
Software Engineering
Prof. Rajib Mall

Department of Computer Science and Engineering
Indian Institute of Technology, Kharagpur

Lecture - 49
Equivalence Class Testing-II

Welcome to this lecture. In the last lecture we were discussing about the Equivalence

Class Test cases. We had identified when a function or a unit takes a single parameter, we

can examine the input value and then identify the set of equivalence classes, one is the

valid set of value, another is a invalid set of value and then for each of the valid and

invalid we can identify different sets of equivalence classes, but then we were discussing

about multi parameter functions.

(Refer Slide Time: 01:02)

Because it is quite common that a function takes more than one parameter and in that

case how do we identify the equivalence class. One way is that we can identify

equivalence classes corresponding to each of the parameters here. And then for defining

the test case one way is that we define the test cases such that every point here in this set

of equivalence classes and a point representative from this set of equivalence classes and

a representative from this set of equivalence classes is considered.

The other way is that we have a exhaustive combination of the points from these 3

equivalence classes. So, these are 2 different strategies to define the equivalence class

test cases. We will just look at it further we will develop this idea further in our

discussion today.

(Refer Slide Time: 02:14)

But before that we must be aware that not only is that a function like post grade can take

the roll number, course number and grade. So, the teacher assigns a grade for a specific

course to a student identify by some roll number. There are 3 parameters for this function

post grade, but also there can be some global variables for example, normalization factor.

Let us say we have a policy of normalizing the grades and we multiply the grade with a

normalization factor. Now we can think of as a additional factor which influences the

outcome here. And therefore, we can form equivalence class not only corresponding to

the 3 input parameters, but also corresponding to the global variable. Just extension of

our discussion of multi parameter function is that a global variable accessed by a

function in similar to a parameter to the function. And therefore, we must identify the

equivalence classes corresponding to that parameter and then we combine the points

from this different equivalence class.

(Refer Slide Time: 04:07)

Let us do some more practice. Let us say we have a function which takes 2 parameters

one is a integer between minus 99 to plus 99. Let me just write the function name as let

us say some f name of the function is f. Takes 2 parameters one is a integer parameter

and it defines a range between minus 99 and 99. The first parameter takes any value the

valid set of values are the minus 99 to plus 99 and the second parameter is a phone

number.

The phone number is defined by an area code which is between 1 1 to 9 9 9 9 9 9 9 and

then there is a actual phone number, the area code and the phone number, and the phone

number is let us say 6 digit. So, the second parameter is a phone number which is again a

integer, but then the first 2 or 3 digits they correspond to the area code and the suffix 6

digits correspond to the phone number. Now how do we identify the equivalence classes

for this of course, the first thing is that we identify the valid set of equivalence classes

and invalid set of equivalence classes.

For the first parameter the valid set of equivalence is are between any number between

minus 99 to plus 99 and then there are 2 invalid equivalence classes, one is less than

minus 99 and another is greater than 99, but what about the second parameter. The

second parameter again we have a valid equivalence class where we have a 6 digit

integer suffix and the first 2 first the prefix that is area code is between 11 and 9 9 9 and

the invalid set of equivalence may arise, because the area code is wrong or may be the

suffix is wrong.

(Refer Slide Time: 06:47)

If we write down our idea we will have this one is that we have for the first parameter is

a range and then we have one equivalence class which is one is the valid equivalence

class which is any value within the range, another is a invalid equivalence class which is

less than minus 99, one more invalid class is greater than 99 and then we can have other

equivalence classes as well for example, Malformed numbers some are characters and so

on. Non-numeric strings empty value etcetera these are the different invalid equivalence

classes.

Similarly for the second parameter we have a valid equivalence class where the area

code is between 1 1 to 9 9 9 and the phone number is between 0 0 0 0 0 0 to 9 9 9 9 9 9.

Now the equivalence invalid equivalence classes and one is the invalid format we do not

have the area code and the phone number or we might have the area code which is less

than 11 or greater than 99 9 99 this are 2 different equivalence classes invalid

equivalence classes; area code with nonnumeric characters phone number which is 7

digits phone number which is character and so on.

So, we will have many invalid equivalence classes and one valid equivalence class for

each of this.

(Refer Slide Time: 08:40)

And once we identify the equivalence classes for the 2 parameters, then we combine

representative values from these two equivalence classes corresponding to the 2

parameter to define our test cases at the simplest. We will discuss about the weak

equivalence class testing where let us say we have 2 parameters age and education.

