
Software Engineering
Prof. Rajib Mall

Department of Computer Science and Engineering
Indian Institute of Technology, Kharagpur

Lecture – 04
Introduction- IV

Welcome to this lecture. And in the last lecture we were discussing about the types of

software projects. Before we look at the software engineering principles we want to form

a broad idea about the types of software projects that are been undertaken in the industry,

so that we will be able to appreciate the different principles and the principles which are

used for which type of software development and so on.

We were saying that there are two main types of software projects.

(Refer Slide Time: 00:58)

One is the product development projects and the other are services projects. These are

the two broad category of software projects.

(Refer Slide Time: 01:08)

First let us look at software services. We said that software services is growing very fast.

Right now, the market size for software services and the products are evenly balanced,

but then the software services projects are growing much more faster rate. The software

services project is basically an umbrella term, in the sense, that a various types of

software services projects. For example, we have software customization, some software

needs to be changed little bit to fit the requirements of some customer. Software

maintenance: so this is also a services some software has developed, but then an

organization has a project to maintain this, a team is dedicated for maintenance for some

project some software. And this is another type of software services a software

maintenance

Software testing: may be some organization developed a software, but then the testing

part has outsourced where testing to an organization which will do only the testing. So,

here the software testing is software service. In another extreme form we might have a

company which just supplies the contract programmers. And a development company

will need some of these for on temporary basis for carrying out some work and this is

also a service.

(Refer Slide Time: 03:07)

Before we proceed let us see little bit about why is that the services segment is growing

very fast. The number of services projects is large as compared to product development

projects. Earlier 50-60 years back we had very little code written. So, for meeting the

requirements of any customer needed to develop software from scraps. But now, every

company and even otherwise there are large number of projects that have been

completed lot of code is available. So, to develop a new software lot of reuse made from

the existing software. Not only that lot of software is available, but also right now the

development work needs to complete very quickly.

Just to give an example let us say an educations institute decides to automate various

book keeping activities. If it was in the 1950s or 60s it would our project to a company

and that will take a year or two to develop the product: to develop the software and

install at the educational institute. But right now, a month is an average time in which

such a work can be completed and even 15 days. So, the project duration has shortened

and in 15 days somebody cannot really develop a million line code, has to basically tailor

some existing software.

The speed of conducting business has increased tremendously not only education

institute but all companies they want software to be quickly developed and installed. And

this can only be done by tailoring some existing software. And that is another reason that

the services projects have really increased.

(Refer Slide Time: 05:38)

If you look at the market size of the IT industry in India it is grown rapidly over the last

few years this is a repeat from the NASSCOM. And if you look at here that the export

segment is larger than the domestic segment, and right now almost 10 percent of the

GDP comes from the IT sector and it was only 1.2 percent in 98 and before that it was

near to 0 percent. So, the IT industry in India has made rapid progress, large number of

projects are existing, large number of projects have been completed, and this is a growth

area, and already 10 percent of the GDP is from the IT industry.

(Refer Slide Time: 06:49)

But then before we proceed looking at the software engineering issues let us just have a

small idea about the scenario of the Indian Software Companies. One thing that is easily

noticeable is that the Indian Software Companies had excelled in the services segment

almost every project is a services type of project. But then, would like to ask you this

question that why is it so why there are very few product development projects. Because,

we said that even now worldwide 50 percent of the development projects are product

development and other 50 percent is services, but in India almost hundred percent is

services project, what can be the reason.

The reason can be that: in product development system there is a large gestation and risk

you develop a product, and then it may do well in the market or it may just flop; lot of

investment just may vanish. But then if a product development project succeeds then it

keeps on giving return year after a year, whereas the services project is typically paid

only once. But then, the Indian companies possibly a risk hours and they concentrate

only on the services projects. There are few product development projects and few

success stories about products in the Indian context.

Now, let us see how the projects are changed over the last 40 years because, if we

understand the characteristics of the projects, how they have changed; we will be able to

appreciate what are the techniques that were applicable earlier in the early states like it is

in 1950s then 60s. And, at the present time what are the principles and techniques that

are applicable and how these are changed.

Long back, in the initial years of software development very few software existed.

Almost every project started from scratch and projects were multiyear long 2 year, 3 year

and even 5 year projects existed. And the programming languages that were used were

FORTRAN, PASCAL, COBOL, BASIC, etcetera; and these programming languages are

very little facility for reuse of code. And almost no application was GUI-based, but now

almost every application has a GUI and heavy reuse is made. The project duration has

really certain from multiyear to just couple of months, and the programming languages at

the present time support reuse of the code.

(Refer Slide Time: 10:23)

Now, let us look at the traditional versus modern projects. Services segment is becoming

having a large growth rate, here we tailor some existing software or reuse prebuilt

library. In the modern projects the client is a part of the project, the client gives feedback

and the project and the project they try to accommodate the client feedback, but earlier

that is the traditional projects. There were product development projects largely and there

once the development starts no feedback is taken, they freeze the requirements and start

according to that.

