronization of the hardware clock across multiple machine. So, the hardware clock

of a single machine will serve my purpose.

So, with every hardware clock tick so, the clock tick is the inter packet transmission

duration the clock ticks is adjusted based on the sequences that is acknowledged. So,

TCP uses  this  concept  of  self  clocking  or  a  virtual  mechanism  that  whenever  you

received  an  acknowledgement.  So,  this  is  something  like  a  mix  of  the  connection

establishment under flow control mechanism for handling the sequence number space

that whenever you are receiving an acknowledgement during that time you make a tick

that you generate new packet or new segment with a new sequence number.

So, you ensure that the no two packets are there in the network with the same sequence

number. So, this also ensures that the sequence number space that do not wrap around

too  quickly.  So,  you  have  a  finite  sequence  number  space  in  case  of  TCP kind  of

protocol,  you  have  32  bits  sequence  number.  Now, if  you  have  a  32  bits  sequence

number then you can used to 2 to the power 32 different sequence numbers. So, you need

to ensure that this entire sequence number speed does not wrap around too quickly.



So; that means, if you are sending data at a very high rate it may happen that you are

generating the data  in such a rate that  you have within that time duration T or even

before the time duration T you have finished this entire 32 bit of sequence number space.

So, that may create a confusion, because that may create a confusion. So, you want to

prevent that and to prevent that you want to regulate the sender flow as well apart from

the receiver flow normally with the flow control algorithm we coordinate between these

a sender flow and receiver flow but, whenever we are generating the sender packets you

also want to ensure that the packets which are being generated from the sender they

follow certain kind of I  will  not say it  is  a constant  rate  rather  they are in within a

bounded rate.

So, that is why the application is generating data as it is own rate and the data is being

buffered at the transport layer, buffer and the transport layer picks up the packets from

there, picks up the bytes from the there and generate the segments it predefined bounded

rate. So, that the sequence number space does not get overlapped with each other. So, we

will look all these mechanism in details for the time being it may be little unclear or you

may have a little bit doubt that the things will be much cleared to you whenever we will

look into the flow control algorithms in details, where we look into that how flow control

actually helps in adjusting this entire sequence number space.

(Refer Slide Time: 16:40)



Now, the  second  thing  is  that,  if  you  remember  that  the  trampling  sense  from  the

trampling  sense proposal  that  our  first  requirement  was to  have  a  to  have a  way to

selecting the initial sequence number. So, here what do you want that we do not want to

remember the sequence number at the receiver side. So, the receiver does not want to

remember  the old sequence number rather  the sender will  manage its  own sequence

number.

So, for that we use a three way handshake mechanism, to ensure that the connection

request is not a repetition of the old connection request. Now, the individual peers they

validate  their  own sequence  number  by  looking  into  the  acknowledgement.  So,  this

provides the positive synchronization among the sender and the receiver.

(Refer Slide Time: 17:28)

So,  let  us look into how this  three way handshaking works.  So,  whenever  host  1  is

sending a connection request message. Host 1 sends the sequence number value x, so,

here  host  1  sends  the  sequence  number  value  x  and  host  2,  it  sends  back  with  an

acknowledgement. With the acknowledgement it also put that sequence number x and it

also. So, in case of transport layer normally our connections are bi directional because

the connections are bi directional with this particular acknowledgement the host 2 also

sends  another  acknowledgement,  sends  another  sequence  number  it  for  reverse

connection from host 2 to host 1 that is the sequence number y.



Now, whenever the host 1 receives an acknowledgement with sequence number x host 1

can verify whether this sequence number which was there in the acknowledgement it is

the original sequence number or not it is the sequence number of the connection request

message that is sent it is corresponding to that or not. If it is then it can send the data with

that sequence number x and at the same time it can also send acknowledgement for the

sequence number space or the sequence number that was proposed by host 2 for host 2 to

host 1 data transfer. So, this three way handshaking ensures that their all the delayed

duplicates are correctly identified by both host 1 and host 2. So, let us see that how with

this mechanism they can correctly identify delayed duplicate of the sequence numbers.

