
Software Engineering
Prof. Rajib Mall

Department of Computer Science and Engineering
Indian Institute of Technology, Kharagpur

Lecture - 33
Overview of Class Diagram

Welcome to  this  lecture.  In  the  last  lecture,  we had seen  how to  develop  Use Case

models, the graphical model and also how to decompose the complex use cases using the

3 relations; generalization, specialisation and include and extend. In this lecture, let us

see how to document a use case because just  the graphical  model by itself  does not

convey the complete picture; it just tells about what are the use cases and if they are

decomposed into some use cases who are the actors and so on.

But details of the use cases are not given and that is the reason why in a use case model

not only the graphical use case model should be given, but also the text description. As

far  as  the  text  description  is  concerned  UML does  not  impose  any standard  way of

documenting the use cases. But then, some good practices have come up and those are

normally followed even if even though there is no hard and fast requirement to follow

the same documentation technique. Let us see how to document use case. 

(Refer Slide Time: 01:44)

The documentation that is recommended by Alistair Cockburn in his “Writing Effective

Use Cases” book says that every Use Case we must have the following documentation to



accompany. The name of the use case; the actors that would use the use case; the trigger

when the use case will start to execute; the preconditions that is what must hold before

the use case can be executed; the post condition that is after the use case completes what

conditions  must  hold;  the  mainline  scenario,  this  is  the  typical  interaction  sequence

between the computer and the user and the alternative flows.

(Refer Slide Time: 02:48)

Will see what are the different scenarios and what is the mainline scenario the alternative

flow and so on. In every Use Case there is a normal interaction between the computer

and the user and sometimes there are alternative flows. Let us take an example to explain

this. Let us assume that we have a bank ATM. Let us take the case of a bank ATM. The

user  goes  to  the  bank;  inserts  the  ATM  card  and  then,  the  system  prompts  for  the

password or the pin code the user enters the pin code; the computer prompts do you want

to withdraw from savings account or current account?

User choose a savings account and then the asks for the amount user enters let say 2000

rupees and then the system asks do you want a printed receipt and the user enters yes and

then, the cash is dispensed and the printout is generated and the use case terminates. So,

that is like a mainline scenario; but then sometime the user when it prompts to the user

please enter the amount the user enters 550 rupees and then, it prompts says that please

enter in multiple of 100 rupees. So, again the user enters and so on.



Sometimes as it enters 2000 rupees and then, it says want a printout and so on. But then,

the system generates a message out of cash and it terminates. Sometimes, it proceeds and

the amount is entered and it says that account does not have sufficient balance and it ends

and so on.

So, the mainline scenario is the typical interaction sequence between the user and the

computer. The alternate scenarios occurred, but these are not so frequent. The frequent

case is the mainline scenario, but then there are other scenarios the which we call as

Alternate flows or Alternate scenarios may occur. While documenting a use case we need

to document not only the mainline scenario, but also the alternate flows. Let us see how

do we go about documenting that.

(Refer Slide Time: 06:20)

Let  us  take  the  ATM  money  withdraw  example.  Here,  document  the  actor  is  the

customer;  the  precondition  is  that  the  ATM  must  be  switched  on  ready  to  accept

transaction. ATM must have at least some cash it can dispense; otherwise, it would be

displaying out of cash. ATM must have enough paper to print a receipt. So, this is the

precondition before the user can start to interact.

The post condition is that the current amount of cash in the user account is the amount

before withdraw minus withdraw amount. So, if the use case completes successfully, the

post condition says that what must hold true that is the amount in the balance in the



customer’s  account  will  be  the  amount  before  the  withdrawal  minus  the  withdrawn

amount and receipt was printed on the withdrawal amount.

(Refer Slide Time: 07:37)

And here, we list the mainline scenario and alternate scenario. The different scenarios

basically are interactions between the actor actions and then there is a corresponding

system action. The customer inserts the debit card; the system verifies customer Id. The

customer  chooses  withdraw  system  asks  for  an  operation  time,  operation  type;  the

customer enters the cash amount.

The system asks for withdraw amount; the system checks if withdraw amount is legal;

system dispenses the cash. System deduces the withdraw amount from the account and

system prints a receipt. The customer takes the cash and the system ejects the cash and

the card. This is the mainline scenario; but then there can be several alternate scenarios.



(Refer Slide Time: 08:40)

Let  see,  how  do  we  document  the  alternate  scenario.  In  the  step  3,  the  customer

authorization fails; then the customer has entered a wrong pin code. Then, display an

error message; cancel the transaction and eject the card. So, this is one alternate flow.

