
Software Engineering
Prof. Rajib Mall

Department of Computer Science and Engineering
Indian Institute of Technology, Kharagpur

Lecture – 45
Basic concepts in Testing-III

In the last lecture we had discussed about some very Basic concept and Testing. We were

discussing about the test cases test data. And, we had said that for every software a set of

test cases are designed carefully and this is known as the test suite.

(Refer Slide Time: 00:52)

And for each test case the system we execute the software using the test data. And each

test case is typically contains 3 parts. The test data the state at which the system should

be there when the test input is given another expected output. So, to execute the software

with a test case, we first put the software in the required state S.

For example, some book record might have to be created; some member record might

have to created books issued for a library software. And, once it is there in the required

state then will be the input and then observe the output. And, we note this the observed

we observe the output and note our conclusion on a test report let see how a test report is

organized?

(Refer Slide Time: 02:02)

Typically, each test case has a number it becomes easier to see that which test case got

executed, because once the system fails the developer’s needs to reproduce the bug. So,

test case can uniquely identify, which test case they should execute, who had written the

test case the author? The purpose of the test case like, which functionality or

performance etcetera it is designed to test, the test data or the test input the expected

output ok. Pre-condition is the state at which the system should be there, test input

expected output and the state at which the system should be left, after the test execution

completes.

And, once the test output is produced the testers observe the output and then they write

their analysis of the ex observed output. They write the test, execution date person

executing the test, they observe the pass fail whether it has passed the test case or it

failed the test case. And, if failed they write what exactly happened? What was observed

during the failure? They did crash they did produce a wrong result; they did go into an

infinite loop and so on. And then there is another field because the developers need to fix

each of the failure cases of test cases. So, there is a fix status field where the developers

can record, whether they are fixed it or not yet fixed.

(Refer Slide Time: 04:09)

Now, let see the composition of the testing, that is when a organization develop software;

what types of testers does it need? You saw that there are many activities during testing,

the different activities of testing are test planning, test scenario and test case design, test

scenario design test case design we will see, what is the difference between a test

scenario and test case? But, roughly speaking a test scenario is a abstract description of a

test case. For example, we might say that all parts should be covered or a specific part

needs to be covered.

So, that said test scenario that has specific path in the program needs to be executed.

Whereas, the test case is more concrete then the test scenario in the sense that we provide

the test data input data for which that specific path will be covered test execution, test

result analysis, test tool uses and so on. So, there are many activities during testing and

let see what are the kind of human resource we need for the testing, what test planning?

This is done by experienced people, test scenario design and test case design this also

experienced qualified people.

Test execution can be done by a semi experienced to inexperienced persons, depending

on the software that is being tested. Test result analysis this is the experienced people and

test tool users the experienced people and also testing several other people participate

like users industry experts and so on. So, the composition of the testing is of various

types of personal, because different activities in testing require different levels of

expertise.

(Refer Slide Time: 06:47)

But, let us now answer a very fundamental question, why do you need to design test

cases? Cannot we just test it will all possible inputs, because if we could test with all

possible inputs, then we can be see your that the software is working fine, but why I go

about only designing few test cases and then execute those. The answer to this question

is that, even for a very small trivial almost trivial software. If we want to test it

exhaustively it is extremely large number of test cases trillions of test cases can be

designed for exhaustive testing and that input data domain is extremely large, and it will

take thousands or millions of year to even test a simple program.

We will see through an example that why this is so? We will take a simple program and

see how many test cases are required to test it for all possible test inputs. Since, it is

impractical to test with all possible inputs; we need to develop a optimal test suite. This

optimal test suite should be of reasonable size and it should be able to cover uncover the

largest or a maximal number of errors.

(Refer Slide Time: 08:46)

Also, we cannot give random data, because random data has a problem that we might

give the same data again or we might give a data which detects similar problem, similar

bug, then the test cases that were given earlier, we will see through an example. So, even

though we might test a software using 1000 test cases, a very small function let say we

tested with 1000 test cases, but still if we are doing it in random testing, we cannot be see

your that it has been tested well.

Because most of the test cases that have been generated randomly, may be detecting the

already detected bugs in that test suite. So, if the test cases are generated randomly, then

claiming that we tested it using a large number of test cases, does not indicate truly the

effectiveness of testing we might have tested with million test cases, but if it just random

test cases, then it does not mean that most of the bugs have been eliminated might just

have detected very small number of bugs if at all.