(Refer Slide Time: 19:12)

So, let us see a case when the connection request is a delayed duplicate.  Now, if the

connection  request  is  a  delayed  duplicate  so,  the  host  2  has  received  the  delayed

duplicate  connection request  with the sequence number x.  So,  it  sends back with an

acknowledgment of that x. Now, host 1 can verify that this particular acknowledgement

that it has received it is not for a connection request that it has sent. So, that connection

request was a old duplicate that it has sent long back and now host 1 do not want to use

that connection anymore, maybe host 1 has crashed here and then it got and restarted

here; then it got restarted here. So, it do not want to use that old connection request that it

has requested earlier.



So,  host  1  can  find  it  out  and  if  it  finds  it  out  this  acknowledgement  is  a

acknowledgement a sequence number field which is there in acknowledgement message

it is for a delayed duplicate then it can send a reject message by looking into the reject

message host 2 can identify that the connection request that was sent that it was received

it is not going to be accepted by host 1 anymore. So, there is no point in establishing the

connection.

(Refer Slide Time: 20:27)

Now,  let  us  look  into  another  case  when  both  the  connection  request  and  the

acknowledgement  that  delayed  duplicates.  Now,  when  the  connection  request  is  a

delayed duplicate and host 2 sends back an acknowledgement here with this sequence

number  x which it  was  received  as  a  part  of  the  connection  request  message and it

proposed with a new sequence number y during that time it gets a reject message. But for

the old duplicate  that it  has sent say it has received one acknowledgement  here,  this

acknowledgement  says that  it  is  a  sequence number for x,  but the acknowledgement

number says that will the acknowledgement number is z.

Now, if you look into this three way handshaking mechanism these acknowledgement

numbers should corresponds to the acknowledgement number should corresponds to the

sequence number that was proposed by host 2 in it is acknowledgement. Now, these two

are not matching. So, host 2 will reject this duplicate acknowledgement. At the same

time host 1 whenever it has received this acknowledgement message and it finds out that



it do not want to use this acknowledgement it is anymore because it has crashed here and

say restarted here, then it can sends the reject message.

So,  with  this  way  you can  identify  that  both  the  connection  request  was  a  delayed

duplicate that was identified by host 1 and it sends a reject message and host 2 whenever

it looks a different acknowledgement number, acknowledgement gate acknowledgement

number  gate  compare  to  the  one  which  it  has  sent  with  its  own  acknowledgement

whenever it finds out that there is a mismatch here; there is a mismatch here it simply

discard this acknowledgement. So, that way you can properly differentiate between with

the help of this sequence number between the normal connection request messages and a

delayed duplicate connection request messages.

(Refer Slide Time: 22:44)

Well; so, that was the all about the connection establishment. So, what we have broadly

seen here just to give you a summary of the entire procedure, the connection requesting.

So,  what  we have  seen that  because  packets  can  get  dropped in a  packet  switching

network,  there  can  be  arbitrarily  delayed  transferring  the  packet,  there  can  be  lose

because of this reason, there is always a possibility of having a delayed duplicate.

Now, what  we have  learned  till  now that  my  major  problem is  to  select  the  initial

sequence  number  for  connection  establishment.  Once this  initial  sequence  number is

established  then  the  flow  control  algorithm  takes  care  of  maintaining  the  sequence

number  for  the data  pack is  that  will  look later  on that  how flow control  algorithm



actually  helps  you  to  set  up  the  sequence  number  for  the  data  packets  or  the  data

segments in the context of the transport layer.

But, the challenge here is to select a initial connection request requesting such a way, so

that you can ensure that the forbidden region of a new connection does not get overlap

from with the forbidden region of an older connection. Where both the new connection

and older connection are initiated on the same application at the same source destination

pair. So, they are likely to use the same port. So, in that case our objective is to separate

out a normal connection request from a delayed duplicate connection request and in that

case we take the help of a sequence number.

Now, we have looked into that how to chose a initial sequence number, but whenever

you are choosing the initial sequence number you have to ensure that well your initial

sequence the sequence number field does not increase too fast or too slow such that it

gets overlapped with another connection. In that particular context this rate of control of

sequence number that is taken care of by the flow control algorithm and we ensure that

well  the packets are generated or the bytes are not, I will  not say generated that the

transport layer transmits the byte transfers the byte in such a rate, so that it is not too

slow or not too fast all the connections follow almost a bounded rate.

