
Software Engineering
Prof. Rajib Mall

Department of Computer Science and Engineering
Indian Institute of Technology, Kharagpur

Lecture - 31
Use Case Modelling

Welcome to this lecture. In the last lecture we had discussed about introductory topic on

object oriented design. And, we had said that UML the unified modeling language has

become a defector standard for object oriented design. We saw that UML has evolved

over the years from the techniques that existed in those days, and we also saw that

modelling using UML consists of creating many types of diagrams.

And, the first diagram to be constructed while modelling problem is the use case

diagram, use case diagram is the central diagram because that portrays the customer’s

view of the system. And therefore, that is the model the use case model needs to be

constructed first and all other models that are constructed subsequently must confirm to

the use case model. Let us first discuss about the use case model how to construct, the

use case model for a given problem?

(Refer Slide Time: 01:38)

And, then we will discuss about the other models that need to be developed as part of

software development exercise, let us first look at the use case modelling.

(Refer Slide Time: 02:01)

The use case modelling captures the users view of the system and it consists of a set of

use cases. The use cases are something similar to a high level requirement, but then here

we have a graphical formalism to model a use case. And, also have a text description for

each use case that gives the specifics or the details of what happens during execution of

the use case.

There are various models that need to be developed as part of a software development

exercise, the structural view in terms of class diagram, the behavioral view etcetera, but

the see here that we have drawn the users view at the centre to imply that this is the most

fundamental view of the system, it captures the requirements of the system as the user

views the system and that is basically the requirements.

And therefore, for every development the use case model is the one to be constructed

first. And, once the use case model is developed the other models can be constructed, but

they must confirm to the use case model. Another, thing we need to point out that even

though this is part of an object oriented development an object oriented design technique,

but then the users view is not really object oriented, it captures the various functionalities

that the system performs. And therefore, we can say that all other models are object

oriented model in the true sense, whereas the use case model is a is not a object oriented

model actually we do not show the objects and so on.

It is in fact, a functional model, where we model what are the functions that we

performed using the system.

(Refer Slide Time: 04:30)

But, then what exactly is a use case, a use case as we had said is a similar to a high level

requirement, but then the way it is defined here is a way in which the system can be used

by users to achieve some specific goals. That basically is a high level requirement for

example, let us say a library software, it has various categories of users the members of

the library the librarian the accounts department and so on.

The users of the library that is the members they use the software to issue book, return

book, renew book, search for book etcetera. So, we can say that those are the use cases

for which the user is the member. As far as the librarian is concerned the librarian also

uses the library software, but for him he does member record creation, member record

deletion, book record creation, book record deletion, checking the availability of a book

etcetera.

So, those are the use cases or the high level requirements from the perspective of the

librarian. And, similarly for the account checking the total investment in the library, the

total fines collected over a period and so on. So, the use case is similar to a high level

requirement, but here we represent it differently we have a graphical representation of a

high level requirement, which you call as a use case and also we have a text description.

As is any functional requirement it only details the functional behavior, without

revealing the internal structure of the system, but as we will see that each use case has a

set of scenarios.

We will see what are the scenarios for each use case how to identify and how to

document those scenarios as we proceed in this lecture.

(Refer Slide Time: 07:22)

As we were just mentioning, that for any software we can ask the question that how do

the users use it. Each software has various categories of users, we just took the example

of a library information system and we said that the users are the members the librarian

and also the account. As far as the members are concerned they issue book, query book,

return book, renew book and so on. As, far as the librarian is concerned the use cases are

create member add book etcetera.

So, given any software we can consider it to be like a black box and we can think of it as

offering various functionalities to the different categories of users. So, if these are the

functionalities being offered by the software and the different users for those software,

those functionalities. We can represent it in this form these are the functionalities, we

will write the name of the functionality and also represent the specific users for those

functionalities.

And, this becomes the graphical representation of the use cases, for this example we will

write issue book, query book, return book, etcetera. As, the functionality for the member

and for the librarian create book, add book, sorry create member add book, delete

member record etcetera. So, those are as far as the librarian is concerned and this is the

member and this is the account.

