
Software Engineering
Prof. Rajib Mall

Department of Computer Science and Engineering
Indian Institute of Technology, Kharagpur

Lecture - 50
Special Value Testing

Welcome to this lecture. In the last lecture, we were discussing about a black box testing

technique known as the boundary value testing. And we had said that, this is a general

risk; the boundaries are at general risk of errors and therefore, we must define test cases

based on the boundary values. Let us proceed from what we were discussing last time.

(Refer Slide Time: 00:48)

Let us say, we have a code were depending on the applicant age, we make the hire status;

it is either no, do not hire under age or hire status is part time full time and over age, hire

status is no. We can identify the boundaries here which is between these two equivalence

classes, 16 is the boundary and if we select the boundary likely to determine the bug here

that 16 is included in both the equivalence classes, similarly 18, 55 and so on.

(Refer Slide Time: 01:42)

And then, we can correct our code where we have the boundaries clearly specified here 0

to 15, do not hire 16 to 17, 18 to 54 and so on. And then, we can take care of values that

are invalid and we need to take care of the boundary between the invalid and the valid set

of equivalence classes.

(Refer Slide Time: 02:16)

So, based on the boundary values, we have the corrected code and then what if for this

code, we have let us say minus 1. That is not addressed here in the code. And therefore, it

will have generate a failure. Depending on the 4 equivalence classes here, we can define

the boundary values here; for the first one -1, 0, 1, 14, 15 and 16; for the second one, 17,

18, 19; 17 at the boundary of this. So, there are basically if we look at here, we have one

boundary that is less than 0, another boundary here at 15 and 16 and another here at 17

and another here at 54 and so on. We must include the boundaries here for each boundary

we take a test case which is just on the boundary one, on the higher side and lower side

and so on.

So, these are each of this either test case.

(Refer Slide Time: 03:56)

And once we identify the boundary values, then we need to define the test cases. These

are the valid set of equivalence classes, invalid set of equivalence classes. And we

already had selected one representative value for the equivalence class testing. Now, we

will select values in the boundary for the boundary value testing.

(Refer Slide Time: 04:21)

Let us look at some example problems, let take the same problem that we are considering

earlier for equivalence class testing that it takes one parameter only; the valid values are

between 1 and 5000. If we draw this, we represent the data then we have one valid class

and two invalid classes. And there are two boundaries here; one is between the valid

class and the invalid on the lower side and another is between the valid class and the

invalid on the upper side. We include the boundary 1 and one element, one test case

which is less than 1 which is 0, 1, one element which is valid. So, it can be 2. Similarly

5001,5000 and let us say 4999, 4 9 9 9.

So, these are the set of test cases for one parameter which is a range of values between 1

and 5000.

(Refer Slide Time: 05:46)

Now, let us look at age as a parameter and the valid age range is 1 to 150. Here, we have

three equivalence classes; one is a valid equivalence class which is between 1 and 150

and there are two equivalence classes. So, for boundary value testing, how many test

cases do we need? Of course, need to include the boundary, the boundary value, one

below the boundary value, above the boundary value and of course, we can combine

these two, we can select a value anywhere here. So, there will be at least 5 test cases, at

least 5 test cases for boundary value testing.

(Refer Slide Time: 07:02)

So, the 5 test cases: at the minimum boundary, immediately above the minimum,

between the minimum and maximum, immediately below the maximum and at the

maximum boundary.

(Refer Slide Time: 07:21)

Just an example predict longevity and age is the parameter and age is between 100 and

150 and once we identify the 5 boundaries, sorry 5 boundary values, you can represent

them 1, 2, 45, 149 and 150 and this form our boundary value test cases.

(Refer Slide Time: 07:54)

But, what about multiple parameters; for each of the parameter, we might identify

different boundaries and let us say for parameter years of education and let us say, age

we identify different boundaries. And let us say the boundary value for the years of

education is 1, 2, 12, 22, 23; these are the boundary values for years of education.

