
Software Engineering
Prof. Rajib Mall

Department of Computer Science and Engineering
Indian Institute of Technology, Kharagpur

Lecture - 48
Equivalance Class Testing - 1

Welcome we will continue our discussion on Equivalence Class Testing. Last time we

had just discussed little bit about equivalence class testing and will continue from there.

(Refer Slide Time: 00:30)

The main idea behind equivalence class testing is that, we partition the data value. The

data that is input to a function we model it, and partition it into equivalence classes. Now,

let me just tell little bit about, why we want to partition it into equivalence classes. And

how does it help in designing test cases. We partition it into equivalence classes, because

each data point in a equivalence class exhibit similar behavior. If, we think of this as a

representation of a program the control flow in a program, can see that there are many

ways the control can flow and each way the control flows represents a behavior.

So, if we partition the data that is input to a program, if this is the set of data. If this is the

set of data that is to be input to the program and we know that these are the data for

which it follows this path. And these are the data for which it follows this path. So, these

represent different behavior, different output, different type of processing and so on. And

may be this one corresponds to a behavior exhibited by this and so on.

Now all the data points here, they correspond to the behavior expressed by this

processing. So, the idea here between equivalence class partitioning is that, if we can

identify the equivalence classes, for which the behavior, for any class is similar for all the

data points, than we can just test it with one of the data point here. So, that we know that

these behavior is we will also select a data point that will drive it through a different

behavior and so on.

That is the main idea here that a program behaves in similar ways to every input value

belonging to an equivalence class. So, this is a equivalence class, then every input will

exhibit similar behavior, because the set of statements that are getting executed are

similar. And therefore, if it works for one point here where it followed this set of

statement execution, then it is reasonable to expect, that it will also work satisfactorily

for all other points in that same equivalence class. But we also need to check about the

behavior when it follows this path and so on this set of statements, but one thing that we

must remember is that from a black box description of a functionality, that is a huge case.

We know that there are alternate scenarios. In the alternate scenarios, this the main line

scenario and then there are many alternate scenarios. We can think of that in the main

line scenario, certain set of statements here this the main line scenario. And

corresponding to the main line scenario certain set of statements get executed. And for

alternate scenarios different set of statements get executed. And therefore, if we look at

the huge case description and look at the main line scenario and the alternate scenarios

we can associate equivalence classes to each of this.

The main line scenario the data that makes the system execute the main line scenario

corresponds to one equivalence class and for every alternate path we have a different

equivalence class. This is one way to identify the equivalence classes, but will see that

even when it follows the main line scenario, there may be further equivalence classes in

that we will just explore that.

(Refer Slide Time: 05:52)

So, let me just repeat here, that the total data input data domain. The input data domain

we model it and then we split it into equivalence classes such that, the tester or we if we

are doing the testing the tester feels that for every data point here, the system exhibit

similar behavior. And, then since all of these make the system execute certain set of

statements it is reasonable to execute using any one of these points. We can select any

one of these points and similarly with other equivalence classes and that will form our

equivalence test cases equivalence class test cases.

(Refer Slide Time: 07:07)

One way of identifying the equivalence classes is by examining the use case description.

The main line scenario and alternate scenarios correspond to different equivalence

classes, but beyond that we said that every equivalence class there may also consist of

other equivalence classes, how do we identify that?

One is based on the use case diagram and huge case description, we identify the

scenarios, we examine the input data which make it execute a specific scenario and those

set of input data constitute the equivalence class. But, then there are other guidelines for

identifying equivalence classes, because this allows us to identify a broad set of

equivalence classes, but let us see, what are the other guidelines?

(Refer Slide Time: 08:13)

The other guidelines are that we look at the input values. If, the input is a range of values

as we find the description of the functional requirements or the use case. If, the input

corresponds to a range of values, let us say 1 to 100, if these are set of valid values, then

we have 3 equivalence classes; one is the valid set of equivalence classes and there are 2

invalid equivalence classes on the both ends of the valid equivalence class. So, this is the

invalid equivalence class this a invalid equivalence class and this is a valid equivalence

class.

Now, what if the input is a set of values? Let us say only a, b, c let us say our system our

software takes only a character and based on the character it does certain functions these

are the menu choices let us say a b c. And these are only the valid menu choices you

have to input any one of these. In that case this defines a valid set of equivalence class

and anything other than a b c these are the invalid set of equivalence class.

