
Software Engineering
Prof. Rajib Mall

Department of Computer Science and Engineering
Indian Institute of Technology, Kharagpur

Lecture - 38
Development of Sequence Diagrams

Welcome to this lecture. In the last lecture we discussed about how to identify the classes

and their relations and also started to discuss the interaction diagrams. The interaction

diagrams are a very vital diagram; these are developed for every design. Even for a small

system, we want to develop, we need to develop the class diagram and the interaction

diagram and the use case diagram.

So, these 3 diagrams are developed for all systems what whether it is trivial or large scale

we need this diagrams, but the other diagrams for example, the state chart diagram,

activity diagram, etcetera. They are developed for specific cases for example, if the

classes have significant number of states we need a state diagram, activity diagram, if a

use case is complex or we need to have a overall understanding of a very complex

software, we develop activity diagram.

But, interaction diagram is developed irrespective of the problem for all types of

problems we need interaction diagram, and we will discuss about the nitty gritty of the

interaction diagram and see what purpose they serve in a design. There are two types of

interaction diagrams two important types; one is called as a sequence diagram and the

other is collaboration diagram. Of course UML 2.0 supports few other types of

interaction diagram for example, interaction overview diagram and so on, which we will

not discuss in this lecture. Let us look at the sequence diagram and see how we can

develop a sequence diagram and what role it plays in a design process?

(Refer Slide Time: 02:25)

The sequence diagram as we discussed in the last lecture, it shows the interaction of the

among the objects in a 2 dimensional chart. This is the interaction that occurs when a use

case is executed, the objects are shown at the top and if an object is created during a

execution these are showed at the appropriate place in the diagram, there is a lifeline for

every object.

So, the object exists the lifeline exists and if the object is destroyed we put across on it is

lifeline and it does not exist. When a object becomes active it is shown on as a rectangle

on it is lifeline. So, this is an example of a sequence diagram just see here that the objects

are shown at the top of the diagram, and then we have the lifeline for each object as long

as the lifeline exist this dotted line exists the object exists.

If, any time object gets destroyed for example, another object member destroy method on

that. And, then we just draw a cross here and stop the lifeline there indicating that the

object number exists. So, with this call say destroy, we will put a cross here and the

lifeline does not exist for this other lifeline exist.

And, we have this small rectangle on the lifeline indicating that the object has got the

control and it is in execution state. And, we write the messages on the arrow here. And,

else the messages are sent or method call takes place, then the control is transferred in

the other object becomes active.

 (Refer Slide Time: 05:05)

Now, the messages are shown as arrows it is seen that and it is message is labeled with

the message name, and for each message name we can have some control information.

For example, depending on some condition the message will be invoked or not. There are

two types of control information the condition and iteration. So, message is sent many

times or a message will be sent depending on some condition.

So, here we have this condition here is the condition, if is true, is computed here can

borrow returns here. So, can borrow is the method that is executed for the library

member. And, then is the written that is obtained that is how we represent here. And, then

based on the that was computed by the can borrow we check whether indicates true or

false and if it is true only then borrow member executes.

(Refer Slide Time: 06:25)

The gist of the syntax that we discussed for a sequence diagram a simple, we show star

on a condition the condition may not be there also, then we say that it is iteration star

indicates the iteration condition for all objects etcetera may there may not be there. And,

then to represent condition we use the square bracket and the message is sent only the

condition is true, when a self delegation that is the object calls a method of it is own

loops and conditionals we can use either the star notation or the square bracket, but then

UML 2 uses a new setup notations called as interactions frames.

(Refer Slide Time: 07:30)

We had seen that we can use a conditional message; we can set Boolean value here if

variable a some value then the message is sent. Then have the looping here star message

the star is the requirement for looping and the condition may not be there.

(Refer Slide Time: 08:01)

So, let us look at the sequence diagram again this 2 dimensional chart the X-Axis

indicates the object and the Y-Axis is the timeline. And, the dotted line here is the lifeline

for the objects, the objects have been drawn at the top; that means, a time 0 before the

use case starts the objects are already created and they exist.

So, time 0 the objects exist and therefore, they have been drawn at the top of the

diagram. And, time during the execution of the use case lapses from top to bottom. First

the book the burrow book is invoked on this object and then it invokes a self-method,

method of it is own that is can barrow and we read the diagram from top to bottom.

