
Software Engineering
Prof. Rajib Mall

Department of Computer Science and Engineering
Indian Institute of Technology, Kharagpur

Lecture – 42
Examples of object-oriented design

Welcome to this lecture. In the last lecture we were doing some practice initially we

discussed about how to do the domain analysis? And, then we took some examples and

we try to develop the domain model. We took the example of a Tic-Tac-Toe computer

game. And, we identify the entity classes there and that was our initial domain model.

And, then we had a refined domain model, where we added the boundary and the

controller classes.

(Refer Slide Time: 00:52)

Now, let us proceed from there. So, this in the last class we had identified the board class

from a noun analysis we did not really get down to do noun analysis, but mentally we

rejected all those nouns which cannot be entity classes, but as we get more experienced

we do not even have to do that you just read through the problem. And, we can identify

what are the entity classes. And, once we identify the entity classes that, forms our initial

domain model. The boundary and the controller classes are easily identified almost

mechanically from the use case diagram and, then we add them here and that forms our

refined domain model.

And, from here the next step would be to identify the sequence diagram. We know that

we have to develop one sequence diagram for every use case. And, for this problem of

Tic-Tac-Toe you have only one use case that is play move and therefore, we need to

develop only one sequence diagram. In the sequence diagram, when the user starts a play

how do this classes interact? And finally, produce the result we display that graphically

in the sequence diagram.

(Refer Slide Time: 02:26)

And, for the Tic-Tac-Toe problem to develop the sequence diagram, we need to

understand the business logic well read the problem many time and understand what

really happens? And, then we can draw the sequence diagram easily let us see here, as

the user makes a move that is detected in the play move boundary. So, these are the 3

classes which interact to realise the play move. Once the move in initiated by the user

that is conveyed to the controller.

The controller is the one which actually correlates all other objects, the boundary is only

for getting the data and reporting it to the controller or taking data from the controller

and displaying to the user. So, the accept move as the move is a made, that is conveyed

to the controller. The controller knows what to do knows that whether need to check the

validity, whether the user has marked on a square which is already occupied or was it a

ambiguous move.

If, it is given graphically, and it checks the move validity, but how will it check? It needs

to check through, what are the current marked squares on the board? And, that data is

there with the board. So, it request the board to check the validity. If the board conveys

invalid move, then it displays invalid move and prompts to give an you move and the use

case would end here.

But, if it is a valid move then it is registered on the board and the controller knows that

once the move is valid needs to check if there is a winner. And therefore, it invokes the

check winner in the board. If, there is a result either the game is over or there is a winner

that is game is drawn or the game is there is a winner it will be announced.

But, the controller again knows that if there is no winner or game is not drawn the

computer has to play the next move. And, it request the board to make the next move

because board class knows all the squares which are marked and which are available.

And this is the best class that can play the move, request the play move and then once it

has made the move it again checks for winner, if there is a result announces result.

Otherwise, it gets the board position and displays the board position and if the game is

not over prompts for the next move.

So, as you can see that the controller actually implements the business logic it

coordinates the actions of other objects and then realizes the use case.

(Refer Slide Time: 06:29)

But, see that the sequence diagram can become complex.

(Refer Slide Time: 06:40)

In our previous example we had only 3 classes, but then the message exchangers there

are many exchangers, but imagine if we have the dozen classes. And, there are large

numbers of message exchangers among them, it becomes very difficult for a person to

keep this in mind and draw the sequence diagram. And, for that the CRC Card has been

developed the CRC Card stands for class responsibility collaborator card.

It is used to assign responsibilities to classes, that is responsibilities are actually the

method in the classes, that is which class should have which method. The CRC card

simplifies the development of sequence diagram, because here by using the CRC card we

can easily identify, which class would have, which responsibility.

(Refer Slide Time: 07:56)

And, then we can develop the sequence diagram. CRC card stands for class

responsibility collaborator, the pioneered developed by Cunningham and Kent Beck.

And, these cards are like playing cards small cards may be 4 inch by 6 inch.

And, here at the top of the card the class name is written and then there is a small table

here. So, the classes are already identified during domain analysis. The entity classes

boundary classes and controller classes. For every class identified during domain

analysis a small card like this is made the name of the class is written here and, then on

these rows we write the responsibility and collaborator.

