
Software Engineering
Prof. Rajib Mall

Department of Computer Science and Engineering
Indian Institute of Technology, Kharagpur

Lecture - 46
Unit testing strategies-I

In the last lecture we had started to discuss about unit testing we looked at some aspects

of unit testing the stubs and drivers. The stubs and driver are small software that needs to

be written by the testers before they can start carrying out the unit testing and of course,

the unit testing is done by the developer themselves and therefore, these are the

developers who do unit testing and therefore, they write the stubs and drivers. The

independent testers they do the integration and system testing who were part of the test

team.

(Refer Slide Time: 01:12)

And the unit testing is performed by the developers themselves and before they can unit

test unit they need to write the drivers and stubs and then carry out the unit testing. Now

let us look at more detail into unit testing. How does one design unit test cases, let us say

we want to do unit testing for a function as I was mentioning that unit testing can also be

done for a module, or for a class, or for a component, but let us now assume that we are

interested to do unit testing for a function.

Now, what are the main approaches to design unit test cases one is called as the black

box approach, the other is white box approach and the third is grey box approach. For a

function unit testing is basically a black box and white box we will see how to design

those test cases and why these are called as black box and white box, but for class or a

module or a component we might also have to do a grey box approach in black box

approach we do not need to know the entire detail of the software we just view the unit

as a black box.

This is our unit we just know that if we give input to the black box unit it should behave

in some way in the sense that it will produce some output. So, the black box approach we

design the test cases by observing the inputs that should be given and output that should

be produced. On the other hand in the white box or glass box approach we know the

details of the code that is there.

And therefore, we can create a model of the code for example, a control flow diagram or

something and then based on the internal knowledge of the code we might design some

test cases. So, this is called as a glass box, because we need to check the internal code

here we do not even bother about what is the code we just look at it is specification, it is

what is the input and what output should be produced and based on that we design the

test case, on the hand in the grey box approach we have something in between a black

box and a white box.

We use the design of the unit may be a glass diagram, may be a state model a state

model, a class diagram or may be a call relation between modules and so on. So, these

are the design models which are intermediate between a black box and white box do not

really need to look at the code and neither is it a black box, we have knowledge which is

intermediate between a black box and a white box and that is why it is called as a grey

box.

And if it is a pure function that we are testing we need to test only black box and white

box, but for glasses components and son we might have to do a grey box testing as well.

(Refer Slide Time: 05:38)

Now, first let us do black box unit testing, the black box unit testing is done based on the

functional specification of the software or functional specification of the unit. So, given

the unit and then we do not need to look at the code, we just see what is it is input output

behavior and based on that we design the test cases.

We should not look at the internal of the software only the input output behavior, the

black box testing is also called as functional testing, because based on the knowledge of

the functionality without looking at the code we test it so, it is also called as a functional

testing.

(Refer Slide Time: 06:38)

Now, let us try to appreciate why black box testing can be hard, here we just look at the

input data and the output behavior that is what it should output and then design test

cases.

The main complexity here is that the data domain for any typical software is large and

therefore, we need to decide which test cases to apply because we need to have a optimal

number of test cases and we have to select that out of the billions and trillions of test data

that are possible. And not only that a function may take multiple parameters so, we need

to fix the values of those parameters.

So, if a function takes just one parameter we need to just test with respect to that

parameter, but if it takes 2 parameters and there are number of values that are possible

for this parameter and for this parameter, this parameter 1 and parameter 2 for a function.

Then we have to possibly test with various combinations of values may be fix this as one

this and test with respect to this may be fix this and test with respect to this and so on.

So, we need to try out various combinations and that makes testing much more

challenging and complex.

(Refer Slide Time: 08:43)

First let us convince our self that, even a very small function just 2 line function can

become extremely hard to test if we want to do the black box testing thoroughly that is a

exhaustive black box testing with all possible input values. Let us consider a very trivial

function name of the function is check equal, takes 2 integer parameters and then checks

if these 2 parameters are the same.

Basically just one line are here, if x equal to y written 1 else written 0, but then we are

not looking at the internals we are just doing a black box testing. So, what we will do is,

we will check whether this function works well for all possible combinations of input

data. Now let us say we are using a 64 bit computer, in a 64 bit computer each integer is

represented using 64 bit and for simplicity.