So, if the input is a set we need to identify a valid set of equivalence class and invalid set

of equivalence class. What, if the input is a Boolean value, again here we have one valid

that is the Boolean value and any other value such as a character control characters and

so on these will constitute the invalid class? Now, let us see let us check our

understanding for 2 example problems. Let us say a function takes an area code that is

the pin code. And the pin code is let us say has value between 10, 000 and 90, 000. So,

what are the equivalence classes here? We can see here that this defines a range 10, 000

to 90, 000.

And therefore, there will be 3 equivalence classes; one is the valid equivalence class

between 10 000 and 90 000 and another less than 10 000 another more than 90 000. So,

the crucial thing to recognize that for the area code or the pin code, it denotes a range of

values and as soon as we know that it is a range of values, we can identify 3 equivalence

classes, which is valid and 2 invalid set of equivalence classes.

(Refer Slide Time: 11:24)

Now, let us look at another one a function let us say takes a password. Let us say the

function is log in and it takes a password and the password consists of a string of 6

characters. Now, what will be the equivalence classes here? It is crucial to recognize that

string of 6 characters is actually a set; it is a finite set of all possible string of 6

characters. And therefore, as soon as we recognize that it is a set will identify 2

equivalence classes in this case, that is one is a valid equivalence class, which is a

member of the set.

And another is invalid equivalence class, which is less than 6 characters more than 6

character etcetera etcetera. So, those are the invalid. So, there are 2 equivalence classes

here one is the valid equivalence class, which is a member of the set and invalid

equivalence class all the data points which are not the member of the set.

(Refer Slide Time: 12:57)

Now, let us try to solve some problems. Let us say we have a function which takes 3

integers. And, then determines what is the type of the triangle, that it forms may be the

name of the function is determine triangle type; determine triangle type. And, it takes 3

integers side 1, side 2, and side 3. Now, based on whether the triangle defined by this 3

sides, they form a isosceles, scalene, equilateral etcetera. It defines the type of the

triangle, otherwise if it is not a valid triangle it will display valid invalid triangle.

How do we identify the equivalence classes here? By observing the output here, the

display whether it is isosceles scalene or equilateral, we know that these correspond to

different scenarios. If we give set of values set of 3 values, which form a isosceles then

this corresponds to scenario scalene equilateral etcetera. And therefore, by observing the

output we can get an idea of the scenarios and equivalence classes that these will define.

(Refer Slide Time: 15:01)

So, for this problem the initial set of equivalence classes are the scenarios, which

correspond to the output in this case.

(Refer Slide Time: 15:15)

But, let us see if we have any general problem a function let us say f, where the function

f which takes a parameter may be integer float or something character. Let me just write

integer i f is a function, which takes an integer or float or something, then we can say

that to start with will have 2 equivalence classes. The set of data can be partitioned into 2

equivalence classes.

So, these are all the set of data, and we can partition the data into 2 equivalence classes;

one is the valid set of equivalence classes sorry valid set of data which is the valid

equivalence class and the invalid set of data, which is the invalid equivalence class. So,

the 2 equivalence class for every problem we should be able to identify to start with and

then as we proceed to find further equivalence classes, will find further valid set of

equivalence classes, further valid set of equivalence classes and further invalid set of

equivalence classes. Let us see, how we go about doing that?

(Refer Slide Time: 16:46)

So, this says that to start with the input data will partition it into valid and invalid set of

equivalence classes. And, in the next step will further identify equivalence classes within

the valid set, and also equivalence classes within the invalid set.

(Refer Slide Time: 17:18)

And, once we have done that of course, within the equivalence classes, we might for

some problems find further equivalence classes here, but once we have ultimately found

the equivalence classes. Then, we just pick one data value from each equivalence class

and that forms our equivalence class test cases.

(Refer Slide Time: 17:39)

Now, let us look at some problems and see how to identify the equivalence class test

cases? Let us say our function takes a integer between 1 to 5000 these are the valid set of

data any data any integer value that is between 1 to 5000 is a valid input. So, this

corresponds to a range of input and we can clearly identify that there is a valid class.

And, there are 2 invalid classes less than one and more than 50, 000.

(Refer Slide Time: 18:28)

Similarly, if we have a set of values like a, b, c, we find one equivalence class which is

valid, and another which is invalid and then we will pick up one value here like b or c or

something and something, which is not part of here may be f or something.