Right now, the customer is part of the project development. Even for very large software

the software is developed incrementally. That means, that every 2 week or so the

software is installed at the client and then it evolves new functionalities are added every

2 weeks or so.

No software is being developed from scratch and significant reuse is made.

(Refer Slide Time: 11:57)

Before we look at the software engineering principles, we are look we are concentrating

on few basic aspects. Now let us try to understand about what is computer systems

engineering.

In many development work the hardware and software are developed together, it is not

that we always develop a software and then make it run on a computer like a desktop or a

server. No, there are many systems where the hardware also has to be designed from

fresh and the software will run on that hardware. Just to give some examples: let us say a

coffee wending machine or a robotic toy. So, here the robotic toy has a special processor,

it has mechanical parts and so on. And the software will has to run on that specific

processor; these are not general type of processor.

So, here we cannot just write a program on the desktop and then we will just get done

with it, because the software has ultimately to run on that processor and this robotic

system or let us say a new health band product. So, there is a processor and the health

band which monitors the health and displays various suggestions and feedback. For this

type of system where there is a hardware that needs to be developed and also the

software the software has to work on that hardware we call it as System Engineering. It

is actually a superset of the software engineering.

(Refer Slide Time: 13:54)

But how is the computer systems engineering problem solved.

Here first, a high level understanding is of the problem is made, then decision has to be

taken which part to be solved by software and which part to be solved by hardware, and

then the software and hardware development start parallelly. But the only problem here

is that how does the software will be tested, because hardware is also under

development; possibly by using a simulator or something the software can be tested and

developed.

(Refer Slide Time: 14:35)

So, hardware simulator is used during software development and then once the hardware

and software development is complete they are integrated and the full system is tested.

(Refer Slide Time: 14:56)

So, this is a model or a schematic of the computer systems engineering, initially check

whether we can do it we need to do it that is a feasibility study. The requirements

analysis and specification, understand the requirements and document, then decide which

one to be done by hardware which part to be done by software, then hardware

development software development proceeding parallel, and after they complete

integrated and the final system testing is done. And of course, through the entire project

duration the project management activity is carried out to manage the various activities

in the system engineering project.

(Refer Slide Time: 15:49)

Now, let us look at the different software engineering techniques; how they have

developed. We are not concentrating on the software engineering techniques themselves

which we will do a little later, but we will see that how they have evolved in time. This

will give us an idea to appreciate that how starting with simple techniques, the software

techniques have become more and more sophisticated.

(Refer Slide Time: 16:25)

In the 1950s was the early computer programming, the programs were small.

(Refer Slide Time: 16:37)

And they were used written using language like FORTRAN. Every programmer was

having his own style that is basically the build and fix programming, every program was

developed according to the intuition of the programmer what suits a programmer.

(Refer Slide Time: 17:00)

Languages like FORTRAN, ALGOL, COBOL, were used later that was in 1960s. And

the assembly language used was restricted. But then, the productivity improves

significantly with high level language programming. Can you try to answer that; why is

the productivity much higher using higher level programming languages as compared to

assembly language programming.

The answer is that there are two parts: one is that one single line of high level program

code, we will have to write many assembly code and the high level code is easily

understood written machine language much more involved, because machine language is

basically you have to understand the machine architecture, the registers; how that is

transferred from one register to another and so on load to specific register. But then here,

we will deal with a obstruction that would deal with only the variables.

So, high level language programming is much more simple. It abstracts out the details of

hardware organization architecture.

(Refer Slide Time: 18:51)

But then, even though high level programming languages were used the development

was largely exploratory, build and fix model, and typical program size was only about

thousand line code.

(Refer Slide Time: 19:10)

But the sizes of the program increased and the exploratory style became insufficient. It

was taking long to develop code they are having too many bugs. But then there were

good programmers.

(Refer Slide Time: 19:41)

Who advised that to be able to develop a good program you have to pay attention to the

control flow.

(Refer Slide Time: 19:49)

So, the good programmers who were experienced and who were writing programs well

they advised that; please pay attention to the programs control structure. But what

exactly is a control structure of a program? The control structure of a program is the

sequence in which the programs instructions are executed. The sequence in which the

programs instruction are executed may get altered when there are decisions, loops and so

on.

So, we need to represent a control structure, we need to represent the sequence

statements the decisions the loop structure and so on. And by looking at the control

structure we can determine in what sequence the program will get executed. So maybe

this statement and after that the decision statement will get executed depending on the

outcome either this statement like get executed, if the outcome is false this statement will

get executed and so on.

