
Software Engineering
Prof. Rajib Mall

Department of Computer Science and Engineering
Indian Institute of Technology, Kharagpur

Lecture – 56
Condition Testing

Welcome to this lecture. In the last couple of lectures, we have been discussing about the

white box testing. And, we had said that white box testing has to be carried out on a unit,

even though we are also performing black box testing. And, we had said that there are

several types of white box tests strategies. And, we had discussed about statement

coverage based testing and then the branch coverage based testing.

If you remember said that branch coverage is a stronger form of testing, if we are doing

branch coverage testing, then we need not do the statement coverage testing. But is

branch coverage testing good enough or in other words are there stronger testing

strategies, which we need to carry out and if we carry out those branch or decision

testing becomes not necessary. Let us see the other types of testing.

(Refer Slide Time: 01:34)

In the last few lectures discussed about statement coverage based testing and then we had

discussed about branch coverage testing, which is also popularly known as the decision

coverage testing. Now, we will look at the basic condition coverage testing. And, we will

later after basic coverage condition testing. We will look at the condition decision

coverage based testing. And, then we will look at the multiple condition coverage testing,

MC DC coverage testing, path coverage testing, and then the data flow coverage testing,

and finally, the mutation testing.

(Refer Slide Time: 02:27)

First, let us address the question that each is the branch coverage testing good enough or

to tell that in other words. If, all branches have been tested can we miss some specific

test conditions or can bugs remain, even after we have completed branch coverage

testing or decision coverage testing.

Let us take a simple example; let us assume that we have a conditional statement if c is

equal to alphabet or c is equal to digit, where c is a variable character variable and we

have read c from the keyboard. And, then we are checking here, if c is either an alphabet

or c is a digit we were doing some special processing for that. Maybe we are recovering

the integer value of c. If it is a digit we will c is equal to C minus A let us say, which will

retrieve the integer value.

But, then if we are doing the branch testing we need to have the branch condition assume

true and false values, to make it true if we have c is a alphabet that is capital A to capital

Z and small a to small z. Then, if it becomes true this condition does not matter because

this is a or condition anyone of that becoming true will make the branch condition true.

Now, let us say that the second test case is a special character like a control character or

something.

So, now the expression when we evaluate c is not a alphabet and c is not a digit, because

it is a special character. And therefore, it becomes false, but the fault is when c is equal to

digit we are not doing it properly let us say, we have made it c is equal to c minus small

a. So, we made a small mistake here, to get the integer value we made a small mistake,

but then our 2 test cases, that is c is a alphabet and c is a special character achieves

decision coverage. And, the faulty sub expression, which is c equal to digit that is not

tested. And the bug remains, even if we are achieving decision coverage testing both the

outcomes of the branch condition, but still we are not able to detect the bug and that the

reason for that is that, we are not considering this sub expression becoming true any

time.

If, we had a test case which not only turns the first sub expression true and false we will

also should have test cases making, the second sub expression true and false and in that

case we could have detected the bug. So, that gives us a hint that we should look at the

sub expressions. And, we should ensure that the test case makes it sub expression

assumed true and false values. And, exactly based on that idea the basic condition

coverage testing is designed. Let us look at the basic condition coverage testing.

(Refer Slide Time: 07:04)

In the basic condition coverage testing for a branch condition having multiple clauses,

which we will call as a complex condition; each of the sub expressions or the clauses, we

will require them to achieve true and false values. And, you can see that if we make that

then the bug which was earlier not getting caught will get caught, but then is it a good

testing is it first of all is it stronger than the statement coverage, is this kind of testing the

basic condition coverage testing, is it stronger than simple decision coverage testing. Let

us try to answer those questions and is it a good testing strategy let us try to answer those

questions.

(Refer Slide Time: 08:11)

First let us see, how do we design the basic condition testing strategies? Let us take a

example conditional expression, if a is equal to 10 and b is less than 50. And, our

objective is that each of the sub expressions will achieve true and false values. Now to

make a is greater than 10 to make it true, we will make a is 15. And, to make b is less

than 30, we will assign some value b is equal to 30 or something like that. And therefore,

our first test case is a is 15 b is equal to 30.