(Refer Slide Time: 10:25)

Now, let see how to design test cases? So, testing using random test cases does not mean

that there system is tested well; most of the problems have been uncovered. Let us

convince ourselves with small example. Let say we have a function name of the function

is find max and the parameters are two integer parameter x and y and the function let say

is a trivial function, which just written the larger of the two the code is just 2 lines.

(Refer Slide Time: 11:19)

But, then let say in this 2 line code we have made a mistake. If x greater than y max

equal to x else max equal to it should have been y, but by mistake programmer has

written max equal to x. Now, if we give 2 test cases for the test cases only represented

the test data omitted the other for conciseness and understand ability. Now, the test

should where we test it with x is equal to 3 y equal to 2 that is the first statement is

executed.

And, x is equal to 2 y equal to 3 that is a second statement is executed we can detect the

bug. Because, if x greater than y then we should report that the max is x. Otherwise we

should report max is equal to y, but then here the bug will get exposed, but let say we

have a larger test suite where only the first statement is always executed. Even, if we

have a thousand test cases like this, where x is larger than y and only the first statement

is executed and the bug that is there in the second statement is will not be detected.

(Refer Slide Time: 13:01)

So, that example should convince us that, if we have a large number of random test cases

that does not mean that we have tested the software well. Now, let see what exactly the

test plan, because before testing starts the test plan is prepared. The contents of the test

plan are that for a certain testing to be carried out, what are the features to be tested?

That is what features have been already completed and those need to be tested now, what

features not to be tested? May be those features are still undergoing development and

need not be tested, the test strategies that are deployed we will see that there are many

strategies. The black box and white box and also there are several strategies of black box

testing and several strategies for white box testing. Test suspension criteria, that is if a

fatal error let say crash is observed then we may not be able to run the other test cases.

And then we must suspend the test case sorry testing and then ask the developers to fix

the problem before the other testing can be done, the test suspension criteria says that

when under which situation, the test cases can be the test execution can be suspended

and the developers ask to fix the bugs before a testing is resumed. Stopping criteria this

says that as the testing goes on progressively less box are detected and how long to test?

The test effort is what is the plan test effort that is required how many people, testers

how many testers, for how many days and so on? The test schedule is about when, what

type of testing will be done?

(Refer Slide Time: 15:30)

Now, let see how to go about designing test cases? One very important concept here is

that when we design test cases each of our test case should target to detect different types

of faults or bugs. No 2 test cases should actually target the same bug, because that will

only increase the number of test cases without reducing the bugs in the code.

(Refer Slide Time: 16:08)

Now, let see the test strategy. So, far we have been saying that there are many test

strategy and these can be considered as bug filters and so on. Now, let see at very

overview level, what are the test strategies?

(Refer Slide Time: 16:48)

The test strategy is basically type of test to be deployed; there are many types of test

strategy as we will see subsequently. The white box and black box is a graph

characterization of the test strategies, but then there are many types of white box

strategies and many types of black box strategy, but given that there are dozens of

strategies to be deployed for testing. The testers have to plan how much time should be

devoted for which type of testing? We will see how to plan for the time? But, then for the

2 types of testing; the black box these are also called as the usage based, because these

are designed based on the customers usage data. The white box these are guided by the

results in the black box, because the black box is black box tests are performed first.

So, if we find that some problems many problems are being detected in some part of the

software, we need to do more thorough white box testing on that part. And, that is the

reason we can say that the white box testing results are normally guided by the black box

testing results.

(Refer Slide Time: 18:07)

Now, let see that this is the past bug data, for some software. Now, let say we are

planning to develop some additional parts for this software. Now, how much testing we

should do? Let say from the previous one we had seen that reviews get 10 percent of the

bugs, unit testing gets about 40 percent of the bugs, integration testing does about 25

percent, system testing gets about 15 percent, and the customer reported is about 10

percent.

Now, we want to do a new release where we have developed some parts of the software.

So, how much let say we want to release it within a week? And, let say total test hours

that is available to us, because there are may be 10 testers working may be let say 200

hours of testing. Then for which type of testing review unit testing integration system

and customer reported, how much time should be there? How much test time should be

allocated for unit testing, for integration testing?

It is common-sense is nothing very profound about this? Since, unit testing is detecting

the largest percentage of bugs that is 40 percent; we need to spend more time on unit

testing. And to be fair we should spend 40 percent of time, that we have let say 7 days

and let say 100 main hours, we should spend 40 percent of that doing unit test, 10

percent of review, 25 percent on integration testing and 15 percent of the system testing.

