
Software Engineering
Prof. Rajib Mall

Department of Computer Science and Engineering
Indian Institute of Technology, Kharagpur

Lecture - 39
State – Machine Diagram

Welcome to this lecture in the last lecture, we had discussed about the interaction

diagrams. We said that there are two main types of interaction diagrams, the sequence

diagram and the collaboration diagram. The sequence diagram captures how the objects

interact during execution of a use case? And, we also said that the sequence diagram

plays a very important role in a design process any design process, sequence diagram as

a very important role, the role is that it helps in identifying which classes have which

methods that we call as method population in the classes.

To start with the design process we identify the classes that exist and later we identify the

methods and then we identify the attributes. So, the sequence diagram has a very

important role of identifying, which classes should support which methods. And, then we

saw the collaboration diagram is automatically derivable from a sequence diagram, and

most case tools they just display the collaboration diagram based on just a press of a

button. The main purpose of the collaboration diagram is that it shows the association

relation between different classes.

Now, we know that based on the sequence diagram we can also write the code for a

method, because we know that when the method is invoked on a class what it needs to

do? It might call a self method or call another method some argument etcetera and

therefore, some code also gets developed for different classes not only that the method

prototypes are developed for every class, but also the method could gets developed

skeleton code. Now, let us do it through a small exercise and that is simple and of given a

diagram would be able to develop the code, because it is very very simple let us see that

let us see that we have this sequence diagram.

(Refer Slide Time: 02:59)

There are 3 objects which participate in the sequence diagram, method m 1 is first

invoked under object a the class capital A. And, then it invokes the create I should have

put the stereotype here; which I can put now just put the stereotypes yet to be correct. It

invokes the create on the B class and object anonymous object gets created here and then

it calls the do A method on the B class sorry anonymous object of the B class with

argument this and remember this is the small a itself. And, then it returns a flag and in

turn the object of the B class it creates an object of C class called as c name of the object

that is created is C, and then it calls the do B method of the A class with argument C.

So, what will be the methods for different classes and can we write some of the code

here. We know that m 1 is a method of a class, do A is a method of the B class of course,

create that is constructed for the C class. Now, the question is that can we write the code

for class B. So, that is for do a method. So, we know that class B contains do A method it

takes an object of class A as argument and then inside the method it will create the class

C. So, it will call the new operator in java for the class C and then call do B method of

the class A.

(Refer Slide Time: 05:33)

So, if we write the code neatly we will have class B and then it has the do A method, it

returns a flag integer and then the first it creates a C object and the name of the object

created is small c. And, it calls the a object the do B method of the a object with c as the

parameter and then it returns a flag.

(Refer Slide Time: 06:01)

So, not only that based on the sequence diagram, you can populate the methods, but

some skeletal code for the different methods can also be created. Now, let us look at the

state machine diagram this is also an important diagram, even though it is not developed

for every class in every problem, but then if the classes do have significant states then we

so, that in the form of a state machine. And, also the state machine helps us helps to

generate some code, because our idea is that once we do the design, we should have

some code written for us. Most, case tools do that good case tool generate lot of code and

we just need to fill few of the code there, and we saw that how the interaction diagrams

help us to generate the code.

Now, let us look at the state machine diagram and see that if the classes some classes

have significant states, then we can develop the state machine diagram and at the same

time the code for that class will get generated. We will see the nitty gritty of the state

machine class sorry the state machine diagram and also see the code that a state machine

diagram can generate.

(Refer Slide Time: 07:47)

The state machine diagram as it is called in UML 2.0 is based on the state chart diagram.

The state chart diagram is a refinement of the finite state machine we all know the finite

state machine. And, the state chart diagram was proposed by David Haril long back

maybe 30 years back, to handle two problems of the finite state machine. Even though

we use finite state machine for small problems, but if we use it in object orientation in

modelling classes systems and so on and in many other application it suffers from two

main problems.

