
Software Engineering
Prof. Rajib Mall

Department of Computer Science and Engineering
Indian Institute of Technology, Kharagpur

Lecture – 05
Introduction- V

Welcome to this lecture. Over the last few lectures we had looked at some introductory

issues on software engineering and we are just starting to discuss how the software

engineering techniques have evolved. Before we start looking at the software

engineering principles it may be a good idea to just discuss briefly how these techniques

have evolved over time; that will give us a better understanding about how the

techniques have come into being.

Let us look at the evolution of the software engineering techniques starting from the

early days of computer till now.

(Refer Slide Time: 01:16)

The very early years of computer programming that is 1950s, all programs were written

in assembly language and obviously, the program sizes were very small, just few

hundreds of lines of assembly code.

(Refer Slide Time: 01:40)

And of course, there were no methodologies available. So, the programmers used the

build and fix or the exploratory style. Basically, they wrote the program as they thought

it right.

(Refer Slide Time: 02:02)

In the next decade a 1960s higher level languages came into being FORTRAN, ALGOL,

COBOL, etcetera; and this increase the productivity greatly.

But then, why is it that writing in a high level language is much more productive than

writing in assembly language.

There are two reasons here: one is that, in assembly language one would have to write

the program considering the register contents, the machines architecture and so on. Using

a high level language one writes the program in terms of the variables and so on which

corresponds to the real problem or in other words the high level language abstracts the

machine details. The programmer need not be concerned about the exact architecture of

the machine. And the second reason is that: each high level construct is equivalent to

writing 3-4 assembly instructions. And possibly you can say third reason is that the high

level language programs are much nearer to the human’s language than the assembly

language and therefore, it becomes easy to write programs.

(Refer Slide Time: 03:57)

But then, even though programs were written in high level language in 1960s still the

development was exploratory. Everybody use their own intuition how to write the

program. And this worked, because the program sizes were small; just a few thousand

lines of code.

(Refer Slide Time: 04:24)

After some time that is towards the end of that decade the program sizes started to

increase; larger programs are required. And it becomes difficult for programmers that

took long time to write using the exploratory style and also there were lot of bugs and so

on.

(Refer Slide Time: 05:00)

But there were good programmers, who were able to write programs satisfactorily and

they advised: “pay attention to the design of the program’s control structure”.

The programmers have to design programs that will have good control structure, but then

how do they do it.

(Refer Slide Time: 05:31)

Before that let us look at what exactly is meant by a control structure of a program. A

control structure of a program is the sequence in which the programs statements can

execute. So maybe, after 1 2 will execute statement 2 and 2 is a decision, so 3 or 4 may

execute either 3 or 4 and then 5 and so on. So, this gives the program control structure.

But then, how does one go about designing good control structure and for that, the flow

charting technique was developed. The idea was that before writing the program,

represent the logic or the algorithm of the program in a flow chart and then translate the

flow chart into code.

(Refer Slide Time: 06:38)

A flow chart like this, and then translate it into code and then it was a good advice and

programmers found that it really helped to write good programs; the flow charting

technique was extensively used. But then, why is it that a flow charting technique or a

good control structure how why is it that this help in writing good quality programs; cost

effectively you can write larger programs using control flow based design.

(Refer Slide Time: 07:22)

The answer is that: if we do not use a control structure design and write the program as it

comes to mind then the control structure will be poor, and if the control structure will be

poor then it becomes very difficult to understand the program and debug.

(Refer Slide Time: 07:44)

Why is that? Let us look at a program having a bad control structure. To understand a

program whose control structure is like this; one would have to find out from every

output that is produced, what are the instructions that are executed, sequence of ins that

is the sequence of instructions gives that path through the program. That is extremely

difficult to trace from where the input might have come.

Not only that, we do not know how many paths are there may be 1000-2000 and for a

programmer to understand a program of this control structure you would have to

mentally trace all the program paths and it becomes extremely difficult. To understand

this piece of code even if you try for a year, 2 year still would not have a full

understanding of the program.

But, if you design the control structure using a flow chart: the number of path there will

be limited and in reasonable a small time can be able to understand the program debug it

and the program development becomes fast the productivity increase.

