
Software Engineering
Prof. Rajib Mall

Department of Computer Science and Engineering
Indian Institute of Technology, Kharagpur

Lecture - 34
Inheritance Relationship

Welcome to this lecture, in the last lecture we had discussed how to develop use case

diagrams and given a specific problem how does one go about developing use case. And

we said that we need to practice that with several examples and exercises, to get some

insight into how to develop the use case model and to documented. In this lecture we will

discuss about the class diagrams.

(Refer Slide Time: 00:52)

In the class diagram with document the entities with common features, that is all the

objects in a problem which are similar attributes and operations the constitute a class. For

example, in a library system the book objects have similar attributes and operations for

example; each book has a name and ISBN number and so on. And each book has similar

operations like issue a book, returned the book and so on; create the book and so on. And

each class is represented using the solid outline rectangle with compartments, we will

use the solid outline rectangle with compartments and we will write the name of the class

like book at the top compartment.

We will write the attributes here for example, the book name, the author, the ISBN

number etcetera and then in the last compartment will write the operations for example,

create book, issue book, returned book and so on. But then we do not show all the three

compartments always we might, in some cases write only one rectangle containing the

name of the class that is book. Just notice here that the name of the class is singular we

do not name the class books. So, we can have just one compartment just the class name,

we might have the class name and the methods or the operations that are applicable on

this book or we might have all of them together with three compartments.

(Refer Slide Time: 03:19)

So, this is the representation, name of the classes window, the attribute name is size

which is an instance of the size class visibility is a Boolean. The operations are display at

hide the class name is at the attributes and these are the operations, but later we will see

that there are some attributes which are not shown, but there present we called them as

association attributes as we proceed it will become clear.

(Refer Slide Time: 04:03)

As we were saying that the same class can be represented with different details, we might

just represent the class name sometimes we might represent the class name along with

the operations and that class or we might represent the class name along with the

attributes and the operations. But, then one would ask that when does one use this

representation, which is the name of the class. When does one use the second

representation, which is the name with the operations and the full representation using

the name attributes and the operations. To answer this question when we start the object

oriented design process as will be seeing shown that how to go about doing the object

oriented design, initially we identify only the class names that is which are the classes we

identify the class.

So, in the initial stage of the design process we represent the classes using this

representation, as we proceed with the design steps we assign the operations to the

classes and then we know about which classes or which operations and in that stage of

the design we represent using the class name and the operations. And towards the end of

the design we identify the attributes that the classes should have and that is why these are

more complete and can be easily translated to code, the class name what are the

attributes of this at the class member and then the methods of the class.

So, to start with the design process as we start we use the simplest representation,

because we identify only the classes and much later in the design process we identify the

operations that for each class. And we use this representation at towards the end of the

design we have this complete representation and this can be easily translated to code.

(Refer Slide Time: 06:59)

Now, let us answer this question that in any object oriented implementation there are

many classes, many objects which we from which we construct the classes. Now a

typical software might have a does not classes or maybe several does not are 100’s of

classes. But the classes are not independent, the classes are related. What are the possible

relations that can exist among the classes? Actually there are 4 types of relations that

may exist among the classes in a system. The first type of relation is inheritance, one

class may inherited from the base class.

So, the base class can from the base class you can inherited derived class. Between two

classes and association relationship may exist please give an example of a association

relationship between a between two classes, couple of minutes we will just see some

examples of association relationship between two classes. There may be an aggregation

or composition relationship between two classes if you can give some example regarding

aggregation or composition relationship between two classes.

Some realistic examples that will be really nice otherwise in couple of minutes we will

see, some examples of aggregation and composition relationship and what is the

implication of this with respect the implementation of the software. The fourth type of

relation between classes is dependency, so one class may depend on another class we

will see short while from now, that when does a class is said to depend on another class

we will see that there are various reasons why a class may be depended on another class.

Now let see this 4 type of relationship in some detail.

(Refer Slide Time: 09:35)

First we will look at the inheritance relationship, inheritance is a powerful mechanism in

object orientation it allow just to define a new class called as a derived class by

extending the base class. Using the inheritance we can represent the generalization

specialization relationship. The base class is the general class and the special class the

specialization classes they add few more attributes are methods to the general class.

