
Software Engineering
Prof. Rajib Mall

Department of Computer Science and Engineering
Indian Institute of Technology, Kharagpur

Lecture – 52
Decision Table Testing

Welcome to this lecture. In the last lecture we had started to discuss about combinatorial

testing. We will discuss these testing techniques today, in further detail we will first

revisit what we discussed in the last lecture and then we will discuss further.

(Refer Slide Time: 00:40)

The word combinatorial, if you look in the dictionary, it means relating to or involving

combinations.

The idea here is that in testing the software, there are multiple inputs and conditions.

And, in the previous lectures, we had seen how to design black box test cases based on

the input values, you looked at equivalence class boundary values and so on. But, then

when there are multiple inputs, we need to design test cases based on various possible

combinations among these input. And, also there can be global variables and so on. And,

therefore, the combinations must be considered and of course, the combinations can

become too many and then it becomes difficult to test. And, we will today see how to

reduce the number of combinatorial test cases.

First, we will discuss the combinatorial test case design and, later we will see how to

reduce the number of test cases that are designed. The behavior of a program is affected

by many factors. For example, the specific parameters we give as input and, there can be

data stored as global variables for example, arrays in a library example may be books,

members, these are large arrays and their state changes depending on whether a book is

issued returned and so on. And, there can be state variables, which define the state of the

software.

We had seen that in the previous lecture that for every input variable, using the black box

testing technique of equivalence class boundary values and so on, we can design test

cases. And, then we have to consider various possible ways of combining this inputs, but

the problem is that often the input maybe too many; there may be many parameters

environmental variable state variable and so on.

And the number of test cases required for all possible combination may become trillions

and the test should become extremely large. And, then we will see how to address this

problem? And, reduce the number of test cases. But, first let see the basic idea behind

combinatorial generation of test cases and then we will see how to reduce the number of

tests.

(Refer Slide Time: 04:07)

Let us look at one specific test situation; this is a user interface for a word processing

software. You might have used similar software, where we can define the font

characteristics. And, see here we have many things to choose here. For example, whether

the entered font is a superscript, subscript, small cap, all cap, then the font color, then the

specific font type and whether it is a regular italic and so on and the size of the font and

so on. This kind of interface is very common in user interfaces, but then if we want to

test based on all possible combinations of the input, then it may become too many.

For example, we would like to check, whether it works well in superscript and when text

font is something and text color is something. And, whether it works as subscript when

for the same font, font color size and so on. This kind of situation is also there in

controller applications, where the controller behavior is defined by many factors. For

example, temperature pressure user input and other factors.

(Refer Slide Time: 05:51)

With this motivation, we will discuss 3 main types of combinatorial testing One is called

as a decision table based testing cause effect graphing and pair wise testing. The pair

wise testing actually reduces the number of test cases, which may be obtained through a

decision table or cause effect graphing.

(Refer Slide Time: 06:21)

Let us revisit the decision table based testing. In decision table the upper rows of the

table are the decision are the conditions, which are basically the inputs. And, the lower

rows are the actions and these are the output and this table allows us to consider various

possible combinations of the conditions.

If, there are 4 conditions here and all conditions are Boolean, then if we consider all

possible combinations we will get 16 rows here, but the conditions may not be Boolean,

it can be let say an integer taking value 1 to 10 for a choice and so on. So, you can know

once we list down the conditions and actions, we know that what are the possible values

of the input here and we can define the rules based on the specific values of the inputs

distinct values of the input. And, then identify which of the actions take place for that

specific combination of conditions.

And, each of the column here becomes a test case and this is called as a rule, because this

is a specific combination of conditions and each of these become a test case, just to get a

feel of it let us try to do the decision table for this expression, that is given here. Here, let

us assume that c 1 c 2 c 3 are Boolean expressions and if this is true then A 1 is the

action.

But, if the outcome of this specific combination is false, then there is no action, but this

is the simplest as I was saying, we might have much more complex where we might have

several actions possible depending on specific outcome of the expression.

Just to explain the concept, how to draw the decision table for a expression like this, we

need to write the conditions here C 1 C 2 and C 3. These are the upper rows of the

decision table and the lower row are the actions just put a line here and we will write

conditions or inputs and will write here the action.

