
Software Engineering
Prof. Rajib Mall

Department of Computer Science and Engineering
Indian Institute of Technology, Kharagpur

Lecture – 06
Life Cycle Model

Welcome to this lecture, we will continue what we were discussing last time.

(Refer Slide Time: 00:25)

Last time we are discussing that the software engineering practices have really evolved

over the years have become much more sophisticated. Now, let us look at some major

differences, in the way software is being written now one is that the software engineering

principles. Themselves have evolved and the other is the software itself has evolved.

The software writing problem is not the same as the problem that now we are solving.

The, problems have become much more complex, but at the same time these are only

incrementally different from the problem that has been solved.

Let us let us look at these issues now; the differences between exploratory style and the

modern software development practices. Compared to 1950s or 60s where the

exploratory style was used, now the life cycle models are used every program is

developed according to an adopted life cycle model, where there are a set of stages and

the development occurs through those stages.

The stages typically the requirements analysis specification design, coding, testing, and

so, on.

(Refer Slide Time: 01:58)

One major difference between the way program was written 1950s and 60s to now is that

the emphasis has shifted from error correction to error prevention. The earlier technique

the exploratory style was to first write the program complete somehow and then start

correcting the errors, there will be hundreds of errors keep on eliminating one by one

until all errors are eliminated.

But, now the emphasis is error prevention as the program is written we track the errors

and remove it from there itself. So, that during testing we have very less number of

errors to correct, or in other words as soon as we have a mistake committed by the

programmer in program development, we try to detect it as close to the time of

commitment of the error as possible the main advantage of this is that it is very cost

effective.

If, you correct the error after testing then you will have to first find out where exactly the

error has occurred make changes to the code again test and so on. Here, before testing we

just identify the place where the error is there we do not have to look at we just look

through or review the code and so on, review the specification review the design identify

the error corrected there itself and do not wait for error to be discussed detected and

determined during the testing phase.

(Refer Slide Time: 04:05)

The software is being developed through number of phases and in each phase, wherever

a program commits a mistake. It is detected and corrected in that same phase as far as

possible.

(Refer Slide Time: 04:26)

The exploratory style program development was basically coding, start writing the code

as soon as the problem is given, but right now in the modern development practice

coding is actually a small part of the development activities. The major activities are

specification design then coding and then testing.

(Refer Slide Time: 05:01)

Of course, lot of attention now is given to requirement specification then the design has

to be done that, standard design techniques that are available.

(Refer Slide Time: 05:16)

And, at the end of every phase reviews are conducted the main idea behind review is to

detect errors as soon as these are committed by the programmer, do not wait for the error

to be detected during testing. Reviews help us to detect the errors much earlier, and this

is an efficient way to detect errors and therefore, reduces cost of development and the

time of development.

The testing techniques have become really sophisticated we will look at them later in this

course, and there are many standard testing techniques and tools are available.

(Refer Slide Time: 06:03)

Earlier the programmer just wrote the code and then never know when it will get

completed you will just have to ask the programmer, how far he has done in the coding?

But, even if he say that I am nearly complete completing the code, but then he might

have too many bugs and he may take years to correct them.

But, right now there is a visibility of the development somebody can see that the design

is done, code is done or let us say the requirements are done. So, these documents

improve the visibility, earlier there are no visibility you just have to ask the programmer

that how far he has done? Right now you can see the documents and determine with

what stages of development it is.

The increased visibility makes software project management much easier, earlier the

project manager has to just ask the programmer how he is doing, how long he is? And,

naturally the projects were going hey we are one year project taking 5 years was not

uncommon, but now due to the increased visibility the project manager can very

accurately determine when the project at what stage it is and how long it will take to

complete the work?.

(Refer Slide Time: 07:49)

Because, good documents now are produced later maintenance becomes easier several

metrics are being used, which are used to determine the quality of the software, software

project management and so on.

(Refer Slide Time: 08:09)

There are many project management techniques that are being used like estimation

scheduling monitoring mechanisms and also case tools are being used extensively.

(Refer Slide Time: 08:24)

Let us look at a couple of review questions before we proceed further; one is what do we

mean by structured programming. As, we had discussed structured programming is

writing programs that do not use go tos, but only use sequence selection and iteration

type of constructs and their modular. What problems may appear if a large program is

developed without using structured programming techniques? Ok. The program will take

long time longer than what it should be it would cost much more, it will have lot of bugs

difficult to maintain difficult to understand the code and so on.