(Refer Slide Time: 09:37)

Now, let us see the control flow base design, it reduce the con complexity. But then, one

thing is that besides the flow chart; what are the other things that one must do. One thing

that was observed by the experienced programmers is that GO TO statements, they make

the control structure bad. As long as a programmer writes program full of GO TO

statements then even if you had designed the control structure etcetera, still you will end

up writing bad code.

So, the good programmers advised do not use GO TO statements they will ultimately

make the program structure bad.

(Refer Slide Time: 10:29)

But, that was the period late 1960s and there were many assembly programmers and

assembly programmers still being written to a large extent. And any assembly program if

you look at it. See, here that there are many jump statements; every assembly program

typically has many jump statements and the assembly programmers thought that it would

be impossible to write a program without using jump statements. Maybe somebody can

reduce the number of jump statements, but how can jump statements be totally not used.

And they wrote many articles actually. They said it is not possible to write program using

jump statements or the GO TO statements; the GO TO statements are inevitable.

(Refer Slide Time: 11:41)

At that time one of the pioneer in this are Dijkstra, he published a article in the

communications of ACM 1969 “Goto Statement Considered Harmful” and he argued in

the article that the GO TO statements will not be used unless it is absolutely necessary.

Obviously, those who had assembly program in background they were very unhappy to

read the article and they wrote many counter articles.

(Refer Slide Time: 12:19)

They said: GO TO statements are actually advantageous they help write efficient

programs it is inevitable, you cannot just write program without GO TO statements.

(Refer Slide Time: 12:32)

But in the subsequent year it was proved that to solve any programming problem just

three programming constructs are sufficient. To express any programming logic only

three types of programming constructs are needed. These are sequence type statements:

for example, a statement followed by a equal to 0 followed by b equal to 5 selection

statement like if then else switch and so on. And the iteration type of statement for loop,

while loop and so on.

And naturally every programming language provides these three categories of constructs;

the sequence type of constructs, selection type of constructs and the iteration type of

constructs and just see here that there is no place for GO TO.

(Refer Slide Time: 13:43)

But has GO TO been totally withdrawn away with let us look at that issue, but then a

program written without using GO TO statements form the basis of structured

programming. That is one of the main requirement of a structured programming.

(Refer Slide Time: 14:05)

The concept of structured programming no GO TOs are used, only three types of

construct sequence, selection and iteration are used. And also a program, specially large

programs should be divided into modules but has the GO TO statements been totally

done away with.

(Refer Slide Time: 14:33)

No sometimes they are necessary for practical consideration. For example, premature

loop exist like a break statement, so that is actually a form of GO TO statement or let us

say exception handling. But then, these are very rarely used and it is not like GO TO

statement that is used all through the program these are under very rare circumstances

that one would use break and exception handling and so on and these are the

characteristics of the structured programs.

(Refer Slide Time: 15:16)

But then we must be clear that what advantages does structured program provide, or in

other words if one does not write structured programs that is writes using GO TOs it is

not modular then what problem you will face. The problem that he will face of course is

that the control structure will become bad, it will be difficult to understand and when it

becomes difficult to understand the program even the programmer who has written it will

find it hard to maintain or any other person trying to maintain it find it extremely harder.

And also, if it is not structured to develop the program itself will require too much of

effort and time and there will be too many bugs.

Naturally, structured program has lot of advantages and it was advised that write

structured programs only; that is using the sequence, selection, iteration constructs and

modular programs. Even though, the language used is supported GO TO statements and

so on the use should be very restricted. Of course, now the programming languages do

not support GO TO statements and therefore, a programmer by default writes structured

programs and these programs are modular and so on. So, these are structured program

and it has become inbuilt into the programming languages.

(Refer Slide Time: 17:16)

And this was proved the advantages of structured programming was proved through

large number of experiments observation.

(Refer Slide Time: 17:32)

But as the program size has kept on increasing further 50000 lines of code and so on, just

paying attention to control structure was not really sufficient. Still the programming was

becoming very expensive, develop large program usually takes long time, full of bugs,

costly and so on.

At that time it was realized that; yes, control structure is important to pay attention to,

but what is more important for large programs is to pay attention to what kind of data

structure we use. The data structures should be designed very carefully.

(Refer Slide Time: 18:30)

And these are the data structure oriented designed in early 1970s. Here, the philosophy

or the main idea here is that first design the programs data structure. As long as suitable

data structure has been designed then the program structure can be derived from it.