While, we can add few more attributes to the general class, but we can at the same time

redefines some of the existing classes that is called as overriding sorry.

Some of the existing methods of the base class and that is called is overriding. Just look

at this example the library member class is a base class, there are different types of

library member, but some characteristics are common among them for example, all of

them has a have a library membership number. All of them can issues certain number of

books, they can return book and so on. So, the common characteristics among different

members here are represented as the base class and the faculty, student and staff these are

the child classes are the derived classes. And each of these add few more attributes and

operations to the base class and you have another hierarchy here, that the students can be

undergraduate student, postgraduate or research students.

So, the characteristics that are specified here in the student class that is the method and

attribute are all sheared or all of these classes here they have the same characteristics the

attributes and methods, but each of these add few more attributes and maybe methods,

this is an example of inheritance.

(Refer Slide Time: 12:14)

A dog is a animal, a cat is a animal we have underlined the ISA here to denote that

sometimes the inheritance relation is also called ISA relation. Animals we know they

have some characteristics, there living, they take food, the die etcetera and those

characteristics are all said by the different animals. So a dog is a animal, a cat is a animal

and therefore, sometimes the inheritance relationship is called as a ISA relationship.

(Refer Slide Time: 13:11)

A derived class inherits the attributes of the base class and this helps in reusing the code

the library member may have some attribute and method, we do not have to repeat those

rewrite those again in all this classes these are automatically inherited. When we use the

inheritance mechanism and that helps in code reuse, you can have multiple inheritance.

(Refer Slide Time: 13:51)

In which a class may inherit from two base classes, so the research student has the

characteristic of a student and also a stuff so this is called as the multiple inheritance.

(Refer Slide Time: 14:10)

Now, let us see how inheritance relationship can be implemented in Java, of course, if

you are familiar with other object oriented programming languages that will be very

similar to here just a small change in the keywords and so on. But the concepts are very

very similar let us assume that this is the class hierarchy that we have in our design.

Person is a class and we have name and date of birth is the attributes and employee is a

derived class, employee is a special type of person. So this is a general class, this a

special type of person is an employee which has not only the name date of birth it has

few other attributes as well for example, employee id, salary, start date for the

employment and so on.

How do we write the java code for this? That is very straight forward we write the

definition for the class person which is private string name, private date of birth. So,

straight away we can translate this into the code similar is with C plus plus or any other

object oriented language and for the derive class we use the keyword extends in Java.

The class employee extends person and if you write extends then automatically name and

date of birth are inherited by the person class and we have few attributes that are defined

here we write them here private employee id, private int salary, private date start date.

So, inheritance implementation is straight forward we have a keyword extends in Java

and we can very easily implement such a relationship in Java by simply using the

extends relation, but we will see that the other type of relationship between classes like

association, aggregation and so on. We do not have single keyword using which you can

implement those relations we need to do something else, but it would have been nice are

very simple if we just had a keyword like a extents these the simplest implementation of

a relationship by just using a keyword. And once we create the two classes here

employee class we can instantiate an employee class into objects write we write

employee, an employee is equal to new employee. So, the new keyword helps us create

the object of employee class and then name of this object is an employee.

(Refer Slide Time: 17:41)

Let say we have we want to create objects, my rectangle and my box. We have the

classes rectangle and box now we want to create objects my rectangle and my box. We

write rectangle my rectangle is equal to new rectangle and we give the dimensions of the

rectangle 5, 3 as the argument to this constructor and box my box is equal to new box

and we give the arguments here.

So, when we create this we write new rectangle 5, 3 the attributes in this object are

assign the value 5 and 3 and once we write the new operator that is we create an instance

of this class we get handle here that we called as the identification or the identify of this

object. Normally we call it as the object reference, so my rectangle once you say new

rectangle 5, 3 my rectangle is the object reference or the reference for this object that we

created. Similarly once you say that my box is equal to new box, my box becomes the

object reference for the box object, but the box object is a inherited object, it is a derived

class and it inherits the attributes and methods of the base class. And therefore, implicitly

we can think that the attributes length and width defined in the base class arrival

represent in the derived class and you have this new attribute which is added here is the

height which is also present.