Let us say for the age we identify two equivalence classes, one is age greater than 30 and

the second is the age greater between 20 to 30, these are the two equivalence classes.

Similarly for the second parameter education let us say we identify 3 equivalence classes

school, UG and PG, this is the education. Depending on the years of education we

identify whether it is a school education, UG education or a PG education.

Now how do we combine these 2 values from these 2 parameters to form the test cases

one way which is called as the weak equivalence class testing is that we see every

representative from every equivalence class is represented in the test case. So, we see

that every equivalence class from the first parameter is covered. And similarly every

representative of the equivalence classes of the second parameter are also covered.

So, if we have let us say n equivalence classes for the first parameter and let us say m

equivalence classes of the second parameter then how many test cases we need to be able

to do a weak equivalence class testing for this function, can think over it but then. Let me

just tell you that we will just take maximum of n and m. And that will form the number

of test cases required to carry out weak equivalence class testing, which will have every

representative from every equivalence class to be part of a test case.

(Refer Slide Time: 11:55)

The other way we can combine the representative values from different equivalence

classes is called as the strong equivalence class testing. Here every value of one

equivalence class of one parameter is combined with every equivalence class

representative every equivalence class of the other parameter. So, for the first parameter

here of age, we have a one representative from school, UG, and PG. Similarly for the

second equivalence class of the age we again combine with the 3 equivalence classes of

the second parameter which is the year of education.

Or, in other words for every value of the second parameter we combine with every other

value of the first parameter and this is called a strong equivalence class testing. So, the

question here is that, how many test cases will be needed if we have 2 parameters and let

us say we have m equivalence classes for the first parameter and n equivalence classes

for the second parameter. Since for every equivalence class here we must combine with

all equivalence class of the second parameter we need m into n test cases.

(Refer Slide Time: 13:47)

Based on the equivalence classes, we can also combine them in another way which is

called as strong robust equivalence class testing. If you look at the 2 types of testing we

considered earlier we did not consider the invalid set of equivalence classes we just

considered the valid equivalence classes.

But if we consider the invalid set of equivalence classes also, then we call it as a robust

testing the idea is simple just a small extension of the strong equivalence class testing

here we consider the invalid values as well and this forms our set of test cases. If we if

the valid plus invalid we have m equivalence classes for first parameter n for the second

parameter. So, these are the some of the valid equivalence classes and invalid

equivalence classes then the number of test cases needed for equivalence class testing

will be m into n.

(Refer Slide Time: 15:04)

Let us see let us try to solve some examples, let us say for a bank application we have a

function the name of the function is compute interest. And the parameter is days which is

a integer and the function description is that it should compute 3 percent interest for

deposits less than 15 days, 4 percent for deposit between 15 days to 180 days, 6 percent

for 180 days up to 1 year and 7 percent for between 1 to 3 year and 8 percent for 3 years

and above.

 So, what will be the equivalence classes here, this is a rather straight forward example

we have just one parameter and we examined the output and each of these correspond to

a scenario and then we consider one equivalence class corresponding to deposit between

0 to 15 days, 15 to 180 days and so on. And the invalid set of inputs which is an invalid

day negative day and so on.

(Refer Slide Time: 16:41)

Now, let us try slightly more complex problem where we have the compute interest, but

then it takes 2 parameters principle amount deposited. And the days for which the deposit

is made and the function description says that, if the deposit amount that is the principle

is more than 1 lakh then the rate of interest is 7 percent, 8 percent, 9 percent, but if the

deposit is less than 1 lakh then it is 6 percent, 7 percent, 8 percent.

 So, we see here that for the 2 parameters, we have 2 equivalence classes one is more

than 1 lakh, less than 1 lakh and the days is 1 year, 3 year and more than 3 years. So, we

can have either a weak equivalence class testing or a strong equivalence class testing as

required.

(Refer Slide Time: 17:56)

This is another problem, let us say we have a function called as substring takes 2

parameters s 1 and s 2, s1 is a string whose length is between 20 is up to 20 characters

and the s 2 is a string whose length is less than 5 characters and the function takes

whether the second string is a substring of the first string. Again we can form 2

equivalence class hierarchy one is based on the string which is less than invalid set is

more than 20 or it can be a control character and so on.