(Refer Slide Time: 19:01)

Many data structure oriented design techniques became popular in 1970s, the ones that

stood out the Jackson’s Structured Programming or the JSP methodology.

(Refer Slide Time: 19:17)

So, there the provided constructs of how to design the data structure first, how to

represent the data structure in diagrammatic form and then how to write a program based

on the data structure.

(Refer Slide Time: 19:39)

So, they had notations for representing sequence, selection, and iteration. The data

structure designed using the notations for sequence, selection and iteration and then these

are translated into program structure.

(Refer Slide Time: 20:00)

There were other data structure oriented design technique; namely the Warnier-Orr

Methodology was also very popular.

(Refer Slide Time: 20:11)

But then as the program I just still further increase with, the data flow oriented design

techniques came into picture. Here the main idea is that to take control structure data

structure these are important. But, to get really good program we must pay particular

attention how the data flows through the program. That is starting from the input what

kind of processing is done until the output is done. It had a notation that is a DFD- the

data flow diagram notation where we can first represent the data flow it is from the input

what are the processing done until.

So, we will have the data coming in and we will have processing done, maybe some data

stored data will be used until the output comes out. And once we have the data flow

representation for a program it can be transformed into the design and that gives good

design.

(Refer Slide Time: 21:53)

Here, starting with the data input the processing that is done are called as the processing

stations or functions, and how the data flows between these processing stations is

presented and from here the design is obtained.

(Refer Slide Time: 22:16)

The data flow diagram is a very simple techniques, it takes hardly an hour or so to learn

this technique; very simple technique. And the technique became very popular, can be

used to model the working of any system not the software system. And as you are saying

that it is extremely simple; as during the course of our lecture we will just spend small

amount of rime to draw the DFD representation of a problem.

(Refer Slide Time: 22:56)

Let us say how simple it is.

Let us say we have a car assembly unit, where there are processing stations. One

processing station takes engines and chassis and it fix the engine to the chassis. And then

the chassis with the engine goes to another processing station, where it takes out doors

from the door store fits door to the chassis. And then this, proceeds to the next processing

station where it fits wheels gets wheels from the wheel store. This is the representation

two parallel lines which store, gets it fits the wheels and then the assembled car comes

out and is painted and is ready to be dispatched.

(Refer Slide Time: 23:54)

And subsequently the object oriented technique in 1980s came into picture. This had the

appeal of representing the natural objects in the problem. As they occur in the problem,

like employees pay roll, register, and so on. And then, writing the program using these

objects will look at the object oriented design technique it has become quite sophisticated

now, as we proceed we will look at that.

(Refer Slide Time: 24:50)

Once we identify the objects, represent the relations among the objects like composition

reference, inheritance and so on.

One of the main advantage of the object oriented design is that it leads to a very good

modular design, because the objects are essentially similar to a good modules which

have data hiding or data obstruction entity as we proceed these terms will become clear.

What we mean by data obstruction or data hiding entity and why is this a good idea.

(Refer Slide Time: 25:33)

Many advantages of the object oriented design technique. The design is simple just by

looking at the design of a large and complex problem we will be able to in very short

time have a fair idea about how the program will work. It helps reuse, it lowers

development time, development, cost produces code which is less buggy easy to

maintain.

The object oriented design technique has many advantages and no wonder that now this

technique is being used extensively.

(Refer Slide Time: 26:22)

If we look at the evolution of the design techniques, see that starting from the Ad hoc, the

control flow based, data structure based, data flow, object oriented, and then later the

aspect oriented, component based, service oriented and so on.

So, the development in this area has been rapid compared to the programs that were

written in 1950s and so on, right now we use very sophisticated techniques to write the

program and as we proceed through this course we will examine those techniques.

(Refer Slide Time: 27:08)

Not only the design techniques, the other things other software engineering principles are

also rapidly evolved.

(Refer Slide Time: 27:22)

For example: we have the life cycle models, earlier no life cycle models the programmer

just wrote the code. We have good specification techniques which will examine project

management techniques, testing techniques, which we will examine debug technique,

debugging techniques, quality assurance, matrix, case stools, etcetera.

So compared to 1950, slowly various software engineering techniques have evolved year

after year and right now, we have a reasonably sophisticated set of techniques which a

developer must know to be able to write good programs.

Now the time is over. We will stop here, and we will continue in the next lecture from

this point.

Thank you.