The class responsibility is that, what exactly it should do during a use case execution?

And then it can take help of which class, which what responsibility it will perform and

for performing this responsibility, it will take help from use class. So, that is a

collaborator. So, the class responsibility collaborator diagram, if we develop for every

use case then we will have the responsibility here field, but we do it for one use case by

another and then we draw the corresponding sequence diagram.

(Refer Slide Time: 09:59)

If, we think of it the CRC cards helps us systematize the development of the sequence

diagram. For complex problems, for simple problems, just by reading it we can do it for

example, for the Tic-Tac-Toe game we could do it without developing a CRC card, but

for more complex problems we need to develop the CRC card. The responsibility here

are the methods that will be supported and collaborator is the class whose services will

be invoked by this class.

So, this is an example of a CRC card name of the class and then this is the method it

needs to support find book. And to be able to find book it needs to invoke the book class

method. It needs to support a create book and for creating a book needs to invoke the

book class method.

Similarly, for reserve book it supports a reserve method and then as part of the reserve

method, it invokes a method of the book class.

(Refer Slide Time: 11:09)

But, how does we go about developing the CRC card? Once having the CRC card

identify a use case and then determine roughly, how many classes would be required to

collaborate for this use case? And then we get some team members may be 3 or 4 each

team member is distributed some of the card 2 3 card. And, then the use case text

description is read out. And, at the use case text description is read out the team members

identify, if their class need to do anything.

(Refer Slide Time: 12:04)

This is called as a structured walkthrough at the use case scenario is read out. Let say

book to be issued to a member, then initially the member identifies the book. And, then

the member’s lists of issued books are checked. And, once it is read out that the members

list of issued books have to be checked then the team member holding the member CRC

card CRC card for the member class. We will say that for checking if the books, how

many books have been issued to the member?

The member class can check it and then he writes the responsibility as check, how many

books issued? Check number of books issued and so on as the text description is read out

each of the team member identifies, if the class they are holding the CRC card for the

class they are holding, whether it needs to do take some action and that will appear as the

responsibility .

Now, once the sequence diagram is done the class diagram is automatically developed, if

we were using a case 2. Otherwise, we need to check the sequence diagram identify all

the messages that are send to this class. And, put them here these are the responsibility of

this class. For every class, if we go through the sequence diagram we will see that these

are the messages that are sent to this class. And, we just list them out here as the methods

to be supported and based on the method to be supported, we write the attributes and that

forms our class diagram.

(Refer Slide Time: 14:31)

Now, let us take the next problem, which is the supermarket prize scheme. We had also

developed the use case diagram for this problem, but just to refresh your memory I will

just quickly read through that description of the problem. And, since the use case

diagram was already developed, we need to develop the domain model. And, for that first

we need to identify the entity class. And, once we identify the entity classes we can look

at the use case diagram and easily identify the boundary and the controller classes.

Now, please keep in mind that you will have to identify the entity classes and with that

perspective while I read the problem, identify what can be the entity class? Supermarket

needs to develop a software to encourage regular customers. So, if you are looking for

entity class, the customer is a noun and there are many customers and the supermarket

needs to remember the residence address, telephone number, and driving licence of the

customer. And from this description we can identify that the customer is a entity class.

And, we need to aggregate the customer using a customer register. The customer register

class will aggregate the customer class. And, there will be many customer records that

will be created and the customer record here itself you can find that the attributes are

residence address telephone number and driving licence. You can write the attributes if

we can and each customer is also assigned customer number. So, customer number also

becomes attributes. From this part of the description we can identify customer with entity

class.

(Refer Slide Time: 17:31)

A customer can present the CN to the staff, when he makes any purchase. The value of

his purchase is credited against his CN. So, all his purchase needs to be remembered.

And, these will form the purchase record. And, at the end of the year the supermarket

awards surprise gift to 10 customers, who make highest purchase? So, all the purchase

has to be remembered, because at the end we need to look at the computer needs look at

the purchase records and identify the customer who has made the highest purchase.