(Refer Slide Time: 18:51)

Now, let us look at another example here the program reads an input value in the range

of 1 to 5000 and computes the square root of the input number. The input is a range here

can easily identify. And therefore, to start with there are 3 classes 1 valid class and 2

invalid classes, 1 invalid class less than 1 another invalid class more than 5000.

(Refer Slide Time: 19:23)

So, the set of negative integers, the set of integers between 1 and 5000 and integers larger

than 5000 these are the 3 equivalence classes.

(Refer Slide Time: 19:40)

Then, we can pick representative values from each, we may choose minus 5 500 6000 or

you may choose any other value, but then once we form the test cases we assume that if

it passes value a valid value like 500, than any other value it will also pass there is the

assumption behind equivalence class testing.

(Refer Slide Time: 20:08)

So, we can say that a set of input values constitute an equivalence class. If the tester

believes that these are processed identically by the program, let me repeat that. A set of

input values constitute an equivalence class if the tester believes that these are processed

identically. Let us do some more problems to get a clear idea about, how to proceed to

identify the equivalence classes? Let us assume that, we have a function issue book for a

library software and then it takes the book id and then issues that book.

But, then we can imagine that the code that is there in the issue book, depending on the

type of the book, it will execute different set of statements. For example, if the book id is

a reserved book, then it will execute some set of statements and it may output, that the

book is reserved cannot be issued out.

Similarly, the book is a reference book, than it will also execute slightly different set of

instructions. And, then it will say that it is a reserved book cannot be issued. If, it is a

book that can be issued, it will issue it, if it is a let us say a multi volume book a set of

books. Then it will say that these many number of books are issued out. So, based on the

input we can identify the equivalence classes.

The first level, we can have the issue book first is of course, the valid and invalid data

something, which is not a book i d may be a floating point number or something. So,

valid and invalid and then for the valid book, we can have a issuable book and a

reference book. And for the issuable book we can have single volume and multiple

volume.

(Refer Slide Time: 22:52)

Let us do some more examples, let us say we have a function, which is fetch image it

takes a URL and then fetches the image and returns the image. So, the function, it takes 1

parameter which is the URL and depending on the image present there, it retrieves the

image and returns the image. Now, how do we define the equivalence class here? One is

that based on the type of URL. For example, it may be using http protocol http’s protocol

ftp file. So, this is the protocol used in the URL based on that we can partition into a set

of equivalence classes.

So, that I have written here these the set of data valid data and then based on the URL

specified, we can have some equivalence classes like http ftp file http s etcetera, but

again the specific URL may point to different types of images. So, depending on the

image type we again can define a equivalence class, depending on whether it is a HTML

image, GIF image, JPEG, Plain Text etcetera.

So, we have another set of equivalence class here. Just want to make this point that based

on the input it is not that there is a single hierarchy, we can have multiple hierarchy

based on different characteristics of the input the URL the protocol of the URL the file

type and so on. So, even though the concept is straight forward, but sometimes

identifying the equivalence classes can be requiring a some thought on the input data

value.

(Refer Slide Time: 25:31)

Once, we identify the equivalence classes, then we just select one data point

corresponding to the valid equivalence classes. So, that is single volume multiple volume

and reference. And, similarly we select one data point for the invalid equivalence classes.

(Refer Slide Time: 25:59)

So, far we just looked at how to identify the equivalence classes, when a function takes

one parameter, but we can have a function which takes multiple parameters. Now, how

do we identify the equivalence classes here. Of course, it is rather straight forward of the

discussion that we had so far we will examine each input parameter, and based on the

input parameter, we can identify the equivalence classes for the different input

parameters. But, now how do we define the test cases? We can select points from here

for corresponding to this parameter points corresponding to this parameter and so on.

But, the test for the test case one way is that we take one point from here and form the

test case. Another way can be that we take one point here and corresponding to that we

define test cases by considering each of the point here and each of the point here. So, that

will give us large number of test cases. So, let me just repeat that once we identify the

equivalence classes for each of the 3 parameters, one way is that we define the test cases

such that every equivalence class is represented in our test case. The other way is that we

form a (Refer Time: 27:53) combination of the input values. Now, we are almost at the

end of this lecture, we will continue from this point in the next lecture.

Thank you.