But then, the programmers had the advice from good programmers that pay attention to

the control structure. You must have a good control structure for writing a good program.

And the flow charting technique was developed, the flow charts were used to represent

the programs control structure and best on these the code was written.

(Refer Slide Time: 21:36)

But then, you must know that the control structure helps us to understand the program a

good control structure. Because, if we want to understand a code having this control

structure we will like to understand the different paths through it; that is starting from the

first statement, which are the statement that are executed, where the output is generated

and so on.

(Refer Slide Time: 22:07)

A program that has a bad control flow representation, that is a flow chart representation

or control flow representation that will be very difficult to understand it will very

difficult to debug and it will have lot of errors in it. But then why is it so, can you answer

that if the control flow representation is bad let us say something like this.

(Refer Slide Time: 22:43)

It is a very bad control flow representation. Why, becomes very difficult to understand

the program having such a control structure,

The answer is that, if we want to understand this program then we will have to trace the

different paths through it. Let us say we observe the output here and then we look at what

is the path that this has taken, what are the statements that have got executed before it,

and what might have got executed before that and so on, and from where it has got the

input. And we need to do that for every path to be able to understand this program and

imagine that there are thousands millions of paths here.

So, be able to trace the execution through all the paths in this is extremely tedious it will

take long time. But if it had a good control structure and there are only few paths we can

trace the paths; just 3-4 paths and then we are able to understand compared to a very

complex programs control structure.

(Refer Slide Time: 24:21)

And that gave rise to the control flow base design. The control flow base design said that

please have a good control structure for the program. But how does one have a good

control structure for the program? They said that, see it is GO TO statements they are the

culprits actually, they make the control structure bad. Of course, the modern

programming languages they hardly support GO TO statements, but the earlier

programming languages like FORTRAN etcetera they had this GO TO statements and

these were used heavily.

(Refer Slide Time: 25:09)

But look at this in the historical prospective. The assembly programmers, they said that

see without jump instruction you cannot write a program basically. So, GO TO

statements are inevitable without using GO TO statement you cannot write sophisticated

programs.

(Refer Slide Time: 25:38)

At that juncture Dijkstra he published an article in the communication of ACM 1969 a

landmark article called as ‘Goto Statement Considered Harmful’. And he wrote about the

problems that a GO TO statement creates and obviously, many programmers who were

basically having assembly programming background they were very unhappy.

(Refer Slide Time: 26:04)

They wrote counter articles they said that see without GO TO statement you cannot

really write a large program.

(Refer Slide Time: 26:14)

But then, it was proved that to be able to solve any programming problem that includes

the large complex problems you need only three types of constructs: the sequence,

selection, and the alteration constructs.

(Refer Slide Time: 26:36)

And slowly everybody accepted that it is possible to write large programs without using

GO TO statements and this earn the basis of the structured programming methodology.

(Refer Slide Time: 26:48)

Let us understand what exactly structured programming. A program is called structure

when it uses only three types of constructs: the sequence, selection; sequence is one

statement after the other statement like one arithmetic statement followed by another

arithmetic statement. Selection, like if then else, switch and so on. Iteration, like for loop

while loop, do loop and so on. But just see here there is no place for a go to here.

So, a program is structured when it uses only sequence selection and iteration does not

use GO TO statements, and also it is a modular program. This is the basic features of a

structured program is that it uses only sequence selection and iteration type of statements

and also it consists of modulus.

(Refer Slide Time: 27:58)

Of course, sometimes may have to use GO TO statement in the modern languages do not

really use GO TO statement, but then they have statements like break for premature loop

exit, exceptions and so on. So, these are basically not structured constructs, but then

occasionally it is an allowed due to practical considerations.

(Refer Slide Time: 28:32)

But let us understand that what is the advantage of structured program. There are many

advantages: one is that as we were discussing a structured program has a good control

structure, because it does not use GO TO statements. It has few paths, a control structure

is simple and therefore, it is easy to read and understand.

And since it is easy to read and understand it is also easy to maintain, because for

maintenance we need to first read and understand the program and then decide what to

change. It also requires less effort and time for development. Why is it; so that we need

less effort and time for development. The answer is that: if you are developing in on

structured way even a small mistake that you have committed will take long time for you

to correct, but a structured program can easily correct understand under the grasp.

And therefore, it requires less effort and time for development. And also it is less buggy

because you understand it well and therefore, chances of bugs being there is less,

whereas non structured program you do not really understand how the program works,

what are all the paths that exist, there maybe thousands of paths. And the bug may exist

in one of the paths which you never thought existed.

So, the structured programming principle has been accepted. It is still very popular

technique in almost every program that we write we expect it to be structured program.

And of course, as you are saying that the modern programming languages facilitate

writing structured programs, because they do not have constructs like go to and so on.

So, we will stop at this point of time and continue in the next lecture.

Thank you.

