
Software Engineering
Prof. Rajib Mall

Department of Computer Science and Engineering
Indian Institute of Technology, Kharagpur

Lecture - 09
Waterfall Derivatives

Welcome to this lecture, in the last few lectures we have been looking at the life cycle

models. We looked at the classical waterfall model which is the basis for all other

models, but then the classical waterfall model is hard to use in a project. The main

problem is that it is idealistic and it has no way to accommodate corrections to the work

products. It is just a pure waterfall model. But 100s and 1000s of mistakes occur during

the development and the iterative model; iterative waterfall model overcomes this issue

with the classical model and provides feedback paths.

(Refer Slide Time: 01:28)

We were discussing about the iterative waterfall model in the last lecture; now let us get

started at from that point. The iterative waterfall model it provides feedback paths and a

mistake in any phase; if it is detected later on, there is a way to correct those mistakes

and also redo the subsequent phases. The iterative waterfall model was hugely popular in

1970s and 80s; it was used in almost every development work. But then it had some

difficulties for which the newer life cycle models came up; actually the difficulties were

not failed those days because the projects were like that for which waterfall model is

ideal.

But slowly the characteristics of the projects themselves changed as we were saying that

the projects became sought and also service projects and so on. First let us look at what

are the strong points of the waterfall model, why it was so popular? And then we will see

the deficiencies of the waterfall model so that the newer lifecycle models would be easier

to appreciate.

(Refer Slide Time: 02:56)

The strengths of the waterfall model include easy conceptually easy to understand and

use. We had seen that it matches with our conceptual understanding of how software is

developed. Even if the development staffs are inexperienced, they can easily understand

the lifecycle model and start developing. In the waterfall model the milestones are well

understood by every member of the team. We had seen that the milestones are basically

the phase entry and exit; it also provides requirement stability during development. The

requirement phase; the requirements are gathered and documented and after that there is

no change to the requirements.

So, the developers are not interrupted they start to develop uninterrupted, they know the

exact requirements and they start developing the software. But just imagine what would

happen if they start developing and once in a while there is a change and they would

have to redo their work. And even the entire plan that they have made that would have to

change; the overall design and so on.

So, the waterfall model provides requirement stability; once the requirement document is

prepared the; it is not changed. And also for the project manager this is a very desirable

model because the project manager can plan all the phases; how long each phase will

take, when it will complete. And then can staff have the manpower for every phase and

also can track it whether the project is proceeding as per the plan or take corrective

action to put it back as per plan. So, far looks good the waterfall model has lot of

strengths, but then there are several deficiencies of this model.

(Refer Slide Time: 05:35)

Let us look at the deficiencies of the waterfall model; possibly the most problematic

deficiency is that the requirements must be known upfront. The customer has to give all

the requirements before the project starts and that is usually not feasible because the

software is not there and the client has to imagine water all required. And it is very easy

to miss requirements, very easy to give ambiguous requirements, wrong requirements.

And normally only when the user sees the software says that no; this is not what I wanted

I wanted something else. In real projects, there is a large number of requirement changes

required; the customer the beginning of the project cannot visualize the exact

requirements. And as the project precedes the customer can say that see this is not what I

want and even the business or the user might change his methodology and. So, on he

might want changes on that account also.

The second problem with the waterfall model is that gives a false impression of progress;

that is the project manager may see that the phases are getting complete, the documents

are getting ready and the project manager thinks that the project is progressing fine. But

then the problem starts with the integration testing once the integration starts; then the

problems appear that all the modules they need changes because the modules were

developed thinking that the other functionality is their parameters and so on.

But then in reality it is not like that, there will be problem in integration. This is one of

the major problem area here in waterfall model and the delay schedule delays starts from

the integration and the project gets delayed further and so on. Another problem is that the

customer is kept out of the development; the customer defines the problem and then just

waits for the software to be developed. And once he gets the software, then he uses it and

says no this is not what I wanted; he needs lot of changes to the software.

So, one of the problem in the waterfall model is that once the software is complete; it

rarely meets the customer requirement and the reason is that the customer is kept out of

the development work.

(Refer Slide Time: 09:01)

Let us see the projects for which the waterfall model is suitable; if the requirements are

well known and stable; if many, software has been developed and this is just one of that.