Let us assume because integer representation we do not want to go that level, but we just

say that 64 bits are used and therefore, 2 to the power 64 inputs are possible for the first

parameter. Similarly for the second parameter 2 to the power 64 different inputs are

possible and therefore, the total number of inputs with which the function needs to be

checked is all possible combinations of the first parameter and the second parameter

which is 2 into 2 to the power 64 is equal to 2 to the power 128.

And this is a huge number we can read 2 to the power 10, 2 to the power 20, 2 to the

power 30, but I cannot even read what is 2 to the power 128. It is extremely large 2 to the

power 10 is kilo so, 20 is million, 30 is billion trillion and so, on. I do not even know

how to read it is extremely large number and let us assume that we are testing manually

this 2 to the power 128 possible values with which we need to test and let us say that we

are expert in typing we can type very fast and just take 10 seconds to enter each test data.

And if we compute that the number of hours that will come here is very large and we can

easily compute how many hours and then we might take a billion year to enter all

possible values and that is just to test this small program. And therefore, the black box

testing is hard if we consider all possible inputs. But our objective now is to find out

black box test strategies which will drastically reduce the number of test cases may be 3

4 or something, but then they should be almost as effective as the exhaustive testing. So,

that is our objective with that objective let us see what are the test strategies that we

have.

(Refer Slide Time: 12:48)

In all this test strategies that we discuss we will create a model of the data domain

because we know the input data, the output data, we will create a data model and based

on the data model we will design the test cases.

(Refer Slide Time: 13:20)

(Refer Slide Time: 13:24)

On the other hand in the white box testing we know the internal structure that is the code

we can check and therefore, it is also called as structural testing because we know the

structure of the software.

Now, let us look at a black box testing before and after that we will look at white box

testing, in black box testing we look at the system the black box and then we know the

input output behavior, it is also called as data driven testing or input output testing we

look at this first and we have already seen that exhaustive testing is very difficult. We

need to have some test strategies which are almost comparable with respect to the

effectiveness or thoroughness of testing of the exhaustive testing, but the number of test

cases should be much less and should take very less effort compared to exhaustive

testing.

(Refer Slide Time: 14:34)

There are a large number of black box test strategies that have been reported we will look

at only few of them, the scenario coverage, equivalence class partitioning, boundary

value testing, cause effect testing, combinatorial and orthogonal array testing.

(Refer Slide Time: 14:58)

First let us look at the scenario based testing from our discussion on scenarios which we

had during the object oriented discussion and object oriented design, we know that a use

case consist of many scenarios one is called as the main scenario and then we have the

alternate scenarios at some point in the main scenario the alternate flows occur. And

these may actually end or they might just have a separate setup actions and then have

similar action as the main line. Now if this is a kind of description of a use case with

different scenarios then how do we design the scenario based testing.

(Refer Slide Time: 16:00)

The first thing is to identify the use case scenarios and typically for requirements

document is well written we will have identified the scenarios there in the form a text

description. And for each scenario we will identify one or more test cases and these test

cases are actually will execute the scenarios, and then we identify these are we identify

the test data and then also identify the state at which the system should be there for the

test data to be entered and that we say that identify the conditions that will cause this to

execute and then complete the test cases by adding the data values.

(Refer Slide Time: 16:56)

If we represent our scenarios in this form that first is basic flow, then basic flow with

alternate flow, 1 alternate flow, 1 with alternate flow, flow 2 etcetera we develop the

table and then each of this are a scenario and we need to have that many test cases.

(Refer Slide Time: 17:25)

And for each scenario we need to identify the conditions or the state at which the input to

be given the data input values there may be many inputs to be given the expected result

for each of the input and the actual result that was observed.

Let us look at the next black box testing the scenario coverage was rather intuitive even

straight forward just identify all the scenarios by looking at the SRS document and then

we just list out all the scenarios and then the condition under which these will execute

and then the test data and expected output. Now let us look at the equivalence class

testing this is another black box testing.

(Refer Slide Time: 18:22)

In this approach we look at the input data domain and then we partition it into

equivalence class. The main idea behind partitioning the input data into equivalence class

is that the program will behave similar way for every input belonging to an input

equivalence class. So, if this is the set of input to the unit we identify equivalence classes

in the input and the main idea here is that for this let us say equivalence class 1.