Another alternate  flow can occur at  step 8,  the customer has insufficient  fund in the

account; display an error message and go to step 6. Step 8, customer exceeds the legal

amount  that  can  be  dispensed  for  customer  may  be  50000  is  the  legal  amount;  the

customer  entered  55000;  display  an  error  message  and  go  to  step  6.  There  can  be

exceptional flow of events. For example, while the transaction is going on power failure

and then the transaction is cancelled and the card is ejected.



(Refer Slide Time: 09:41)

Let us take another example of a Use Case and how it can be documented. So, this is the

change flight in a flight reservation system. The actor is the traveller. Precondition is that

the traveller has logged into the system and selected the change flight option. The basic

course or the mainline sequence is that the system retrieves the travellers account and the

flight itinerary from the client account database.

The system asks to select the segment that wants to change system asks the traveller for

the new departure and destination information and if the flight is available; then do the

change  and  then  the  system displays  the  transaction  summary. This  is  the  mainline

sequence and then, there can be alternate sequences if there are no flight available for the

segment; then error message is displayed and so on.



(Refer Slide Time: 10:40)

So, we just saw some templates for documenting use case, but UML gives flexibility in

not following the exactly if the same standard.

Same template, we can tailor it, but then the one that we discussed are considered as

good practices and many developers follow that. Let us see some guidelines for writing

effective Use Cases. The Use Case is a document to be read by a large number of stake

holders and therefore, it should be very readable. We have to use simple sentences and

we must have separately this actor action and the system action documented because as

you can see here the system and the actor their actions alternate the system initially the

actor initiates the system responds and asks for something the customer enters it. The

user enters the system responds and so on.

And therefore, we must write it in the same way what does the actor action and what is a

corresponding system action? We should not mix that up that get the amount from the

user and give him the receipt; we should not club both of these prompt the user for the

amount, the user enters the amount; then the system action is dispense the account and

print the receipt. Also we should not try it trivial steps in the use case documentation. For

example, the user clicks a key that is not a progress not say tangible progress in the use

case  execution.  So,  every  step  that  we  document  for  use  case  must  result  in  some

tangible progress in the use case execution.



(Refer Slide Time: 13:03)

Now, let us see that given a problem description; how do we identify the use cases. A

popular way is to find out from the problem description who are the actors and then, for

each actor we can find out what are the functionalities that the actor invokes and then

against that actor, we had seen the case of the library software. We identify at the actor is

the member from the problem description, the librarian and the account and then for the

member, we can identify the use cases that the member needs to execute that is a query

book, issue book, written book.

Similarly the librarian create member, delete member, create book, delete book, cheque

fine etcetera and the account check the current balance, enter brook procurement price

and check the fine collected and so on; membership fee collected and so on. So, this is a

popular way to find out what are the, who are the actors and each actor needs to invoke

which functionalities. 

The second way is a event based, where we identify what are the invocations of the

system. What events the system must respond to and then we relate these events who

generate these events and then what are the use cases that execute? For some systems

like let say the embedded controllers and so on. It is easy to identify the events based on

the state machine specification of the controller and then, relate who are the actors who

generate that event and what is the corresponding use case. So, for some systems like



embedded controllers and so on event based may be preferable, but then the actor based

one is very popular across all systems. 

(Refer Slide Time: 16:04)

Now, let us see one example. This is a course registration software; let me just read the

description of the software and let us see how do we go about identifying the actors, the

corresponding use cases and then document it. At the beginning of each semester each

professors shall register the courses that he is going to teach. So, into the software each

professor  will  enter  the  course  details  that  he  is  going  to  teach  and  then,  once  the

professors are entered their courses they will teach, the students can select up to four-

course offerings. 

And during the registration, a student can request a catalogue showing various course

offerings for that semester. Information about each course professor, which department,

what are the prerequisites would be displayed at part of this catalogue. The registration

system sends information to the billing system, once the student completes registration.

So, that the student can be billed for the semester based on the which courses he is

taking. 

For each semester there is a time period during which dropping of courses is permitted

and the professor must be able to access the system to see which students have signed up

for their course offerings. How do we go about developing the use case diagram for this



problem description?  We need to  identify the actors,  which is  very easily  identified.

Here, it says that the professor shall enter the course details.

So,  the  professor  is  a  actor. The student  can  select  up  to  four-course  offerings.  The

student is a actor and the registration system sends information to the billing system. The

billing system is a external software may be running on a different computer or at least it

is different software and this is also an actor. So, we can start identifying what are the use

cases that each of these actors can invoke. The processor can register the course detail;

the student can select course offering. 

And during the course offering, during selecting a course he can request for a catalogue.

So,  this  is  the  optional  he  may  or  may  not  request  a  catalogue  and  looks  like  an

extension. So, course catalogue is an extension of the use case which is registered for

courses. For each semester there is a period of time during which dropping of courses is

permitted. So, that dropping of course, is a use uase for which the student is the actor

because the student initiates it; but how do we represent that there is a period of time

during which dropping of courses is permitted.