(Refer Slide Time: 19:54)

So, this is another example of a generalization, specialization. There is an example of a

multiple inheritance the feline class inherits from both mammal and quadruped and then

from the feline class we have the tiger, lion and puma has the derived classes, lizard is

derived from quadruped.

(Refer Slide Time: 20:31)

Suppose someone has drawn this inheritance relationship chassis, engine and door are

derived from class. Is this correct, does it appear all right, this inheritance hierarchy that

chassis, engine, door a derived from the car class? No this is not correct it is a wrong

generalization, we have said that the inheritance relationship we characterized by ISA

relationship we cannot say that chassis is a car, car is not chassis, engine is a car is not a

proper generalization and similarly door is a car is not a proper generalization. So this is

not a proper generalization specialization relationship and we cannot represent it using a

inheritance relationship later we will see that this is actually an aggregation relationship.

So, to check whether the relationship is correct or not we can use this test that we can say

that whether a chasses is a car, engine is a car, if it is a general class and these are special

class then the easier relationship hold. For example, library member UG member PG

member and staff member and always a UG member is a library member, PG member is

a library member and staff member is a library member. So, the ISA relationship holds,

here it does not hold so this is a wrong construction of generalization specialization

relation between these classes.

(Refer Slide Time: 22:41)

We often have many classes derived from a base class, but it is a good idea to use a

discriminator based on which these derived classes are defined for example, this the

library books are can be issuable books or reference books. So it is a good idea to write

the discriminator based on which this set of classes are derived and this set of classes are

derived that helps in readability and the supported by eoml to write the discriminator

while constructing a complex class hierarchy, that helps us to understand the hierarchy

better.

(Refer Slide Time: 23:34)

Inheritance is a powerful mechanism promotes reuse, simplify the design and also easily

implemented in code just by using a keyword, but in spite of its many advantages if

indiscriminately use inheritance it will result in poor quality of programs. For example, if

you have a very deep class hierarchy then it is has poor coercion and coupling because a

large number of methods are visible the in the leaf classes and that leads to tight coupling

and it makes it very difficult to understand the leaf classes, because they have too many

methods and we need to exam in what are the methods it has inherited. So, inheritance

should be used with some question.

(Refer Slide Time: 24:57)

Now, let us look at the second type of relationship between classes, this is the association

relationship we need to discuss some examples of association relationship and also we

need to answer this question that how are these implemented in a program. In case of

inheritance we saw that there are simple keywords in all object oriented languages

whether it is Java, C plus plus or any other language the inheritance relationship is

straight forward implement.

But how does one go about implementing the association relationship, one thing that we

must remember about the association relationship is that, when two classes are associated

the corresponding objects can communicate with each other as we will look at the

examples it will become clear. One class can invoke the methods of another class, but to

able to invoke the method of another object, the object must somehow store the id of the

other object otherwise how will it invoke, the method of the other class. And that holds

the idea of how to implement an association relationship will seen soon look at that. The

association relationship is usually binary, but it can be higher degree association like

ternary or in general can be n-ary let us look at an example of a association relationship.

(Refer Slide Time: 26:41)

Let say VCR a video recorder is the associated with the TV and we can have a remote

which is associated with the VCR. So we can the remote object can give command to the

VCR the VCR can record what is being played on the TV. So, the TV object is associated

to the VCR object, because the VCR object receives signal from the TV object and the

VCR main term be associated with a remote and it can receive command from the

remote. The way we represent the association relationship is by drawing line, there are

different ways we can draw the line sometimes, we draw an arrow sometimes, we just

write this line. We will see when we draw an arrow and when we draw a line and we

write here the multiplicity and we write the reading direction here.

We will see the details of how to represent the association relationship what are the

implication of just drawing an arrow, just drawing a line and then we write the name of

the association here on this line or arrow. And we write the reading direction say that the

VCR is connected to TV it helps us to read or we can read the TV connects to the VCR.

The remote commands to the VCR or we can read as the VCR receives commands from

the remote.

(Refer Slide Time: 27:57)

So, we have reach the end of this lecture and we will continue in the next lecture to

discuss about how to represent the association relationship, the multiplicity and so on; as

per the eoml syntax. We will stop here and continue in the next lecture.

Thank you.