Similarly, 1, 2 sorry for the age, we have 1, 2, 37, 149 and 50. These are boundary

values. Now, how do we define the test cases by combining these two boundaries? One

way is that we just represent each of this in the test case and take any one of the value

from the other equivalence class for the other parameter. And similarly, we define test

cases corresponding to each of the boundaries here and some value of the other

boundaries; pick one boundary from here, the first parameter and combine with all other

parameter boundaries here.

And similarly, for every value on the boundary and the first parameter, we take any value

from the second parameter like 37 or something. So, what will be the number of test

cases that will be required? If there are let us say m here, m boundary values for the first

parameter and n boundary values for the second parameter, we will have m plus n minus

1 because 1 is common here. Therefore, we will have m plus n minus 1.

(Refer Slide Time: 10:31)

And we represent the same thing here. This is called, this is for 2 input parameters and

we define the boundaries here. Let us say for the first parameter, we define there are 5

boundary values and for the second parameter also, there are 5 boundary values and this

is common here. For the first parameter, these two are the boundary and this is a point

just inside and these are the two points on the boundary and this is just inside. Now, if we

combine these two parameters, we take this one, this one, this one, these two; and

therefore, we get 9 test cases.

And we can represent it as 4 z where z is the number of parameters plus 1 because for

every boundary, we have 4 and one representative value here. And similarly for the other

one, for the boundary and one representative value, and therefore, we have 4 z plus 1

which is the number of test cases required.

(Refer Slide Time: 12:25)

Let us say, we have a function f x y, the function f takes two parameters, two integer

parameters x and y and x takes value between a and b and y takes value between c and d

now how many test cases are needed. If we represent the boundary here, we have a

boundary at c, we have boundary at d, we have boundary at a and b and just above we

have test cases and one representative here. So, it will be 4 into 2 parameters plus 1

which is equal to 9. There are 2 parameters here and each one, we need 4 and 1 is the

common and therefore, we need 9.

(Refer Slide Time: 13:28)

All the weak testing that we have been discussing with respect to equivalence class

multiple parameter equivalence class and boundary value, the weak testing actually

implicitly assumes a single fault that is only one of the parameter can have fault. If that is

assumption, then weak testing is alright because for every input, every representative of

one parameter, we combine with the representative for the other parameter.

Therefore, if this is the let me just explain this, that if we have two parameters for weak

testing if you remember, if there are let us say 3 equivalence classes for the first

parameter and 3 equivalence classes for the second parameter, then we may select this

and this. So, we have all the parameters of the all the representatives for the parameter 1

and parameter 2 represented in our test cases. And therefore, if there is a fault in any

parameter representative parameter that will be detected, but what if specific

combinations of parameters have fault.

Let us say when parameter 1 has representative from this and the corresponding one is

here, if these two are chosen then there is a fault. Of course, weak testing will not be able

to detect that. It will detect only when one of the parameter, any one of the parameter if

we select a value there, then it is faulty. In those cases, weak testing is satisfactory;

otherwise we need to go for strong testing.

(Refer Slide Time: 15:48)

Now, let us look at the robust testing in robust testing we need to include a value which

is invalid. Let us say, we have a function called as ASCII to integer and it takes a string

let us say character it takes and it gives us a integer value for that. And if we look at the

ASCII table, that 0 to 9 are the characters that are valid correct which are the valid

characters for integers and they have values 48 to 57. But then, if we give a invalid value

such as slash or colon, then we can check that it gives us a wrong value. And therefore,

we must include the one which is invalid integer representation.

And that we call as the robustness testing.

(Refer Slide Time: 17:03)

For robustness testing therefore, we consider the invalid values as well. And therefore,

the number of elements at the boundary are three on each of the boundary. For x sorry

the parameter 1, we have 2 boundaries and for both boundaries we need to select three

element each. And similarly for parameter 2 sorry, for parameter 2, we need to select

three elements each for parameter one we also select 3 element each and then this is the

general element with which we combine and therefore, we need 7 test cases for each

input; if we have n test cases, sorry if we have n parameters.

(Refer Slide Time: 18:19)

Then we can easily compute how many test cases we need. The main idea behind

robustness testing is that do we anticipate the error situations, do we display informative

error messages when the value is invalid is there, some kind of recovery from the error.