Now, let say that we have past bug data available to us and we had deployed various

types of test strategies, now let say we have return how many bugs we have detected by

different test strategies? Let us say strategy one detected 50 percent of the bugs, strategy

230 percent, strategy 310 percent, and twist were customer reported. So, if we want to do

a new release for the software, how much time do we plan to do the different types of

testing? Test technique one detected 50 percent, test technique 230 percent, test

technique 310 percent. Again commonsense, that the test technique one is very effective

detecting nearly half of the bug.

And therefore, we must spend 50 percent of the time doing this very thoroughly, 30

percent of the time for test technique 2; test technique 3 is not that effective detected only

10 percent of the problem so, 10 percent of time to that.

(Refer Slide Time: 21:44)

Now, let say we have another set of data let say based on our unit testing, we found that

the module 6 has the maximum number of bugs, module next is module 1 and module 4

and the lowest is module 3. Now, we want to have one more release of this, where we

have made changes different parts of the software. So, where do we spend how much

time? Again commonsense is that module 6 is the one where maximum numbers of

problems are detected so, may be more problems are there. And therefore, we need to

spend proportionately much larger time on M 6 and then M 1 M M 4 and M 3 you need

to spend the least amount of time.

(Refer Slide Time: 22:52)

Now, let see some details of unit testing. So, far we have been looking at some very basic

concepts. Now, let us look at more details on unit testing, but before we start discussing

detailed way of designing test cases for unit testing. Let us be clear about one aspect one

question, that we might have that can we just eliminate unit testing. And do a thorough

integration and system testing.

(Refer Slide Time: 23:44)

Unit testing is carried out after coding is complete and, the code has been successfully

compiled and that situation we do the unit testing. And, we do not we cannot really

eliminate unit testing, because it is a very effective technique, because it reduces the

debugging effort. If we do not do unit testing, we do a thorough integration and system

testing. Then the debugging effort will be much more, let us understand why? Let us say

these are all different units that are shown here, and we just did not do a unit testing and

there was let say assume a bug was there.

And, then we run several test cases on some of the test cases they failed, but then to

debug we need to check each and every of this unit or may be at least those units, which

got executed during the execution of that failed test case. But, in unit testing, when we do

unit testing? We know that the bug has to be within that unit, we do not have to look at

the other units. And that is the reason, why debugging effort for problem reported during

unit testing is much less compare to when unit testing is not done and we directly go for

system testing.

In system testing the errors are much more difficult to track down, that is localized which

where is the bug. And therefore, the debugging cost increases substantially this is another

basic concept in unit testing.

(Refer Slide Time: 25:44)

We use the term unit testing when we either execute an individual method and test it, unit

testing may be applied at the level of modules, we just test unit test a module, we might

unit test a class in object oriented code or may unit test a component in a component

based software.

But, the problem here is that if we take up a unit and we want to execute it, but then there

must be some software which supplies, it data inbox that unit. And, similarly the unit that

we are testing it might need to invoke other units there might be call to other functions

and so on. And since we are testing the unit in isolation, we need to have this 2 small

code written the driver is the one which will call the unit and supplied the necessary data.

And the stubs are the functions some dummy functions which the unit will call so, the

driver and stub software written during unit testing.

The driver and stub are two, small software so the tester has to write some code here, the

driver simulates the behaviour of the function that should call the unit and also supplied

the necessary data the test data. They stop on the other hand these are the functions that

need to be called by the unit.

(Refer Slide Time: 27:55)

We can represent the same thing in this form, that in order to do unit testing for some

unit. The tester has to write 2 small software one is the driver, which calls the unit under

test and also supplies it the necessary data and also if the unit needs to excess some

global data, then it provides the global variables or global data to the unit. And also

needs to write the stub, which the procedure under test that is the unit needs to call. So,

for unit testing we need the drivers and stubs to be written before the unit testing can be

carried out.

(Refer Slide Time: 28:54)

Now, let us have a small quiz. So, far we looked at unit testing in this lecture. And we

saw that in unit testing we just isolate one unit and then test it, it is adding some test data

and we write the driver and stub for that unit, but then unit testing can be considered as

which one of the following types of activity is it a verification activity or a validation

activity.

The answer is that it is a verification activity, unit testing is a verification activity,

because by definition validation is checking the full developed software against it

requirements, in unit testing we do not do that we just take out a small unit and then test

it against it is functional requirement for that unit. So, unit testing is not validation

testing it is a verification testing, we are almost at the end of this lecture we will stop at

this point and then continue with the next lecture.

Thank you.