(Refer Slide Time: 09:11)

And, we will consider various combinations of conditions of the truth value of these

conditions. And, each of these we will call as a rule or a test case let say C 1 is true, C 2

is true, C 3 is true and therefore, the action A 1 is yes it will be taken.

If C 1 is true C 2 is true and C 3 is false then still it is yes, but if C 1 is true C 2 is false

and C 3 is false, then it will be no and so on. So, this is the simple way to construct a

decision table given a simple expression, we should be able to write the decision table

for that and these become the test cases in addition table based testing.

(Refer Slide Time: 10:57)

So, the idea here is that we write the conditions, the top rows actions in the bottom rows

and consider various combinations of conditions and each of these become a test case

and we call them as a rules.

(Refer Slide Time: 11:20)

Let us take a very simple example. Let us assume that we are trying to design the

decision table based testing for a function, which is check triangle, check triangle the

name of the function and takes 3 integers a b c as it is input. And, the function will

display that the specific triangle is a scalene isosceles equilateral not a triangle and so on.

Now, here the conditions based on which the action had taken can write here the top

rows, C 1 is that it forms a triangle, C 2 a equal to b, C 3 is a equal to c, C 4 is equal is b

equal to c.

So, if it is a triangle if it is a equal to b, b equal to c, c equal to a, then it is a A 4 is a

equilateral triangle, S if it is not a triangle then it will display not a triangle that is A 1

and so on. We can easily develop this table, but the problem is that here we have written

here the condition 1 is a b c form a triangle, but that is not a very practical condition to

check, we will see that we can refine the table.

(Refer Slide Time: 13:13)

But, once we have drawn the decision table, we can design the test cases which are

specific combinations of the conditions and the corresponding actions are the output to

be checked. And, if C 1 is that a b c is not a triangle is true then the display will be not a

triangle irrespective of the condition C 2 C 3 C 4.

We, can do that write the specific value which will satisfy condition 1, which is 4 1 2.

And, then we say the expected output is not a triangle. Similarly, if it is a triangle and

also a equal to b, b equal to c, c equal to a, then we write some specific values which

satisfies that condition and the expected output is equilateral. And, each of these is a test

case we give the test case number here test case id and that is how we design the

equivalent the decision table based test cases?

(Refer Slide Time: 14:32)

This is a more complete decision table for the example we discussed, because in the top

row we have replaced, whether it forms a triangle or not with specific conditions, which

are easier to check a is less than b plus c b is less than a plus c c equal to a pl[us] less

than a plus b. And, if all of this is true then it forms a triangle. As, long as it is false as

long as it is false, then the output is not a triangle, but if all the 3 conditions where C 1 C

2 C 3 is true, then it forms a triangle.

And therefore, we check the other conditions C 4 C 5 C 6 and based on that we write

whether it is a scalene isosceles equilateral or it is impossible, impossible is that it is not

integer values and so on.

(Refer Slide Time: 15:58)

 And, once we have develop the table, we can write specific values for the input and we

write the expected output and the all of these form a test case.

(Refer Slide Time: 16:16)

Let us take one more example, which is the printer troubleshooting example. Here

depending on some specific condition the program recommend some action to take. For

example, if the printer does not print red light is flashing and printer is unrecognized. It

recommends check printer cable ensure printer software is installed and check replace

check or replace ink. If, it is printer is not printing and red light is flashing only there is

no printer unrecognized message. And, then need to check and replace ink and check for

paper jam.

Similarly, if there is printer does not print and printer is unrecognized, then we need to

check the power cable for the printer. And we need to check the printer cable and ensure

that the printer software is installed and so on, we develop the table and each of the row

columns here become a test case.

(Refer Slide Time: 17:33)

Let us develop the test case decision table test case for a specific situation. If a flight is

more than half-full and ticket cost is more than 3000 free meals are served, unless it is a

domestic flight. In domestic flight meals are served, but these are not free, but if the

flight is not half full is less than half-full and ticket cost is less than 3000 or ticket cost is

less than 3000 then no meals are served.

To develop the decision table for this we need to identify the conditions. The specific

conditions here is that whether the flight is more than half-full, we will write that as

condition 1, ticket cost is more than 3000 we will write that as condition 2, the actions is

whether free meal is served or meal is served and whether it is a domestic flight.