The FSM suffers from two main problems one is called as the state explosion, that is the

number of states becomes too many 100 1000s, and it becomes very difficult to draw the

diagram on a page or a on a screen and also to understand the diagram. The, second

problem is that the state machine is just a sequential diagram; states get activated one

after other you do not have concurrent states. And, the state chart diagram over comes

these to basic problems of the efficient and we will see that it is an elegant formalism,

and UML use the state chart diagram and call state as the state machine diagram.

The main improvements to the finite state machine is a hierarchical state, a finite state

machine is a flat state machine, if you draw an efficient let us say we draw it like this that

we have 2 states and then there are some transitions. It is a flat state machine let us say

State S 1 S 2 and then some transition based on some event, some transition takes place

and we have some action e 1 causes this transition e 2 causes this transition.

But, in a state chart diagram we have hierarchical state’s that is a state here can have

further states. So, even though the top level we have this state machine, but we can look

at any state and that also contains the state machine. And, this may contain state

machine, but we can look at any state and that also contains a state machine and this may

contain state machine. So, there is a hierarchy and if you look at this state in the second

level it might also contain a state machine.

And, this is the one mechanism hierarchical state to handle the problem of state

explosion, earlier as the number of state variable increase the state efficient became

extremely complex, number of states increased exponentially with the number of state

variables. We will just see that with an example that how would the state’s increase

exponentially with state variable.

But, here we address the problem of state explosion by having a very simple diagram

with few number of states and transition, but then we use the abstraction mechanism, we

said the beginning of our discussion on software engineer that wherever things become

very complex we use either abstraction or the decomposition to handle that. And, here

we use the abstraction mechanism and that is done through hierarchical state model.

So, instead of making the diagram flat and very complex we have a hierarchical diagram

and the top level is simple and the complexity are slowly added over the hierarchies.

And, here for representing the concurrency we will have composite state, that is within

one state we can have a concurrency that is the object can exist in two different states

within one state let us we will look at that.

(Refer Slide Time: 13:20)

Let us first look at an example and understand the state explosion problem in a efficient.

Let us look at this robo and this robo can make movements the first state variable. Let us

try to compute the number of states in modeling a robo is a behavior. Let us assume that

there is a switch to have the movement of the robo on or off, the robo can move if the

movement is on movement can be off also. So, there is a state can be that movement on

and movement off.

Now, there is another state variable called as a direction and the direction can be forward

backward left and right. So, this state variable direction can take 4 different values and

these are 4 states. So, based on this two we will see that the state for movement there are

only 2 states that is the robo movement on, robo moment off. But, now with the second

state variable we have 8 states that is robo movement on with direction forward, robo

movement on with direction backward, robo movement on with direction left, robo

movement on with direction right, and similarly robo movement of with forward

backward etcetera. So, with those 2 state variables we have 8 states.

Now, that can be further states. For example, the left hand raised or down. So, these are 2

states. Now, the number of state variable becomes 2 into 4 into 2, because for each one

here each state here we can have 2 cases that left hand raised the down. Similarly, the

right hand raised the down. Similarly, will have head straight or turned left the turned

right, you can have the head light turn on and off and we can have the turn left right or

straight.

So, it may be proceeding straight or it may be turning to left or right. So, to model this

thus robo, how many states we need in a simple finite state machine model, we will need

to that is 2 into 4 into 2 into 2 into 3 into 2 into 3. So, this becomes 8 16 32 96 192 and

this becomes 384. So, just imagine efficient you draw to model this and it has 382 states.

If, you even if you spend a month trying to understand the behavior it becomes because

very complex. But using the state chart notation we can draw a very simple diagram to

represent this the state machine for the robo, because you will use the concurrent states

and the number of states will drastically come down to only a few.

(Refer Slide Time: 17:39)

Now, let us look at the features of the state chart. So, this is the concurrent state machine

for the robo we have one thing is that movement on and off, and at the same time we can

also set the movement to forward to backward.

Similarly, we can set the state 2 hand left hand raise left hand down and so on. Just see

that the state machines are becoming independent and therefore, the combinational

explosion that was occurring there is a stopped here in the state chat, because these are

independent. The state variables are shown the concurrent state that is the same time it

can have the state change occurring from forward to backward and on to off and so on.

