
Software Engineering
Prof. Rajib Mall

Department of Computer Science and Engineering
Indian Institute of Technology, Kharagpur

Lecture – 44
Basic concepts in Testing-II

Welcome to this lecture. In the last lecture, we had started discussing the testing issues

looked at some very basic concepts. Today let us build on the aspects that we had

discussed last time. If you remember in the last lecture, we had discussed about the types

of testing. Unit, integration, system these are the 3 levels of testing; unit, integration and

system. And then we have the regression testing, which is a different dimension of

testing. We had looked at some very basic concepts of unit testing and integration testing

in the system testing we just started to discuss last time.

(Refer Slide Time: 01:15)

Now, let us proceed further. We can consider system testing to be 2 types, either a

functionality test or performance test. In other words, if we have to do a system testing

for some software, we have to write 2 types of test cases. One is the functionality test

cases and the other is the performance test cases. We will see what the functionality tests

need to test which aspects and which aspects will be tested by the performance test.

We can also consider the system testing to be of 3 types. Based on who performs testing,

there are 3 different types of system testing. The alpha testing is done by the developing

the developing organization the testers in the developing organization. This is a type of

system testing, which is first performed and after the system passes the alpha testing,

beta testing is performed; beta testing is performed by a set of friendly customers or

users.

(Refer Slide Time: 02:59)

And after all the issues that arise during beta testing are address the acceptance testing is

performed and acceptance testing is performed by the customer. Once the system is

delivered to the customer perform the acceptance testing. And, they accept the software

if it passes the acceptance this thing otherwise, they return it they do not accept it.

Now, as we proceed we will look at the functionality test. The functionality test is

basically all the functions, that are documented in the SRS document, this tested whether

all those functions are working fine. The second category of tests that have to be

developed the test cases and to be executed are the performance tests. The performance

tests determine, whether a system or subsystem satisfies the non-functional requirements.

So, both the functionality and the performance test in system testing are designed based

on the SRS document. The functionality tests are designed based on the functional

requirements and the performance tests are designed based on the non-functional

requirements. There are several types of functional tests. The response times, whether all

the response times are met throughput, usability, stress, recovery, configuration, etcetera.

There are many types of performance tests. And, later this lecture series we will see what

are the aspects that are tested in this different types of performance tests throughput

usability, stress, recovery, configuration etcetera.

(Refer Slide Time: 05:11)

Just to have some more basic ideas and testing. Once the software is delivered to the

customer, the customer performs what is known as the user acceptance testing or

acceptance testing. They just check whether the system fulfils all their requirements and

based on their test they either accept or reject the software.

(Refer Slide Time: 05:44)

Now, based on our discussion so, far we can see that a software is tested by different

types of personally. One is the developing in the developing organization, the

programmers who wrote the software, they perform the unit testing. And, they may also

test the other programmer’s code if necessary. So, the programmers themselves are one

type of tester. The users they perform the usability and the acceptance testing and some

of the friendly users they may do the beta testing. And, then often the organizations have

a separate testing and they do all testing that is integration alpha testing and so on.

So, they do most of the testing accepting the unit beta and the acceptance testing. And,

also they develop the test strategy that what kind of tests need to be performed, and they

also develop the test plan when in what sequence the test need to be applied?

(Refer Slide Time: 07:12)

If, we look at the broader picture, in the development lifecycle whether shown a iterative

waterfall model. In the initial stages of the waterfall model, you can see that the review is

done after the end of every stage. The SRS document is reviewed during the requirement

analysis and specification during design, design document is reviewed the code is

reviewed. And, there may be necessary to simulate this and these are all done by the

developers.

So, in the initial stages the testing is done by developers, but during the testing stage

where the integration and system testing is carried out the testing is done by the tester.

(Refer Slide Time: 08:14)

Let us look at another very important fundamental concept and testing. And, this concept

goes by the name pesticide effect. This concept is given the name pesticide effect;

because of it is analogy to the use of pesticide in a crop field. Let us assume that we have

a cotton crop and then the farmer found that it is infested with pests. So, what does the

farmer do? So, these are the pests who have infested the crop and the farmer would apply

some pesticide and then most of the pests get killed, but then few of them are survived.