So, this is the third condition here the flight is more than half-full ticket cost is more than

3000 and it is a domestic flight we can identify that these are the conditions, and the

actions are that whether meal is served and whether it is free.

So, we can write here C 1 C 2 C 3 and action 1 action 2. Action 1 is whether meal is

served and Action 2 is whether it is free. And, we will check whether C 1 is that flight is

more than half-full ticket cost is more than 3000. And, it is a domestic flight, then meal is

served A 1 let me just write here meal is served and A 2 is that it is free meal. So, will

write here, yes and A 2 is no. Similarly, if it is more than half-full. And, it is ticket cost is

more than 3000, but it is not a domestic flight then meal is served and also it is free and

so on. Then find all possible combinations of the conditions and each of the columns

here will become a test case.

(Refer Slide Time: 20:58)

So, I just drawn here for your reference that these are the 3 conditions and then the

specific actions write all possible combinations of the conditions. If there are 3 here and

each is a binary then we will have 2 to the power 3 8 that is the number of columns here,

it will give all possible combinations of the conditions of these 3 input Boolean

variables.

(Refer Slide Time: 21:28)

In this we have filled up the action part and these each of these become a test case, and

then the corresponding actions are checked when the test case is executed.

(Refer Slide Time: 21:46)

But, then even using a decision table we can optimize the number of test cases, we can

reduce little bit. For example, this is the decision table that we developed, but then we

can see here that the action part is the same here. The action part is the same here there is

no action for these 2 test cases or a rules, but then the specific input values are same for

both of these conditions and this is just no and yes. And therefore, we can combine this

into a single rule and we will write do not care here, it is possible to combine these 2

because the action part is the same and irrespective of the domestic flight, nothing is

done if it is less than 3000 and less than half-full.

Similarly, we can combine these 2. The action part is the same and then they differ with

respect to this. So, this becomes a do not care, but what about this we cannot combine

with any other, because action we do not have ok. We have this here, the same action

here, but then ok. We can combine either this with this that these 2 are these 2 are having

same action or we can combine this rule with this rule. So, they have the same action

part. And, then they differ with respect to only more than 3000. So, you can combine this

into single rule and then we cannot combine this further with this, because your already

do not care here.

So, I have drawn that reduced the number of test cases and I have written here do not

care.

(Refer Slide Time: 24:12)

So, the number of test cases required here is 4.

(Refer Slide Time: 24:36)

Now, in the decision table based testing, we must ensure that all possible combinations

of the decisions of the conditions are taken care. And, also we must ensure that the rules

are consistent, that is it should not be the case, that for the same combination of

condition we are writing 2 different actions that is inconsistency, basically basic if we

write let say 3 conditions yes and yes and we write that action A 1 is yes, and A 2 is no.

And, for another rule we write same combination of condition and the actions are

different, it cannot happen because this is inconsistency.

We must take care that the table is consistent, and all possible combinations of conditions

are present and that will give us our decision based test cases.

(Refer Slide Time: 25:53)

The decision based test cases decision table based test cases are relevant for many

problems. If, we look at the code and see that there is lot of decision not code. If we look

at the description of the soft program and see that the specification involves lot of

decision making. The output is a logical relation among input variables.

The results depend on calculation involving subsets of input or there are cause and effect

relationship between input and output, these are the cases where we have to design the

decision table based test cases. But, the only problem with the decision table based test

cases is that, as the number of input conditions become large, the table becomes the table

size grows exponentially if A 3 conditions, Boolean conditions we need 8 test cases.

If, we have 4 we need 16, 5 32 and so on if we have 10 then 1000. So, becomes difficult

to develop the table and the number of test cases grows very rapidly, it becomes difficult

to optimize manually reduce the number of test cases and so on. Also, the decision table

based test cases even though it is very simple if we understand the problem very well,

but then if we do not understand the problem very well; it becomes difficult to develop

the decision table.

And, we will look at another technique which is cause effect graphing, which gives us a

graphical way to represent the input conditions output conditions and from there we can

develop the decision table. We are already at the end of this lecture, we will stop here

continue in the next lecture.

Thank you.