So, that it is well understood that what is required of the software and can be frozen

upfront.

The technology is well understood; how the development will occur, what technologies

will be used and so on. And also the development team is familiar with the software to be

developed. If you look at these characteristics these are basically some software which

exists and we just want to have a small change version of that. And the developers have

already developed similar software, but then if we want to develop customized software;

let us say we had a software and we just want to add a few changes to that, then the

waterfall model will not be suitable.

(Refer Slide Time: 10:29)

What about the classical waterfall model? We said that it is not useful for real projects,

but does it have any use at all? Ok one thing is that all documentation of a project is

actually done as per the classical waterfall model. The development might have occurred

using the iterative model or any other model, but then the documents are written as if the

classical waterfall model was used. Let us understand why that is the reason.

(Refer Slide Time: 11:06)

Just think of the way the mathematician proves theorem, given a problem that he wants

to prove he would work in many directions, he will backtrack; he will change in between

cross it out start again and so on.

But then when he finally, writes his theorem it appears as if a single chain of thought, all

the mistakes that he had done the different alternatives he has tried etcetera, etcetera are

not shown. Because that helps somebody to understand it well; if he had included all the

mistakes that he did, all the wrong directions we took backtracked and so on; it would

appear extremely confusing for somebody. And that is the precisely same reason why the

documentation in software projects are written as if classical waterfall model is used

because that way the documents can be easily understood by somebody trying to

understand the documents.

(Refer Slide Time: 12:40)

Now, let us look at a derivative of the waterfall model name is V model; it is a variant of

the waterfall model and it emphasizes verification and validation. So, that really means is

that it will be useful for software that are used for safety applications, where reliability

safety are important; the V model is the one that is preferred. The verification and

validation activities are spread throughout the entire lifecycle. If you remember in the

iterative waterfall model it was only during the coding phase that unit testing is done and

in the testing phase the integration and system testing is done.

But you are starting with the requirements and design all phases there are verification

and validation activities. And the testing activities are planned in parallel with

development as the different aspects of the project progressed; more accurate test case

designs are done.

(Refer Slide Time: 13:59)

A visual representation of the model looks like a V shape and that is the; and that is the

reason why this model is called as a V model. Look at here that starting with project

planning, requirement specification, high level design and then detailed design finally

coding and then unit testing, integration testing, system testing and then maintenance.

But in every phase; so, this part is the development phase on the left side and on the right

side is the testing and maintenance. And if we look at the development phases during the

requirements specification the plan for system test is done. So, that is the system test

cases are designed during the requirements specification. Because after all the final

software has to conform to the requirements; as far as the final software is concerned; the

SRS document is taken, test cases are designed and then it is executed and checked

whether it meets the requirements.

In the V model it is advocated that during the requirement specification phase itself; the

system test cases should be written. There are two advantages to that; one is that

testability of the requirements is kept in mind; how exactly it will be tested? During the

development we are clear that how it will be tested? And another issue is that in the

iterative waterfall model, what do the testers do during the development phases, do the

join only during testing phase? No; not really they are part of the team.

So, what do they do? During the testing requirement specification design, coding

etcetera; what do the testers do? The V model provides a solution to that and the testers

are actually busy here during the requirements specification, they are busy writing the

system test cases. During the high level design, they are busy writing the test cases for

integration testing and planning for integration testing; during the detailed design they

are busy developing the unit test cases. So, during every development phase; testing is

kept in mind and test cases are already developed. So, it becomes easier for the

implementers that is for coding and so on is to know that; what is expected and they

become conscious of the work that do that it has to finally satisfy those test cases.

(Refer Slide Time: 17:19)

If we look at the different steps of the V model, we see that during the requirements

analysis and specification some test activity is done; that is system test case design and

system test planning. during high level design the integration test case design and

integration planning is done, during detail design the unit test design is done.

(Refer Slide Time: 17:58)

The strength of the V model is obvious that it emphasizes verification and validation.

Every deliverable is made testable for example, during requirements specification testing

is made kept in mind and therefore, the requirements become more testable. And also the

model is easy to use; it is after all a derivative of the waterfall model, very similar to

waterfall model accepting that the V and V activities the verification validation are

spread throughout the lifecycle.