So, this and this description we will write purchase register aggregates the purchase

records and so, 2 entity classes we have so far identified.

(Refer Slide Time: 18:50)

It also awards a 22 carat gold coin to every customer; whose purchase exceeds rupees

10,000. So, no entity class is here the entries against the CN are reset on the last day of

every year after prize winners list are generated so, here also no entity classes. So, based

on the noun analysis we had identified 2 entity classes.

(Refer Slide Time: 19:11)

And, we can then look at the use case model. And identify the boundary and controller

classes, 3 controller classes and 4 boundary classes.

(Refer Slide Time: 19:34)

Now, this is our domain model, the customer register and customer record. We have

rename the purchase record, because these are actually the sales by the company and the

purchase is the from the customer perspective and these are internal data. So, we keep it

as sales record and sales history. So, these are the 2 important entity classes.

(Refer Slide Time: 20:08)

And, then we can identify and add the controller classes and the boundary classes 3

controllers and 4 boundary classes.

(Refer Slide Time: 20:18)

And, then next we develop the sequence diagram. First for the select winner this is

possibly the simplest sequence diagram, we need to look at the sales history.

First the controller gets charge, the controller has the business logic, and it knows that

the select winner can be obtained from the sales history. The sales history in terms

computes the sales address sorry the total sales and then reports to the controller. The

controller finds the top winner details ask it to finds the top winner details. And, then it

for each winner detail identifies the address from the customer register. And, then the

controller ask the boundary to announce the winners similarly, register customer.

(Refer Slide Time: 21:20)

Once the register customer boundary we have the register request coming given to the

controller, the controller first checks if it is already registered. For that it request the

customer register to match, if there is a duplicate, it requests, it declines to register shows

error. Otherwise, it generates a CN and request the customer registers to create a

customer record and the customer record is created here and then displays the CIN.

(Refer Slide Time: 22:03)

Similarly, register sales is reported the controller, the controller request the sales history

to create a sales record create and it is confirmed.

So, we have so, far looked at domain analysis. And, development of the sequence

diagram. For simple examples, we will not spend more time on the object oriented

design part we will.

(Refer Slide Time: 22:40)

Now, look at the testing part. Ok. This is also for the previous diagram, we have a small

refinement here. The controller class actually has very little role here. It just gets the

message and transmits it to sales history and then it just gets confirmation here and

transmit.

So, the business logic here is very simple. And therefore, we can eliminate the controller

class and we can redraw the small business logic and be part of the sales history. So, it is

a very trivial business logic. And, we have eliminated the controller class. Similarly,

when the controller class has too much of business logic, we might split the controller

into 2.

(Refer Slide Time: 23:31)

And, based on that we develop our full class diagram, where we write the methods based

on and looking at the sequence diagram a case 2 will automatically do it. And, then we

write any attribute that we identify.

(Refer Slide Time: 23:58)

Now, let us look at software testing. Once we write the program, while testing it may

fail. We may see a failure a symptom of the failure it says that fatal error program will

now terminate, but then we observe that the program has failed, but we do not see the

bug, this is the symptom of the failure by testing, we identify the failure. If there is a

failure, but we do not really see the bug or the error which had cause the failure, for that

we need to do a debugging to identify the bug.

So, it is important to see here that when we run test cases, we see the failure; we do not

see the bug. A failure is a manifestation of a bug or a fault, there was a bug in the code

and while running that manifested itself in the form of a failure. We do not see the bug,

but we see the manifestation of it, but then we must also remember that even if there may

be a bug it may not lead to a failure. For example, the data that we give does not lead to

the error to express it itself.

(Refer Slide Time: 25:53)

Let us now try to distinguish between error fault and failure. Programming is effort

intensive in main manually write the code and therefore, inherently error prone. In 1993

the I EEE standard defined errors and faults as synonyms.

But, then a revision of that in 2010 introduced the distinction. That errors and faults there

is a difference actually errors are the mistakes committed by the programmer and faults

are what happens due to that mistake? So, there is a bug or a defect. So, error and

mistake and synonyms and faults bugs and defects are synonyms, we are almost at the

end of the time here. We will stop at this point and continue on this topic in the next

lecture.

Thank you.