So, these are the objects this is the message, this is the conditional, and this is the

activation box, but question is that let us say a message will be sent either to one object

or another object not to both objects. Mutually exclusive sometimes a message will be

sent to anyone or to the other and not to both how to do we represent that?

(Refer Slide Time: 09:39)

Let us say, if a book is available then we invoke some issue on class B and if not

available we invoke record the request on class C, how do we represent this? So, we

draw the 3 classes class A, class B, class C and then we have a flag set which is written

by execution of a self-method checkbook, and depending on if the flag is true message to

sent to class B or if the flag is false message 3 is sent to class C. And therefore, both the

classes will not be invoked, they are mutually exclusive one of the classes will be

invoked.

(Refer Slide Time: 10:36)

This is another example of a sequence diagram; let us see how to read this diagram. So,

this diagram represents the behavior that occurs when the renew book use case is

executed. We, can also say in alternate once that, this sequence diagram is a

implementation of the renew book use case. Here, the objects are shown at the top and

just see here call on name of the class under line. And that means; that these are

anonymous objects any object of this.

And, then the execution starts by the renew book which is invoked and the library

boundary. And, this in turn in books the renew book and a renewal controller and this

becomes active and this invokes the find member borrowing on the member. It checks,

what are the books they have in borrowed? And, just see here there is no return arrow

here the return arrow that is the result that is return by the library member is implicit.

But of course, if you want to show that some variable that is used later in a decision or

something we made draw a arrow back arrow here just like, we have see drawn back

arrow here we might sometimes draw a back arrow, but then these are normally omitted

this invokes and a result that is return is not represented normally. And, a see here there

is a control information here that is find the book among all books.

So, that is represented by iteration, is by condition, if it is reserved book is reserved, then

generate an apology and finally, it is apology is displayed. So, it is a we can see that the

different objects that participate, in the execution of the use case and the messages, there

if seen among each other for execution of the use case and the time ordering the

messages is represented here.

(Refer Slide Time: 13:31)

Now, let us look at few examples. The idea is that given a statement like this that is a

details of a use case execution, we need to identify the objects that interact each other

and develop the sequence diagram. So, let us see one example here a user can use a

travel portal to plan a travel.

So, the travel portal is one object, normally the travel portal is a website and therefore, a

website appears on our client machine and we can even consider this as a client object, in

the user presses a plan button on the travel portal. So, as the travel portal appears on the

client machine, the user presses a plan button and when a presses a plan button a travel

agent applet created gets created and it appears in his window, and then on this travel

agent the user enters source and destination.

So, the user interacts with the a travel agent and on it enters the source and destination

and based on the source and destination the travel agent computes the route and displays

the itinerary. And, as soon as the user presses the close button the travel agent visit

disappears. So, this a simple sequence diagram, where there are 2 classes here a travel

portal and depending on when the user presses the plan button and the travel portal it will

create a travel agents.

So, the travel agent object does not exist to start with and only when the plan button is

pressed the travel agent button appears. And, then the user enters the source and

destination and the travel agent and the travel agent invokes a self-method to compute

the route and then it displays it, and it disappears in the user presses the close button.

(Refer Slide Time: 16:21)

So, this is the user presses the plan button in the client and then it creates see the travel

agent object does not exist to start with and only when the plan button is created, it gets

created and appears. The creation of an object we represent using this kind of notation a

dotted arrow with the stereotype create and the point at which the, create is invoked the

object appears in the timeline it does not exist a time 0.

But, only when the create method is called and then the user sets the itinerary on the

travel agent and it use it called. So, self-method calculate route, displays the route and

that is implicit here. And, then the user invokes the close the, destroy and the object gets

destroyed here. So, this is the representation object getting destroyed.

(Refer Slide Time: 17:37)

Normally, we do not represent the return values, but sometimes as I said that we need to

use the specific value returned in the diagram itself and we need to use this kind of

dotted arrow. And, we use this arrow the idea is that we should not complicate the

diagram too much and only if we need the return value in the diagram we represent it.

Otherwise, it is understood it is implicit we do not represent the return values.

(Refer Slide Time: 18:20)

Now, let us see if we develop a sequence diagram how is it useful in our design? First let

us start with a very simple use case diagram, let us say there 2 objects registration form

and registration manager and then we have just added a method here between these 2

method call add course with some argument. The, implication of this on our design is

that we have the registration manager must have the odd course method and it must take

these 2 as it is parameter.