(Refer Slide Time: 18:38)

Now, what about the weaknesses of the V model? First is that it suffers from the same

weakness as the iterative waterfall model; that is the requirements are frozen before the

project starts. And there is no scope of changing the requirements later on it is just a

waterfall model. Another issue with the waterfall model and also the V model is that; it

does not support overlapping of phases. This is the problem even for the waterfall model

even though we did not mention it.

The problem is something like this that let us say there are 10 designers working to

design. They have designing different parts of the software; now let us say one designer

completed early and some designers take much more time. So, the one who completed

early what does he do? Does he just wait for the phase to complete? So, that he can start

the next phase.

If the model is followed as it is then there is a lot of idle time because it does not support

overlapping of phases. Iteration is not shown here, in the V model iterations are not

iteration between phases is not shown, does not accommodate requirements change, risk

handling is not provided.

(Refer Slide Time: 20:34)

It must be clear that the V model is used when there is a high emphasis on safety

reliability embedded such as the embedded control applications.

And the requirements should be known upfront and the solution and technology should

be known. And if these are the characteristics of the project then V model is a good

model. Now let us look at another variant of the waterfall model which is called as the

prototyping model.

(Refer Slide Time: 21:13)

The prototyping model, if you as you can see it is very similar to the waterfall model the

small difference here is that to start with there is a prototype construction and the

requirements phase is not there actually; it us there is a prototype construction.

It is a small change of the waterfall model before the development design coding etcetera

starts a prototype needs to be built. But what exactly is a prototype? A prototype is a toy

implementation of the system, but then how do we get a toy implementation of a system?

Let us imagine that we are trying to implement a function, for a toy implement of the

function we might have a table stored inside the function; that just looks up the values

from that is required for the function, for which input value what will be the output.

So, for restricted input values it will work; we have stored that in a table; it would have a

limited functional capabilities, does not work for many inputs, functions are simplified as

much as possible. For example, by using a tables to store the values that are expected,

low reliability, inefficient performance; but then why do we need to develop a prototype?

Need to develop a prototype because we can show it to the customer.

The customer to start with it is very hard for the customer to visualize the entire software

and that is one of the reason why the waterfall model is unsuccessful in many projects. It

finally, does not match the customer’s requirements, but since in the prototyping model

before starting the development. We are creating a prototype of the software. The

customer will get a better feeling of how the software; finally, will appear and he might

suggest changes and that is incorporated into the prototype and until the customer says

that is exactly meets his requirement, the prototype refinement continues.

Another reason why a prototype needs to be constructed is that sometimes the developers

do not know that whether some technical issues can be met. For example, let us say the

transaction rate required by the customer is very high and the developers do not know

whether the database will actually be able to provide that sort of transaction rate and

whether it can be updated on the browser.

By constructing a prototype the developers can actually test out that whether they are

able to meet the required transaction rate. So, for developing the prototype there are two

advantages; one is that the customer gets a feel of the system and can modify any

requirements. The second is technical; the developers might want to experiment with

some aspect on the technicalities and then they can decide which way to start the

construction.

(Refer Slide Time: 25:46)

There is a another reason why prototyping is useful is that the developers learn by doing

the work. So, the second once the prototype is complete they start the development and

they can do a better job. And the user also by looking at the prototype can finalize the

requirements. That is improved communication with the customer in the waterfall model,

pure waterfall model the customer feels isolated for the entire development; the customer

has to just wait, but here could have see the prototype and how the system will look like

finally.

It also reduces the need for documentation and also typically a prototyping model. The

maintenance costs are low because the quality of the development is good here because

once the prototype is constructed; the developers have experience with the software and

they can do the actual development in a much better way and that is the reason why it

will incurs less maintenance costs.

(Refer Slide Time: 27:20)

The customer is illustrated about the software can make up the mind can specially

examine the user interface issues the format of the display interactive dialogues and so

on. And the developers themselves can examine technical issues for example, response

time of a hardware controller. So, these two; I would say that these are the major

advantages of prototype model that the customer can get a view of the software and also

the developers can examine technical issues.

We will stop at this point and we will continue in the next lecture.

Thank you.