But, whenever you are selecting the initial sequence number you can use this three way

handshake  mechanism for  selecting  the  initial  sequence  number  such  that  if  any  or

connection  request  is  the  delayed  duplicate  or  the  connection  request  or  the

corresponding acknowledgement is the delayed duplicate you will be able to differentiate

between  the  old  connection  and  the  new  connection  by  ensuring  that  the  sequence

numbers are not generated from the forbidden range of the previous connection. And you

are making sure that no two bytes in the networks are having same sequence number

between the same source destination pair coming from the same application at the same

time instance.

Now, let  us  look  into  the  connection  release.  Connection  release  is  little  bit  easier

compared to connection establishment because we do not have the problem of sequence

number here, but here we have different problem. So, there can be two type connection

release; so one we called as a asymmetric release. So, the asymmetric release says that

when one party hands up the connection is broken. Now, it is just like that whenever host



1  is  ready  to  or  whenever  host  1  is  done  transferring  the  data  host  1  breaks  the

connection say. It may happen that host 2 now wants to wants to close the connection;

host 2 simply sends the connection  released message.  So, here it  is  DR data release

message host 2 sends the data release message and host 2 goes to sleep.

Now, even if host 1 has some data to send to host 2 that particular data if any host 1 sent

it host 2 may not be able to receive that data. So, there would be a possibility of data loss

with this concept of asymmetric release.

(Refer Slide Time: 27:13)

Now, we can have  another  variant  of  these connection  release  which  we call  as  the

symmetric release. Now, in case of a symmetric release you treat the connection as two

separate unidirectional connection every individual connection is treated as two separate

unidirectional connection and it requires that each one to be released separately.

So, when both one is released the connection then the final connection will get released.

Now, this is good when this particular symmetric release is good when each process has

a fixed amount of data to send and it clearly knows that when it has sent it. So, it knows

it has an idea that when it has send a particular data, but the question comes that can we

design a protocol for the symmetric release? So, let us look into a very simple protocol

that host 1 will say that, I am done; host 2 will say that I am done too. So, when both are

saying  that  I  am done  and  this  one  is  saying  I  am  done  too  they  will  release  the

connection. Let us see that whether this protocol works good always.



(Refer Slide Time: 28:23)

So, we map this protocol in the context of a problem called two army problem. So, we

have a white army which is there in a valley and the blue army which was there in the

hill now you see that the total fighters in the blue army it is more than the white army,

but  they  are  separated  now, they  are  in  the  two  part  of  the  hill.  So,  they  need  to

communicate with each other to make sure that both of them attack simultaneously; both

of them are able to attack simultaneously then they only they will be able to defeat the

white army otherwise they will be not able to defeat.

Now, the problem here is that if the blue army wants to send message called attack this

blue army 1 wants to send that message to blue army 2 they have to go back the valley

which is the vulnerable position. So, it may always happen that one soldier of white army

is able to see that the soldier of the blue army and kill that person and the message is not

delivered in the other way. So, the environment is unreliable.

Now, whenever the environment is unreliable you can see that you will never be able to

make protocol, correct protocol to solve this particular problem that both the blue army

will come into consciences and they will be able to attack the white army simultaneously

because whenever you are you are sending one soldier of blue army where this valley

blue army 2 is may not get that particular soldier message from that particular soldier and

they will  not  be able  to  sure that  whether  to  make an attack or  what  is  the current



condition. So, we cannot have one protocol to solve this particular problem. So, in this

case the best way you can do is that let every party take their own independent decisions.

(Refer Slide Time: 30:22)

So, that is the protocol we implement here that every individual host so, host 1 it will

send the data release message and then it will start the timer. Similarly, host 2 it will send

the data release message and it will start the own timer, whenever it is receiving the

message from host 2 within this time out value it will release the connection and it will

send  the  acknowledgement,  and  if  host  2  is  getting  this  acknowledgement  message

within this timeout value it will release the connection.