 (Refer Slide Time: 19:08)

So, it must have the registration manager if you draw this kind of message. So, it must

have the registration manager if you draw this kind of message, then the registration

counter a sorry the registration manager must have the method add course. Only, if it has

the method add course the registration form object can invoke the method and then the

argument to this method at the student and the course. So, we can think that the role of

the sequence diagram is to populate the methods in the classes. To start with we have just

the class name, but as we draw the sequence diagram the methods are added to the

classes and most case tools they do that very efficiently.

As, we in the case tool we draw the sequence diagram, we can see that in the class

diagram the corresponding methods are been incorporated. At, the end of drawing all

class diagram we will know that which classes have what methods? Because, we will

draw many sequence diagrams. As, many as there are use cases and after we have drawn

the sequence diagram for every use case, we will see that the same class might be

participating in different use cases. And therefore, the methods in different use cases the

different methods by get executed and they get added here.

So, this is the borrow book use case, now can you identify what are the methods of the

different classes that will be populated based on this diagram? What about Borrow book

will be a method of the library member class, the name of the method will be borrow and

it takes a book type as it is argument. What about can borrow can borrow is also a

method of the library member class.

So, from here based on this sequence diagram the library member class will get 2

methods borrow and can borrow, but what about the borrow here, that is the book class

will also have an method called as borrow. And, here the argument is a member unlike

the burrow method of the library class which as argument of a book, you are the burrow

for the book class the argument is a member and then what about the set taken the set

taken is a method of the book copy class.

(Refer Slide Time: 22:29)

We had seen the object creation, we need to draw the dotted line and then write the

stereotype create on it and then once this is invoked object is created an anonymous

object, we write the name of the class call on name of the class underscore is an

anonymous object any object of this B class, will be denoted by this and this counts into

existence at this point of time did not exist at the beginning of the use case execution.

(Refer Slide Time: 23:05)

Object destruction the object B existed, but then when a invokes the destroy method on

the B the class of B the object B class, then it is lifeline terminates and objects see just to

exist that is these the notation to show that, we draw a cross on it is lifeline and see just

to exist. And, it is possible that an object may destroy itself, but then just a question, that

how does somebody destroy an object in Java?

Is there a method called that you can do to destroy an object. In Java normally the

objects do not have a method to destroy, they just fall out of scope and then they

destroyed. And, typically we do not model to that extent that when objects are destroyed

and so on unless memory management is critical.

(Refer Slide Time: 24:19)

Let us seen the control information that is star indicates multiple times. So, the draw

method when it is invoke and compound shape, it calls the draw method on all it is

shape, we can also write here star for all components to make it clear draw. So, for all

components it draws that is the indication with this star and the compound shape consists

a many shapes and the draw that is paint itself on the screen for all components.

(Refer Slide Time: 25:18)

A collaboration diagram is another form of the interaction diagram and this diagram is

automatically generated from the sequence diagram. In most of the case tools by press of

a button you get the collaboration diagram and this is just another view of the sequence

diagram. Let us see how the collaboration diagram is created, if this is the sequence

diagram then here we write all the objects here and then here there is a time ordering of

the messages here there is no time ordering of the messages, but we add number in the

front of the messages or method call to indicate the order in which it occurs.

For example, the start with the boundary object invokes the renew book and the renewal

controller. So, this is the first message and therefore, library boundary library book

renewal control, we write one here this is the first message to be interchanged. The next

will be the renewal controller it invokes the find member borrowing and the library

member.

So, this is the library member and the book renewal controller next invokes the library

member borrowing. And therefore, we write 2 here and normally the direction of the

invocation is shown by a small arrow here, we just draw a line of cursor a drawn a arrow

here it should not be it is just lines and then we just write a small arrow here to indicate

the direction of the invocation.

And, then we take the next one display borrowing between these 2 number that 3 library

book controller and then library boundary we will make it 3 we draw it and so on, we

take one by one and draw this. And, as we can see that it can be automatically drawn

based on the sequence diagram the collaboration diagram can be automatically done

drawn.

But, then what purpose does it solve? Can you guess; because it supports this diagram it

must solve some purpose ok. The purpose it serves is that it clearly shows the class

associations. If it invokes the method than their associated and we do not even so, the

arrow here by just draw a plane line and remember that the association symbol.

So, as we draw the sequence diagram we get the class associations. Even though we said

that associations are identified just by inspecting the statements, problem statement, but

often we cannot identify all associations. And they get captured here, when we draw the

sequence diagram. We are almost at the end of this lecture; we will stop here and

continue from this point in the next lecture.

Thank you.