So, this is the set of data, data set or the data domain of the function and then we have

partitioned it into equivalence classes 1 2 3 4 etcetera and for each equivalence class all

input should execute the software in similar way, that is the same set of statements may

get executed of course, here we do not have a knowledge of the internal of the software,

but just by observing the behavior we can guess that these are executed in similar

manner.

(Refer Slide Time: 20:12)

And from each equivalence class we select one value with which to test and if the

scenarios are extremely simple then each scenario need one equivalence class, but then it

is much more complicated normally every scenario might need hundreds of equivalence

classes or thousands of equivalence classes.

(Refer Slide Time: 20:49)

So, we need to pick value from each equivalence class, one of the main assumption in

equivalence class is that we want to reduce the number of test cases with which the

system needs to be tested and if these are all the set of test cases that are possible in

exhaustive testing we have partitioned it into equivalence classes E1, E2 and E3.

And the way we have partitioned into E1, E2 and E3 is that each element in equivalence

class E1 they behave similarly the system execute similarly for each of the inputs. So, if

we execute one of the data here then we have tested that behavior of the unit. So, our

work now becomes to test with one representative value from each equivalence class and

defining the equivalence class really helps.

Because testing using one value is equivalent to testing any other value in that

equivalence class and each equivalence class, typically may contain thousands or

millions of data points, we are assuming that executing using one of these points. Since

the behavior is similar it is same as executing all of them and therefore, the equivalence

class testing drastically reduces the number of test cases.

(Refer Slide Time: 22:33)

But then even though it is a very good technique effective technique and reduces the

number of test cases drastically, but the question that we are confronted is that how does

one go about identifying the equivalence classes.

One is we need to identify the scenarios we need to examine the input data, we need to

examine the output data, and then based on this we need to design the equivalence

classes, but then that is a bit of a weighed statement can we tell something more

concurrent we will give that in the form of a few guidelines.

(Refer Slide Time: 23:20)

The guideline is that if the input data is a range we will have 2 immediate equivalence

classes one is a valid and two invalid. So, the range is 1 to 100 anything between 1 to

100 is a valid data and anything more than 100 is invalid and anything less than 100 is

invalid. So, we have one valid equivalence class and one invalid equivalence class which

has contents values less than the minimum value that is acceptable and one which has

values higher then highest value that is acceptable. So, there are two invalid equivalence

classes and one valid equivalence class.

If the input is the set of data like let us say a b c these are all valid data the system will

respond to this, but then we have invalid data which are not part of this set anything that

is not part of this set is a invalid equivalence class. So, for a set of data we have two

equivalence classes, one valid and one invalid, valid belongs to the set, invalid is

anything other than that.

If the input condition is a Boolean again we have one valid and one invalid that is we

give a Boolean value or do not give a Boolean value, just to give some example if we

want to enter a area code let say the area code is between 10000 and 90000. So, the valid

values are between these two and then anything more than 90000 are invalid, anything

less than 10000 are invalid.

So, one valid and two invalid, what about a password which contains 6 character a string

of 6 characters the set of 6 sorry the password containing 6 characters in a string, string

of 6 characters we can consider it as a set of values. So, all those strings which contain 6

characters they are the set of values. So, we have one valid password which is any of

these members of the set and invalid password which is not part of this may be contains

5 characters or something or may be a special characters.

(Refer Slide Time: 26:27)

Now, let us look at an example how do we do equivalence class partition? Let us say we

have given 3 sides of a triangle and we want to decide whether it is a Isosceles, Scalene,

Equilateral etcetera. So, this is a simple function we take argument 3 sides of a triangle

and displays what is the type of the triangle and we want to design equivalence class

partition for this.

Looking at the output here gives us the hint about the equivalence classes. So, all the

data sets for which it will produce isosceles is equivalence class, scalene is another

equivalence class, equilateral another class.

(Refer Slide Time: 27:31)

So, here the equivalence classes are easily identifiable from the output, but for any input

data we have always 2 equivalence classes one is valid and one invalid and there may be

several invalid. So, to start with there is one valid equivalence class and another invalid

equivalence class and we might have several invalid equivalence classes here which we

might later identify and also there may be several valid equivalence classes out of this.

So, given a problem to design the equivalence tests we first define 2 equivalence classes

the valid and invalid and then look at further division the valid into equivalence classes

set of equivalence classes and each of this may again contain equivalence classes we will

just look at that in the next lecture right now we are we must at the end of this lecture we

will stop here.

Thank you.