So, we get a very impressive view a very simple view of a system, where just by looking

at the diagram we can relate that what does the system have to offer to different

categories of users, who are the users? And, what are the different categories of functions

that they can perform using the system.

(Refer Slide Time: 10:20)

But, one question that if we identify the different use cases. Can I say that all use cases

are independent of each other? For example, let us take about the library information

system, you can issue book, return book, renew book, etcetera. Let say from the

members perspective library members perspective, but are these different use cases really

independent, because we drew them as independent use cases they have no dependencies

that is what we drew them separately so, no dependency between them ok.

To answer this question is that as far as a first level view of the use cases are considered

they are all independent, but if we broke down there may be dependencies. For example,

issuing a book by a member may be dependent on another member, whether he has

reserved.

So, if a member reservation use case there will be a dependency of the issue use case

with the reservation use case, because if the same book is reserved by another member

then it cannot be issued out. So, if we look at the details of various use cases, we might

see that there are dependencies, but then we do not show those dependencies here in the

use case diagram, but it is good to remember that there can exist dependencies between

different use cases.

We just saying about renew book and reserve book this is a another example actually,

that if somebody member wants to renew a book, then he goes and presents the book, but

then in between if another member has reserved that book then he cannot renew it. So,

the success of the renew book depends on whether another member has reserved the

same book. So, there is a dependency of the reserve book and the renew book is

dependent under reserve book.

(Refer Slide Time: 12:59)

This is the model very simple elegant model here for the use case model. Every use case

represent by a ellipse write the name of the use case. Typically the name of the use case

is a verb, because each use case depends functionality or action being performed. Write

the name of the system here and then write the use cases and the different user’s different

categories of users actually, because there may be many players, but then we just

represent the class of players here. Similarly, for a library system there may be many

members, but we just draw one stick icon this called as a stick icon and write member

here.

So, that denotes the member category of users. And, there is a line connecting from the

user to the use case indicating that they are associated or the user can invoke the play

move use case. And, there is the system boundary it indicates that, what are the

functionalities that are available within this system boundary? If a system has multiple

religious then we can draw different boundaries here for example, I might draw a

boundary here. And, write that let us say find expert player or display expert player. In

the next version I will write here Tic-tac-toe game version 1 and Tic-tac-toe game

version 2 display expert and this will be the user is a administrator.

The administrator can display all the expert category of players and this will be done in

the version 2. So, this boundary specifies all the functionalities there can be other

functionalities. The functionalities that will be done in version 1 and the functionality

that will be done in version 2, but in any case the boundary can be drawn to indicate even

if there are no versions to indicate that what are the functionalities that are available?

But, sometimes the boundaries are also not drawn as you can see in different books

literature tools and so on sometimes the boundary is not drawn only the use case and the

actors.

So, the boundary is not really a mandatory requirement for modelling a use case it is the

ellipse indicating the use case the association relation and the user the boundary is

optional, but it helps to show clearly what are the functionalities are available and we

normally write the name of the software.

(Refer Slide Time: 16:55)

But, before we look at the netegrity of the use case diagram let us see, what are the uses

of the use case diagram? We can easily guess that it serves as the requirement

specification very elegant one, it first gives a graphical view of all the requirements and

then it is also accompanied by a text description, which gives the detailed behavior

associated with the requirement. That is what does the system? Do given a input how

does the system behave or what does the output that it produces?.

But, that is understandable that we identify the requirements which are the ellipses, but

how do identifying the different categories of users? That is the different categories of

users are called as actors in the UML terminology, how do how does indentifying the

actors help in developing the software, does it have any rule? Yes, it has rule when we

identify different categories of users, we can imagine the different user interface that

each category needs, let us say software has factory workers as a category of user and the

system administrator is another category of user.

The factory worker they need a very simple interface, because they are not very familiar

with the software very elaborate user interface where they are prompted to enter some

data they enter it and so on. Whereas, the system administrator he does not need a very

elaborate interface he needs a interface which would work very fast. So, he can just press

some keys and get things done very fast, whereas for the factory workers there will be

prompt for everything they need to do and that has to be in very simple format.