When there is element  of time here,  we need to have an external  system which is a

calendar or a time that is the typical convention even though it is the system time. But if

we represent a calendar actor or a timer actor time actor, then the design process become

simpler as we proceed will see; but then, at the moment whenever there is a element of

time, we will have another actor which is a calendar and this is a use case which the

professor will access to find which students have signed up.

 Now, let us see this is the overall diagram that we discussed. Now, let us see how do we

draw the diagram.



(Refer Slide Time: 20:46)

So, this is the diagram, the professor registers the course offering. He can find out how

many  students  have  which  students  have  registered  and  the  student  can  register  for

courses which is less than 5 courses. We just write here in the form of a constraint on this

line the communication line and during the course registration on successful registration,

the billing system is sent information to generate the bill and we are written here external

system, the billing system.

And for dropping courses, there is a time limit and we have the calendar as an external

actor and then we have written the constraint here if today is less than set date. So, as

long as the deadline is not passed the student can drop a course. 



(Refer Slide Time: 21:50)

Scott Ambler, in his book in 2005, gave some style notes how to document a use case.

Well, all use cases must be verbs and even though, when we document the different use

cases; when we document the different use cases, even though we can document that in

any order. But according to Scott Ambler as far as possible we must have an ordering of

the use cases in the diagrams and that should correspond to the order in which these use

cases are in invoked that helps in understand ability.

For example first is query book, issue book, written book and so on. We must order the

use cases from top to bottom to imply timing wherever possible and the primary actor

must be on the left. For example, if the student is registering for the course, the student

initiates the registration this is a primary actor; whereas the external billing system is a

secondary actor, the primary actor must appear in the left;  the secondary actors must

appear in the right. 

The relation between the actor and the use case drawn by just a line this do not use an

arrow and whenever there a time we must have a “time” or “calendar” as an external

actor.  External  system which  is  the  actor  and  if  there  is  a  interaction  between  two

customers. For example, the user gives some information to the clerk and the clerk enters

it.

We do not have to show that; we need to only represent the information that the actors

input to the system. The interaction between actors, we do not have to capture here in



this diagram and when decomposing the use cases, the complex use cases, we should not

decompose into a very deep nested sequence of use cases. The include and extend should

be rarely nested to 2 level deep. The use case names should be in the perspective of the

users we should use the users language.

(Refer Slide Time: 24:36)

The use cases should be simple to understand and this can be decomposed wherever

required  and also  remember  that  these  are  requirements,  the  use  cases  are  basically

functional requirements and just like the requirements they focus on what aspects and not

how or the design aspect same holds for the Use Case diagrams as well.



(Refer Slide Time: 25:32)

We should not have a Use Case diagram that has too many use cases that becomes very

confusing; when we have a situation where we have too many use cases we should use

packaging.

(Refer Slide Time: 25:49)

In Use Case packaging we use this  folder  symbol which  is  supported by UML and

related use cases we can put inside the package and we write the name of the package

here, all the use cases pertaining to the accounts actions.



For example: printing the balance sheet, making payment, receiving grant etcetera. These

are in the accounts package. We can use the packaging to reduce the number of use cases

in a Use Case diagram.

(Refer Slide Time: 26:36)

Just see here the same one; we can just have the ordering here. The ordering as one of the

package; the ordering related use cases are here. The customer maintenance related use

cases are here and then, in a separate diagram we can show the use cases in the ordering

and that makes the diagram easier to understand. 

(Refer Slide Time: 27:03)



So, far we have been looking at the use case diagram that is a crucial diagram; but it is

also one of the simplest diagrams to develop. But then, it requires little bit of skill with

respect  to  identifying  the  use  cases;  with  respect  to  decomposing  the  use  cases  the

documentation  of  each  use  case.  And  request  you  to  please  practice  some  of  the

assignments that we will give on developing the use case diagram to specific problems

because  just  by  understanding  the  concepts  here,  you  may  not  get  the  expertise  to

develop a use case model.

You need to practice and several problems to develop the expertise of developing good

use cases. Now, let us look at the class diagram. We know that classes are entities with

common features, this have attributes and operations. Each class can be instantiated into

objects; all objects have the similar attributes and operations. The classes this typically

accepted that these are solid outline rectangle with compartments and the compartments

are name, attribute and operations.

But  we  will  see  that  there  are  various  ways  of  representing  the  class  diagram;  for

example,  you might  just  write  the name of the class.  We might  write  the name and

attribute into compartments or you might write all the name, attribute and operations.

We are almost at the end of this lecture and in the next lecture, we will discuss the class

diagram in more detail. How to document a class diagram; the class relations and how do

you represent that in a class diagram, we will discuss in the next lecture.

Thank you.