So, those are the main objectives of the robustness testing to check whether the

programmer has handled invalid value satisfactorily.

(Refer Slide Time: 18:50)

By considering invalid values as well, we see that for two input, two parameters we need

13 test cases; so, 6 plus 6 plus 1, 13 test cases. So, in general if we have n parameters, we

need 6 n plus 1 test cases.

(Refer Slide Time: 19:24)

But the main problem with boundary value testing is that if we have a set of values, we

do not have boundary there. What about Boolean values, there also we do not have

boundaries; what about radio buttons like this, these can be considered like Boolean

variables either they are on or off. Here also, we do not have boundary for this cannot be

defined. What about a non numerical parameter, let us say character string?

Again, it is hard to define boundaries for that.

(Refer Slide Time: 20:13)

Now, let us conclude our discussion on the equivalence class and boundary value testing,

but before that let us do a small quiz. Let us say we have a function which solves the

quadratic equation of the form a x square plus b x plus c. The name of the function let us

say, quad solver and it takes 3 parameters a, b, c and it returns the roots. What will be the

equivalence classes for this? If we examine the scenarios here, then one is that the root

may be complex, the root may be real. If it is real, it may be coincident or unique the

valid set of values can be classified, the equivalence classes will be for complex root,

real root and the real root can be coincident and unique and we can also have the invalid

set of values and so on.

(Refer Slide Time: 21:55)

Now, let us look at Combinatorial Testing. We will see that if the number of parameters

to a function is large and it uses many global variables and s, on, the number of test cases

required for equivalence class testing and boundary values testing can be large. And we

will see how to handle that problem and let us look at combinatorial testing.

(Refer Slide Time: 22:28)

The behavior of a program is affected by many factors; how many input parameters are

there, how many global variables are there, state variables and so on. And for

equivalence partitioning, we identify for every parameter what are the equivalence

classes. And when we combine it, we saw that there is a weak testing, strong testing and

robust testing. And if we do a robust testing then it may become impractical, if the

number of input parameters are many.

(Refer Slide Time: 23:16)

But then, in many situations we find that the number of input parameters are actually too

many specially in Controller applications and User interfaces. Let us look at this specific

user interface just see how many parameters are there input parameters they are just too

many and if we combine the equivalence classes here, then we will get too many test

cases.

(Refer Slide Time: 23:52)

For combinatorial testing, we will see the Decision table-based testing, Cause-effect

graphing and Pair-wise testing which will help us to handle a small number of test cases

when we have many parameters or many different types of inputs.

(Refer Slide Time: 24:19)

First let us look at the Decision table based testing. The decision table based testing is

applicable when there are many conditional actions here we develop a table and in the

table we represent the conditions, the conditions represent inputs and then the actions.

The actions represent the output and each of these column under table is called as a rule

and the rules are the test cases. Let us see how to generate the decision table and then

once we generate the decision table we can easily form the test cases. Each of the column

will become a test case.

(Refer Slide Time: 25:15)

Let us take the example of this condition here.

C 1 and c 2 or c 3, then A 1 we can observe here that c 1, c 2 c 3 are the input and A 1 is

the output. We write here the input c 1, c 2, c 3 these we call as the condition and then we

have the action. And we combine all possible values of the condition with action and let

us say the condition is for c 1, it is true, c 2 is true and c 3 is true; c 1, c 2, c 3 are all true

and then the action is A 1. We can look at the expression here. Now what if c 1 is false, c

2 is true and c 3 is true. In this case, it is also a 1 now what if c 1 is false c 2 is false and c

3 is true again here this is A 1, action is A 1, but what if all are false then there is no

action and so on.

We can complete this table and this is the decision table where the top part of the table

contains the condition outcomes, the lower part this displays the corresponding actions.

And each of the row is a rule and they form the test cases. So, as many rows will be there

on our table, those many test cases we will need. So, this is a test case, this is a test case c

1 is false, c 2 is true and c 3 is true and so on. We are almost at the end at the end of this

lecture.

We will stop here and continue our discussion from this point.

Thank you.