So, this the test case one which will make the 2 sub expressions true. Now, we need

another test case which will make both the sub expressions false. So, let us choose a is

equal to 5, 5 is less than 10. And therefore, this is false and let us say b is 60 60 is greater

than 50. And therefore, the second sub expression is also false. So, these two test cases

will achieve the simple condition testing or the basic condition testing, where each sub

expression is made into true and false values.

But, can we always perform basic condition testing, yes we can perform basic condition

testing and if the 2 sub expressions are independent. If there is a dependency between

this we may or may not achieve basic condition testing. Let us say a is greater than 10

and a is less than 5, that we cannot for that condition there is a dependency between two

sub expressions and it becomes difficult to design the test case it cannot be at the same

time greater than 10 and a is less than 5.

But, if we have independent clauses, we should be able to design basic condition testing

and how many test cases would be needed? In one test case, we can assign true to all and

another test case, we can assign false to all. So, 2 test cases would be good enough to

achieve basic condition testing, but how does this testing. Compare with the branch

coverage and the statement coverage testing; let us try to examine that.

(Refer Slide Time: 11:49)

There is another example; before we check how effective it is there is one more example

let us say we have c1 and c2 or c3. So, there are 3 clauses here and 3 sub expressions or

clauses. And, we will make each one of this true and false. Even though there maybe 3 4

5 whatever, if they are independent then we can design test cases such that all are true

and all are false. So, each sub expression gets true and false values. So, basic condition

coverage is satisfied, but we just use 2 test cases.

(Refer Slide Time: 12:48)

Now, if we use some test cases to test a branch condition, what is the percentage of

coverage achieved? Let us define a metric, which we call as the BCC metric, Basic

Condition Coverage metric. And, here we have this simple expression, the number of

truth values that is true and false taken by all basic conditions and 2 into number of basic

conditions.

So, if we have a expression like a is equal to 10 or b greater than 5 and c less than 100,

we can see here that there are 3 atomic conditions or the basic conditions and then

possible outcomes of each of these is 2 into 3 so that is 6. Now, let us say we designed a

test case which made this true false false, the second test case made true true false. So,

this is the first test case outcome this is the second test case, and using two test cases we

achieved this coverage of the basic conditions.

And, then what is the percentage coverage achieved. So, we achieved true false false and

also true value for the second condition. So, we have achieved 4 of the decisions out of

the 6. So, the coverage will be 2 by 3.

(Refer Slide Time: 15:12)

But, is it a strong enough testing how does it compare with the decision coverage and

statement coverage. Let us take an example, if a greater than 5 and b less than 3 or c

equal to 0 and then we have some action here, a is equal to 10. And we can use 2 test

cases to achieve basic condition coverage, let us say a is equal to 10 if this is true b is

equal to 2 this is true and c is equal to 2 this is false.

So, the first test case achieves true true and false. The second test case a is equal to 1

which is false, b is equal to 10 which is false, and c equal to 0 which is true. Now, we

have achieved basic condition coverage using these 2 test cases. So, each of the sub

expressions achieves both true and false values, but then let us see if decision coverage is

obtained true and true. So, this clause will become true and irrespective of this even

though it is false. So, the branch outcome will be true. Now, let us see the second one

false and false. So, the clause here will become false.

But, then the second sub expression becomes true. So, the outcome is again true. So,

even though the 2 test cases are able to achieve basic condition coverage, but they are not

able to achieve the decision coverage. From this we can conclude that even though basic

condition coverage may be satisfied, but still decision coverage may not be obtained. Or

in other words we cannot say that basic condition coverage is a stronger form of testing

than decision testing.

But is decision coverage testing stronger than, the basic condition coverage no that is

also not true, because you had already seen that basic the even though the decision

coverage was achieved for c is equal to alphabet or c is equal to digit. We could achieve

the decision coverage, but that did not achieve the basic condition coverage. We can

therefore, say that the basic condition coverage and decision coverage these are

complimentary, they are not really comparable testings one cannot really is stronger than

the other testing.