Now, in the next season, when the farmer plants the crop, again those which are survived

they multiply and also new types of pests come. Again the farmer applies pesticide, but

then if the farmer applies the same pesticide let us say DDT, those which have survived

DDT, again applying DDT will do nothing to them, because, they have their resistant to

DDT.

So, the farmer needs to apply a new type of pesticide; let say malathion and then many of

the pests get killed, but then those with survived again they appear in the next crop

multiply and appear and new types of pests appear. But again applying malathion, we

will do nothing to this pests, because they had survived malathion and malathion does

not kill them. So, the farmer needs to apply some other pesticide.

In testing it is the same thing, there is a very strong analogy with the pesticide effect in

crops. We can state by saying that errors that escape a fault detection technique cannot be

detected by further applications of that technique. What it means is that? We have many

types of testing technique, dozens of testing technique we will see some of those may be

we will look at a dozen, but then there are several dozens of testing techniques. Each

time we apply a testing technique, some of that faults are detected, but then some of the

faults escape and if we again and again apply the same testing technique. We will be not

detecting those which had already escaped, because this testing technique does not detect

those kind of faults.

We need to apply a new type of testing technique or a different type of testing technique

and we catch some of the faults and again apply another testing technique. So, the bugs

which escape a testing technique, further applications of that same testing technique we

will yield very little result. And, that is the reason why? In a software development

organisation, several types of testing techniques are used one after other and this is called

as the pesticide effect.

(Refer Slide Time: 12:46)

Capers Jones who is a well-known researcher in various testing, he had written a article

in the IEEE computer in 1996. And, he had proposed a rule of thumb in that article it

states each of software radio inspection and tested will find 30 percent of the bugs

present. So, what he says is that each of this can be considered as a bug filter. In review,

we get some bugs exposed. During inspection, we will get some more bugs exposed and

then there are various types of testing and in each of those we get only 30 percent of the

bugs present.

So, initially if the code had 1000 bugs review will catch 300 of them, out of the

remaining 700 30 percent is 210, 210 will be obtained by inspection and then we have

490. And out of that 490 apply unit testing we will get 30 percent of that, which is about

100 82 or something and so on. So, that is the one he had experimentally observed, that

each of the software inspection and testing technique can be considered as a bug filter.

And this bug filter can find 30 percent of the bugs present.

(Refer Slide Time: 15:09)

Now, let us do a small arithmetic small problem based on this pesticide effect. Assign

that we had thousand bugs. And, we deployed 4 fault detection techniques and each

technique is highly successful unlike, what Capers Jones had written our techniques

could detect 70 percent of the bugs existing at that time.

So, after the detect application of 4 detection techniques, how many bugs should remain

at the end? So, we can do it initially after the first technique 300 will survive 70 percent

will get detected out of 1000. So, that is 700 detected in 300 existing and then again 30

percent of that will survive and so on. We can do it quickly when noting that it is equal to

1000 into 0.3 to the power 4, because each time only 0.3 survive.

So, the total surviving bug out of the application of these 4 techniques is 81 bugs in this

program. And this is a big number of bugs 81 bugs, when the user’s encounter this bugs

in failure. They would be extremely unhappy and they will call it as a poor quality

software. And therefore, we need to have many more bug filters such that the bugs

reduce to very small level.

(Refer Slide Time: 17:05)

Now, let us have a small quiz given that this is the iterative waterfall model, when

exactly are the verification tasks undertaken in this model. In which stages are the

verification work undertaken ok. The verification the form of review inspection

simulation etcetera are done on during requirements analysis design and coding that is

answer, when is testing undertaken in waterfall model ok, to answer this you can say that

the unit testing is done during the coding stage.

And, the integration and system testing is done during the testing stage, when is the

validation undertaken in waterfall model. Validation, if we remember from our last

lecture discussions, validation is basically system testing and system testing is

undertaken during the testing stage. Now, let us look at some more basic concepts in

testing.