(Refer Slide Time: 30:59)

Now, let us see that how this protocol works when the acknowledgement is lost. If this

final  acknowledgement  is  lost  say  this  final  acknowledgement  is  lost;  if  this  final

acknowledgement is lost then this host 2 it has started it is timer after sending the data

release message it will not get the acknowledgement. So, it will wait for the time out

value whenever the timeout will occur it will release the connection.

(Refer Slide Time: 31:28)

Then say this particular data release message from host 2 got lost. So, if this data release

message from host 2 got lost. So, here host 1 has sent a data release message with host 2



received and host 2 has sent another data release message. So, host 1 will get a timeout,

after it will get a timeout it will again send the data release message. So, once it sending

a data release message host 2 will receive that message it will again start the timer send

the data release message. So, once it is it is getting these data release message it will

release  the  connection  send  the  acknowledgement  and  once  host  2  will  get  that

acknowledgement it will release the connection.

(Refer Slide Time: 32:10)

Now, let us see another scenario when both the data release and the acknowledgement

are lost. So, here this data release is lost and as well as the acknowledgement is lost. In

this case so, if both this messages are getting lost then both the node will wait for a

timeout value. So, here you can specify that host 1 it will try for N different timeouts and

once this N T different timeout occurs it will release the connection and host 2 it will

wait  for  similarly  for  the  timeout  value  once  the  timeout  occurs  it  will  release  the

connection.

So, here we are we are basically making the protocol from a asymmetric view that we

will  wait for certain timeouts and if  you are not able to solve the problem with that

timeout value then you independently release the connection, but as we have seen earlier

in case of asymmetric connection there is always a possibility of having a data loss. So,

this particular lecture it has given you the idea about the fast services fast of the services

which is being supported by the transport layer of the protocol stack, where we need to



establish the connection between two remote host which is  a kind of logical pipe to

establish the hello messages between two end and because of this reliability problem in

the network we see that ensuring the connection establishment is a challenge. You can

you can argue that well I have the reliability protocol then why should I bother about all

this difficulties during this connection establishment.

But, you remember that the reliability only comes that when you have set up this initial

sequence number. So, then you can apply your flow control and the reliability protocol

which will look later on we call them as the automated request protocol ARQ protocol.

So, this ARQ protocol they can take care of the loss by retransmitting the packet because

they have a reference frame through which you can it can utilize the sequence number

field.

But, whenever you are setting up the initial connection during that time you do not have

any initial difference frame like from where you will start the sequence number. If every

connection starts from sequence number 0 then that can be a problem because of that

forbidden region concept that we have looked at here.

Now, to  solve  this  particular  problem we  have  seen  that  well,  by  utilizing  this  self

clocking  mechanism  through  the  hardware  clock  or  by  clocking  from  the

acknowledgement  you  can  generate  the  sequence  number  fields  ensuring  that  the

sequence number of a connection for the same source destination pairs with the same

port they do not overlap with each other. And at the same time you are ensuring the

sequence number in such a way it should be higher enough from the previous sequence

number,  so  that  they  do  not  get  overlap  and  finally,  once  this  sequence  number  is

established to this three way handshaking mechanism and, during that time you have

seen that if there is a loss or a delayed duplicate of the messages the other ends will be

able to correctly decode that.

In the context of connection release you have seen that well symmetric release is a good

option  asymmetric  release  is  a  good  option,  but  you  cannot  design  a  protocol  for

asymmetric release in a in a unreliable channel. So, that is why we go for a symmetric

release with the timeout value. So, you will try to make a symmetric release if you are

not  able  to  do  that  within  certain  number  of  timeout  then  you  forcefully  close  the

connection. There is always a possibility of data loss, but as I have mentioned earlier



there is always a tradeoff between the performance and the correctness. So, here we are

not going for a protocol which will be completely correct. There can be certain amount

of  data  loss  always  due  to  this  symmetric  release  mechanism.  But,  our  target  is  to

minimize it as much as possible by utilizing that timeout value. The timeout ensures that

whatever packet that has been sent by the other end that will reach at the destination

within that timeout value.

So, that is all about the connection establishment and connection release. In the next

class  we will  look into  another  service  in  the  transport  layer. So,  thank  you all  for

attending the course.