(Refer Slide Time: 18:35)

Now, let us see the condition decision coverage testing, but let me just pose another

question to you that the basic condition coverage testing and the branch coverage testing

these 2 are not really comparable. We cannot say that any of that any of these 2 is

stronger than the other, but what about the statement coverage testing? We know that

branch coverage testing is stronger than statement coverage testing, but what about the

basic condition coverage and the statement testing. Can we say that basic condition

coverage is stronger than statement coverage testing or is it vice versa that statement

coverage testing is stronger than basic coverage testing?

Of course, from common sense we can say that statement coverage testing cannot be

stronger than basic condition coverage testing, because one which is stronger than the

statement coverage that also is not stronger than basic condition testing.

But, what about this basic condition coverage does it achieve statement coverage. Please

try to reason it out give examples or prove, what is the relation between basic condition

coverage and statement coverage testing? But, our idea while discussing about the

branch coverage testing was to come up with a test strategy, which is stronger than

branch coverage testing, but at the same time achieves condition coverage. And basic

condition coverage could not do that, can we impose the condition that we should

achieve the basic condition coverage and also the decision coverage.

So, that is the strategy that we will discuss now, it is called as condition decision

coverage. The condition decision coverage strategy here, we achieve basic condition

coverage and also the decision coverage. And, here each of the atomic condition is made

to assume true and false values, that is the basic condition coverage achieved and also

the decision as a whole is also made to achieve true and false values. So, we need test

cases for those. And therefore, this is a stronger testing than the basic condition testing or

the branch coverage testing because it achieves both of this.

But is it the strongest testing, we can see that this is stronger than both branch testing and

the basic condition coverage, but is it the strongest no the strongest is multiple condition

coverage. Here all possible atomic conditions, the atomic conditions are made to assume

all possible combinations of truth values. If, we have if a greater than 5 or b less than 20,

in that case our test cases should make this true this false this true true false true and

false false.

In general, if we have n sub expression or clauses in a complex decision statement, then

we will need 2 to the power n test cases to achieve the multiple condition coverage. So,

the multiple condition coverage testing should ensure that all the sub expressions, they

achieve all possible combinations of truth values.

(Refer Slide Time: 23:33)

Now, let us look at an example, if we have this example a or b and c. we have 3 sub

expressions, 3 Boolean values and if we need to achieve the multiple condition coverage

how many test cases do we need? We need 2 to the power 3 test cases, which is 8. Let us

see what will be the test cases; a b c these are the 3 sub expressions or Boolean variables

and then all possible combinations the truth outcomes of these 3 sub expressions or

Boolean variables true true true true true false and so on.

And, there are 2 to the power 3; 2 to the power 3 is 8 test cases are needed. We can say

that to achieve the multiple condition coverage the number of test cases is required is

exponential in the number of the sub expressions or the basic atomic conditions.

But, then this can be huge because in many applications. Especially in the controller

embedded control applications in user interfaces etcetera. It is quite common to have

expressions involving 10 or 20 sub expressions. And, if we have 20 sub expressions in a

expression in in a decision statement, we will need 2 to the power 20 test cases or which

is a million test case. Just imagine that just to test one branch we need a million test cases

to achieve multiple condition coverage, but if a unit has 10 of that the number of test

case will be enormous, even million is a large number a tester would have to spend

couple of years to run the million test cases.

We can therefore, say that the multiple condition coverage is a strong form of testing

when there are branches, but then it is impractical, because it requires too many test

cases when we have multiple clauses or multiple sub expressions 10 or more or even 8 7

this also lead to large number of test cases.

So, can we have a compromise a test strategy which will achieve as thorough testing as

the multiple condition coverage, but then the number of test cases should be few for

expression it should be 3 4 5 something like that should not be 1000s. Now, we are

almost at the end of the lecture let us stop here and we will continue from here in the

next class.

Thank you.