(Refer Slide Time: 18:33)

Let us assume that you have tested one software very thoroughly or let us say developing

organization, developed a large software and then tested it very thoroughly using the

available techniques. How many errors will survive, after all the testing activities are

over and success report for all the test have been obtained. Several studies have been

undertaken on this issues Jones, Schroeder etcetera, but then they conclude that a typical

testing process removes 80 percent 85 percent of the error and 15 percent continue to

stay and those are called as a latent errors.

But, then why cannot we remove more errors, can not the testing techniques remove 99.9

or 100 percent of the errors, why they remove only 85 percent of the errors. The answer

to this question is that all the testing techniques that we will discuss are basically

heuristic technique. And, these do not guarantee that they will detect all errors. So, all the

testing technique are heuristics they help to reduce the bugs, but provide no guarantee of

complete removal of bugs this is a important observation, that all testing techniques

which you discuss are heuristics. And, they help to only reduce bugs do not provide any

guarantee concerning complete bug removal.

(Refer Slide Time: 20:40)

What do you mean by test cases? A test case we execute to establish their some

functionalities working correctly. When, we execute a test case some of the program

elements are executed. And therefore, we can consider the effectiveness of a test case

based on how much coverage is achieved by that test case? So, the coverage

measurement of test cases is a important metric for test cases, but then we also have

another one, many test cases we design them or detecting specific types of faults.

For example, arithmetic faults and so on. So, we call them as fault based test cases. So,

the test cases are 2 types; one we measure the effectiveness of the test cases by the

coverage achieved and the other is how many faults they are targeting.

(Refer Slide Time: 22:08)

Now, let us look at a finer distinction between a test data and test case. Test data as the

name says it just the inputs test inputs that are given to the system, these are the data

basic data to execute. Whereas, the test cases not only contain the input data to the

system, not only describe the input data to be given to the system, they also describe at

which state of the software this data needs to be input. And also the predicted output that

should be obtained from the input.

So, test data is just a component of the test cases and in addition the test cases contain the

state at which the input is to be given. And also what is the predicted output

corresponding to the inputs.

(Refer Slide Time: 23:13)

Based on that we can say that a test case has 3 components I, S and O, I is the input data

or test data to the system, S is the state of the system at which the data will be input, and

O is the output that should be expected. Just to give an example of the state at which the

data to be input, let us consider a functionality in a library system; like let say renew

book.

For a renew book test case to be executed, we must have the same book already issued

out to member, the book should have been created that should exist in the library and

then it must have been issued to a member and only then that member can renew it. So,

we call that as the state of the system that is the, unless the book has been created. And

the book has been issued out this test case of renew book will not work.

(Refer Slide Time: 24:40)

Every, software is the tested using a set of test cases, which are carefully designed and all

this test cases, which have been designed to test the software is called as a test suite.

(Refer Slide Time: 24:53)

Now, let us see another basic concept, which is about negative test cases we have been.

So, far discussing about positive test cases which detect bugs in the code, that is the

software does not do something it should have been doing, but negative test cases this

the provide unexpected are invalid inputs. And then see how the system behaves? The

system should behave gracefully, it should not crash.

For example, if it wants the number of books to be entered number of books to be issued

is to be entered, and the librarian entered let say instead of a number just entered

something like a digit sorry an alphabet like a or something by mistake, and then the

system should not crash.

So, the a m of the negative test case is to give some input, which is not really correct

input to be given as per the SRS document these are wrong inputs, but just to check that

the system behaves acceptably and does not crash. For example, in a numeric field a user

types a alphabet, and then it is to be observed that the system does not crash and displays

a polite measure, that data type entered is incorrect please enter a number.

(Refer Slide Time: 26:57)

But, as the test execution is done the test cases have been designed, how is the test

execution done? All the test cases have been designed and now the test execution is to be

done test have to be executed. So, the program has to be put in the required state, the

input has to be given and the output has to be observed. We are almost at the end of this

lecture and with this set of basic concepts on testing, we just stop here and we will

continue in the next lecture.