(Refer Slide Time: 09:29)

Now, we have completed the introductory topics that we wanted to discuss before we

look at the specification design testing and so on. We will just spend a couple of lectures

on the lifecycle models, because these are one of the basic principles that we must know

and before a project starts we must know what are the life cycle models that are

available? Which one will suit this project and we should be able to use this project or if

a project is using certain lifecycle model, we must be able to know that why this is being

used and what is involved in the lifecycle model that is being used.

(Refer Slide Time: 10:19)

At, a very conceptual model we have some notion of a life cycle. A, life cycle is the set

of the stages the set of stages through which something evolves. For example, a human

being life cycle involves from child, adult, old ages, and retired and so on. Similar is the

software life cycle conceptually you can think that somebody thought of the software.

So, that is conceptualization then it finds out what exactly is needed specification, then

design the software code based on the design test it, install it, and deliver may then later

problems are maintained and then after some time the software may not be needed

anymore maybe, because the business has changed maybe different software have

become available which are much better, or maybe the hardware changed. So, no more

used for whatever reason slowly after many years it is no more used and it is retired.

(Refer Slide Time: 11:48)

Based on this intuitive idea of a lifecycle model let us look at the what exactly is a

software lifecycle model which is also called as a process model, the development

process model or the software development life cycle SDLC. Normally we represent

software lifecycle model or the process model in the form of a diagrammatic

representation just like, we had represented in the earlier slide, but just a diagrammatic

representation is not enough even though it helps us to get a quick glance of what

happens? What are the stages? How does the software evolve starting from concepts

conception to the final code, but it lacks details.

And therefore, with every lifecycle model will not only have a diagrammatic model, but

also a descriptive description of what exactly is involved. Every lifecycle model should

identify what are the activities through, which software is developed. May be the

requirements gathering, requirement analysis, specification, high level design, detail

design and so on; Every software is developed through different types of activities and

lifecycle model represents all these activities.

And, not only it represents the activities, but also it establishes a precedence ordering

that which activity should be done after which one and also divides all these activities

into phases, that is which activities should take place in which phase of development.

(Refer Slide Time: 13:59)

In other words every phase of development consists of many activities. For example, the

design stage activity may be structured analysis, structure design, design review and so

on.

(Refer Slide Time: 14:18)

But, let us answer this basic question, that why model lifecycle? If as long as we

understand that what are the activities to be done and so on, why do we need a lifecycle

model?

Now, every development organization they have their own life cycle model, which is a

written description graphical and also written available in the form of books to be

referred by existing programmers new programmers and so on. The main advantage of

having such a graphical and written description, that is having a documented life cycle

model is that all developers will have a common understanding of activities that will be

done, the sequence of activities and so on.

Therefore, the development becomes much more disciplined, it helps to identify

inconsistencies in the activities, redundancies some activity not required omissions some

activities required, but not there let us say review is not mentioned, but that is really

required.

So, we have to mention review in the lifecycle model. And, not only that as long as we

have a written lifecycle model for a specific project, we can look at the lifecycle model

and tailor it little bit that these are the activities which are not required or these are some

new activities that will be required for this specific project.

No wonder that most of the standards now quality standard they require every

organization, which would qualify for that quality standard would to have a written

lifecycle model or the process model. Quality standards like ISO ACI etcetera. They all

require a documented lifecycle model.

(Refer Slide Time: 16:50)

Once, written life cycle model is available an organization they have identified a suitable

lifecycle model for the type of the projects that do, the programmers the developers are

asked to understand it fully and they adhere they use it rigorously.

(Refer Slide Time: 17:11)

The main advantage is that the lifecycle models help him help to solve a big problem,

that as long as the prog problem is small it is done by one programmer or one developer.

And, he does by himself whatever he needs to do? But, when there is a team of

developers working to solve a large problem, then the lifecycle model has to be used

because every developer has to have a precise understanding of what exactly needs to be

done? What the other developers are doing? What in they are expecting from the

development?