The second use of identifying the actors is that it also helps in preparing the user manual,

if you can identify who are the users the user manual can be developed by targeting that

those. For example, if factory workers are the user of the software, then the user manual

has to be written in their language in a very very low level description, very very simple

understandable description will be there, but if the software will be used by system

administrators and computer experts, then the user manual can be can assume certain

background knowledge and it can be presented at that level.

So, identifying the category of users is helpful as the development proceeds. First is in

developing the gui part and second is preparing the documents specially the user’s

manual.

(Refer Slide Time: 20:33)

The representation of the use cases we had seen it is drawn as a ellipse, the system

boundary is drawn by a rectangle, the users are called as actor, they are represented by

stick person. These are the terminologies we must be familiar while using the UML the

actor, the use case and the association relation between the actor and use case this is also

called as a communication relation or association relation so, drawn by a line.

Sometimes we need to represent an external system, because one software one system

might interact with another system. So, we can consider the other system to be a kind of

a user here and we represent the external system, using the same stick person icon and

we just annotate that which we call as a stereotype we just annotate that saying that it is

an external system.

For example, let us say in the game backup need to be taken for every game the backup

is made on a external system. So, we represent the external system using a stick icon, but

we just write here within these 2 symbols these are called as the (Refer Time: 22:26) and

this is called as the stereotype. The external system this is actually a system not a human

user, but then for simplicity we represent it as a stick icon and we write that, but the

backup the external system is involved and this backup is taken under external system.

(Refer Slide Time: 22:57)

Let us see what does the connection mean the line between the actor or the user and the

use case? The line indicates an association relation or a communication relation the user

invokes the use case or the user uses the use case, but then it does not indicate that he

will input some data etcetera. He may just invoke it we do not capture here data flow

unlike in a DFD, where we discussed about external entities and we are interested in

what kind of data they input? Here, we do not capture the data flow we just indicate here

that the user uses the use case.

(Refer Slide Time: 23:54)

This is another example, that the faculty is a category of user who can update the grade.

(Refer Slide Time: 24:12)

This is yet another example is a video information system, there are many use cases here

just represented one of the use cases to explain what is indicated when 2 actors are

connected to the same use case. It indicates that this use case can be invoked by both

these actors or for the success of the use case execution 2 actors are involved. One

implication is that if there is another actor here let say user they can independently

invoke the use case, but here the implication is that both need to participate. The clerk

when he rents the videos the help of an external system is taken for credit authorization.

So, before a person who wants to rent the videos presents his video BCR, the clerk text

that and enters the details and checks whether the member is creditworthy by using an

external system automatically it is checked as part of this use case. And, then the rent

video will be success otherwise, if he is not creditworthy the rent video will say that the

video cannot be issued. So, we will often draw multiple actors using the same use case

they collaborate for successful execution of the use case.

(Refer Slide Time: 26:12)

This is another example here, this is a telephone order system here this commerce

application we have the customer can place order through telephone, can check the status

of the order, the customer can place order and check the status of the order and also

while placing the order he needs to establish the credit possibly by entering the credit

card number etcetera. The details of those what really happens will be given as separate

text description.

But, here by looking at the diagram we can see that the customer can invoke 3

functionalities of the telephone order system and check the status place order and

establish the credit. The salesperson can help in placing the order and the salesperson

also can check the status the salesperson can himself or herself place an order the

shipping clerk fills the orders and dispatches the supervisors he is involved in

establishing the credit.

(Refer Slide Time: 27:41)

So, far we have looked at some very basic concepts in use case modelling looked at the

graphical representation of a use case diagram.

Right now, we are nearly at the end of this lecture we will stop here and in the next

lecture we will discuss about some details of use case modelling namely; how to

decompose a use case sometimes the use cases are complex and we need to represent

them as separate use cases by decomposing them, we will see how to decompose? What

are the different techniques? And, we will also see the text description how to write the

text description for a use case. We will stop now.

Thank you.