And then the valid set of strings for s 1 valid and invalid set of s 2 and then we would

have another equivalence class hierarchy which is whether it is a substring of this or not

a substring of this. If we represent here the data input data for s 1 we can have invalid

and a valid set of equivalence class similarly for s 2 we will have valid and invalid. And

also by looking at the s one and s 2 for valid s 1 and s 2 we can have another hierarchy

whether it is a substring or not a substring.

(Refer Slide Time: 20:06)

Now let us start discussing about another type of black box testing called as special value

testing. In the equivalence class testing we divided the input data domain into

equivalence classes such that every point belonging to one equivalence class resulted in

similar behavior, but here there are some values which are suspect.

The tester has reasons to believe that execution of the program with certain specific

values may expose the bugs there are 2 types of risky values, that tester can identify one

is called as the general risk. The general risk this is identified by examining the

equivalence classes and the boundary values of the equivalence classes in general are

suspect.

But then there are special values which are of risk which may not be boundary for

example, the tester might think that for this function which takes a year and produces the

number of days in the year is the leap year considered by the programmer or not. So, this

tester by looking at the functionality he guesses some values which might be proven to

error and those are called as the special risk values. In addition to equivalence class

testing we need to do special value testing and one type of special value testing is the

general risk an example is the boundary value testing and also the special risk data values

should be used to define test cases.

(Refer Slide Time: 22:16)

Now, let us look at the boundary value analysis, this is a general value general risk

whenever we identify equivalence classes. The programmers are very proven to commit

errors at the boundary of the equivalence classes, here there is one valid set of

equivalence class valid set of values which it constitute an equivalence class, one invalid

set of value constituting an in invalid equivalence class and another invalid equivalence

class.

The programmers are likely to commit errors at the boundary here for example, here

whether one is included as in the valid or invalid they might not have taken care of that

sufficiently well. And therefore, mistakes may occur here at the boundaries. And

therefore, we must include the data values at the boundary as test cases and those are

called as boundary value test cases.

(Refer Slide Time: 23:38)

The main reason here is that programmer sometimes confuse and instead of less they

might use a less than equal to symbol and so on and that is the reason we need to select

test cases at the boundaries of different equivalence classes. If boundaries exist we had

seen that if it is a set input domain is a set of values then there is no boundary, but if it is

a range of values then there are boundaries between different equivalence classes.

(Refer Slide Time: 24:19)

.

Now, let us see if we have a input is a range, it is a range and the boundaries are, a and b,

then we need to select not only a, but we need to select one that is beyond a just to check

whether the programmer has made a mistake and even the one which is should be a

invalid or a different equivalence class is also considered as part of this equivalence

class.

Similarly, we might take a value just inside and similarly for b 1 on b another slightly

inside and another just outside. So, if the range is defined as any value between minus 3

to 10 we can take minus 3, we can take 10, these are the two boundaries one slightly

away outside the boundary which is minus 2, 11 and one which is just inside the

boundary this actually can be the equivalence class test.

So, we need to define 5 values for a range similarly the input is a range it is a 3 to 102 we

will define one at boundary 3, one is 102 included the boundary in the test case, one

beyond the boundary on the lower side which is minus 1, another beyond the boundary

on the higher side which is 200 and one in between which is 5.

(Refer Slide Time: 26:21)

Let us see for some specific examples, how do we define the boundary value test cases

let us say for some problem where the function is based on the age it recommends

whether can be hired or not hired checks if the age is between 0 to 16 it displays do not

hire, if it is between 16 to 18 displays can hire on part time basis, if it is between 18 to 55

displays may hire full time and between 55 to 99 do not hire.

So, there are 4 equivalence classes here, corresponding to this 4 different scenarios and

the boundaries are at 16 18 and 55, but then we must realize that this description of the

function itself is a bit problematic because in 16 considered as do not hire or is it may

hire on part time basis similarly if it is exactly 18, what should be the output similarly,

55.

So, even while describing the problem we can commit mistake at the boundary as

exemplified here that the boundary values we have not taken care sufficiently it is the

specification of the problem itself is a defective and not clearly identified the boundary

should belong to which equivalence class. And of course, a same thing will get reflected

in the program and therefore, boundary value testing is very important.

We will stop here, and we will continue in the next class.

Thank you.