The, earlier life cycle the earlier informal development technique that was used was the

build and fix tile. This can be used only when the problem is very small and is within the

grasp of an individual, and he has the liberty to do as interpret this style, this is a very

informal style interpret maybe he just writes the requirements first very preliminary ways

does coding test fix and so on.

But, another designer may interpret this and say that first needs to write the code, then

design then test then change code another designer might say that need to specify code

design test.

So, the developer said flexibility in using whatever style that suited to them, but when

there is a team development this kind of informal style of development would create real

problem and the project will fail.

(Refer Slide Time: 19:19)

Team development there must be precise understanding of the team members, that who

will do what, when, what is expected from a team member, who will supply that and so

on. Without such a disciplined life cycle model there can be chaos and project failure.

(Refer Slide Time: 19:46)

For example, let us say life cycle is not followed one programmer writes code for some

part, another is there he wants to do the test document design first, another one is doing

the file structure, another one is writing specification and so on.

Then, this type of project is destined to failure, because they are doing very different

activities and when the specification is done by one programmer the other programmer

has already written the code and so on.

(Refer Slide Time: 20:31)

Every lifecycle model as you are saying consists of a set of phases, but then before a

phase starts certain conditions must be satisfied, before the work can start. And, similarly

a phase let us say requirement phase to complete, you must know what are the

conditions, that must be satisfied for the stage to complete.

For example, the requirement document is completely written and has been reviewed by

the team members internally and also by the customer. Without a phase entry and exit

criterion clearly mentioned in the life cycle model, it will create a lot of confusion. For

example, if we do not say that requirements document is complete only after the

document has been written completely and has been reviewed, different teams may

interpret it differently and some might just write it and then proceed to the next phase,

another team may say that we need to review and so on.

So, for on the ambiguous interpretation of the life cycle model every phase must have

entry and exit criteria, that when does the phase can start and when can it end.

(Refer Slide Time: 22:22)

The zit criteria for the requirement specification phase is that requirements should have

been gathered should have been analyzed, should have been documented, internally

reviewed by the team members, all errors in the requirements must have been corrected

and finally, the customer should have approved the requirements. The phase can start

only after the phase entry criteria have been satisfied.

(Refer Slide Time: 23:03)

One of the main advantages of having the phase entry and exit criteria is that it helps us

define milestones. A milestone is a important event during the development of software.

For example, if the phase exit criteria is satisfied then an important milestone is reached.

The advantage of having milestones is that the project manager knows how far the

project has progressed and it becomes easy for him to plan monitor the project, whether

it will be able to meet the promise that was given to the customer about the delivery or

he has to put more manpower or outsource some part and so on.

The phase start and end are important milestones, that is entry and exit are important

milestones and it helps to track the project effectively.

(Refer Slide Time: 24:26)

If, we do not have such milestones then the project manager is at a loss does not know

how far the project has progressed, he can just ask the team members that how long do

you think it will take? How far you have completed?

(Refer Slide Time: 24:49)

But, the problem is that in such guess of the team members where the project manager

has to rely on the guess of the team members. The programmers are normally very

optimistic and the programmers typically say that see almost done.

This used to be a big problem when the lifecycle model was not being followed and this

problem is known as the 99 percent complete syndrome. That is whenever the project

manager asked to the team member, they say that almost done 99 percent done, because

they are highly optimistic. But then it just keeps on taking more and more time the

project manager becomes impatient asks why it is taking time they say that some bug,

some reason, they give something has to be changed and so on.

So, the project management without a lifecycle model is very difficult and suffers from

the 99 percent complete syndrome.

(Refer Slide Time: 25:58)

But, at the as the development precedes what are the documents that are produced? Is it

that the code is the most important document the most important active artifact and the

only code is to be given to the customer, not really.

It is not the working program that is given to the customer it is all the documents all

documentation needs to be developed. For example, the specification document, design

document, the test document, the maintenance document the user’s manual and so on. All

these documents have to be developed during the development process, it is not just the

code, code is just one part of the deliverables.

(Refer Slide Time: 27:08)

So, far we have seen some very basic concepts on the life cycle the phases phase entry

and exit criteria milestones and so on. Now, we will start looking at the important life

cycle models, the traditional models, like waterfall V model, evolutionary prototyping

and spiral model and also the modern agile models. But right now, we are just nearing

completion of this lecture we will break here and we will start from this point in the next

lecture.

Thank you.