The other one is the hierarchy is the nested states the state S 1 contains another state

machine S 2 and so on. And of course, there are few other features on a state chart like

history state, broadcast message, actions on state entry, state exit etcetera these part will

not discussion this a chart.

(Refer Slide Time: 19:08)

So, to draw state the diagram with draw an initial state, which is a filled circle will draw

an initial state, to start with it will come to this state let us write S 1 and then so, by

default to start with it will start in S 1, maybe go to S 2 based on some event e 2. And,

there is a final state which is a filled circle inside another circle. Is a rectangle with

rounded corners these are the state representation and arrows between states these are the

transition. And we can have Boolean logic here the show that based on some condition

the transition occurs even if by event e 2 occurs transition will not occur unless the

condition holds true.

(Refer Slide Time: 20:24)

Now, let us address this question, that if we developed the state machine representation

let us first look and efficient. And, you can do for state chart that given an efficient how

can code be generated from that? Because, an efficient or a state chart is used to

represent the state model of a class now, can we generate some code for the class?

Actually, it is very simple if you understand it let us look at that, there are 3 main

approaches one is called as doubly nested switch in loop.

So, the meaning of this is that we have one switch in C and inside switch we have let us a

case 1 and inside that we have another switch event and then we have e 1 e 2 etcetera.

And, similarly case 2 that will also have a switch so, there is a doubly nested switch. So,

there is a switch here inside another switch many switches here between nested switches

and then this is within a loop while some condition.

We will get a code like this is the first approach, we will see that it is extremely simple

give an FSM, you can easily draw this develop this code. We can actually automatically

generate this code. The second one is state table this is also straight forward just use the

table and write the states and for each S 1 S 2 S 3. And based on the different events if it

is in some state what occurs etcetera we can also write that this very simple will discuss

that, but the state design pattern will not be discussing in this lecture.

(Refer Slide Time: 22:46)

So, there are 3 principal base the doubly nested switch in a loop, we here we use a global

variable to store the state. And, switch on the state and the event type is the discriminator

in the second level switch, but here it is bit harder to handle concurrent states composite

state history etcetera. And, the state table is a straight forward table lookup, the in the

design pattern state design pattern to have a as many classes at the states and the

transitions are methods in the class will not be discussing this.

(Refer Slide Time: 23:30)

First let us see the doubly nested switch approach here we have the states as a global

variables; the states as a global variables here and then we switch on the state. This is a

loop here keep on doing this and as an event occurs first switch on the state depends on

which state the same event made have different actions. If it is in state 1, again we switch

on the event here and depending on the event to let say, you do something that state

becomes current state becomes state 3 and print f something and break. And, if a event 2

occurs when it is in state 2 maybe we have state becomes event 2 event 2 maybe state

becomes state 1 get some input from the user do something and then break.

So, this is a simple translation we will just look at the state machine and we see the state

variable that is used to write that here the form of the specific type of the state whether it

is a integer and so on. And, then we look at the events here e 1 e 2 e 3 and you look at the

states’ S 1 S 2 S 3, and then switch that case S 1 you the event e 1 occurs then transit S 2.

And this is a simple state machine and that is it, and if it is an S 2 if the only switches

based on e 2 and their the state is S 2 S 3 and in S 3 it is transistor S 1. So, this is a very

simple code and the finest sorry the state table is also very simple you can also look at

that.

(Refer Slide Time: 26:07)

So, here is a doubly nested switch the first one is switch on the state, the second one is

switch on event and depending on the state the same event may have different actions.

(Refer Slide Time: 26:23)

The state table approach is also extremely straight forward here, we have the present

state and the events that are recognized here and then what action takes place. So, which

will be the next state, if light is off this is the present state and it reacts to e 1 and e 2 if e

one occurs when light is off.

So, there is no action basically for e 1 e 2 than light becomes on and set the red light

flashing. Similarly, for every state we write the specific events and then what are the

state change and what are the actions? So, it becomes easy to write the program

whenever there is a it is in a state we just look up and the state table and set the state next

state based on this and then we perform the action and that is it the code becomes very

straight forward.

So, we are almost at the end of this lecture.

