
Software Engineering
Prof. Rajib Mall

Department of Computer Science and Engineering
Indian Institute of Technology, Kharagpur

Lecture – 03
Introduction- III

Welcome. In the last lecture we were discussing about the human cognitive limitations.

And we said that while developing large software this is a main problem that is faced.

So, software engineering which is essential for developing large software tries to restrict

this complexity so that the effort and time required to develop software is linear with the

size of the software. Otherwise, if the software engineering principles are not applied and

a intuitive approach like a build and fix module is used then the complexity growth; and

that is basically the translates into the cost, effort, and the time for development increases

exponentially.

And then we were discussing about how does software engineering principles tackle this

complexity. And we had said that there are two major principles involved: one is

abstraction and the other is decomposition.

In this lecture let us try to understand these two techniques well, because we will see that

in almost every technique that is used by software engineering these two are the basic

principle behind this. So, let us discuss this abstraction and decomposition techniques.

(Refer Slide Time: 02:12)

First thing is: what do you mean by abstraction? Abstraction is basically leaving out

unnecessary parts and focusing on some parts that we require. Given a large problem if

we look at the problem with entirety, then it appears very complex. We would like to

focus only one aspect of the problem and ignore the rest. So, that is basically called as

Obstruction. So, we focus our attention only one aspect of the problem and ignore other

aspects that are irrelevant to the point that we are focusing and this is also called as

Model Building.

Here we simplify a problem by omitting the unnecessary details and that is basically

constructing a model. Every abstraction requires construction of a model and a model

focuses on one aspect, and it ignores rest. For example: we have a very large and

complex building to be developed and we just want to focus that how will it appear. Then

we will construct a frontal model of a building, we ignore the rest what is its material it is

build off, what is the thickness what is the floor plan, internal design, and so on we just

focus on the frontal view of the building.

So to summarize this abstraction, every abstraction require some model building and a

model basically focuses on some aspect and ignores the rest.

(Refer Slide Time: 04:23)

Now, let us see some examples of how abstraction can help. Let us look at a hypothetical

case that you have been asked to develop an overall understanding of some country.

Maybe, you be later given the responsibility to rate the marketing department of some

company for a country let us say, and you have been asked that please develop a overall

understanding of a country.

So, to do this what would you do? Would you go to that country, move around try to

meet people, look at where are the mountains, where the rivers and so on? If you really

did that then it will be extremely complex task, it will take you tens or hundreds of year

still you will not be able to develop a proper understanding. You will not like to meet all

the people examine every tree in the country, river, mountain and so on. But what you

would really do is refer to various types of maps of the country.

(Refer Slide Time: 05:51)

The maps are basically model or an abstraction of a country. You will study the political

map, that focuses on the different provinces, capital, major cities, railway road

connectivity and so on. You will look at the physical map: we will try to find out the

vegetation, the elevation of the different places, rivers, sea shore and so on.

So, an abstraction can help solve the complex problem very easily. And one thing to

notice is that there are various types of abstraction for the same problem.

(Refer Slide Time: 06:48)

But then, is it that for every problem we can be happy with just one abstraction. Can just

one abstraction help us develop a full understanding of a problem? No.

Several abstraction to the same problem can be created. These focus on some specific

aspect and ignore the rest and the different types of models help to understand different

aspects of the problem. For example, in the case of a building we would like a frontal

model, we like to develop a prototype, we like to develop a floor plan, we like to develop

a thermal model of the building and so on. So, for the same problem various models can

be created each focusing on some aspect of the problem.

(Refer Slide Time: 07:54)

But, if the problem is extremely complex a single level of abstraction may itself be again

complicated. We would like to create a hierarchy of obstruction, so if these are the

problems we will create a first level abstraction, then we will create a second level

abstraction, then an abstraction of those second level abstraction and so on. And if we

look at the root level that will be the simplest representation. And as we understand the

simplest representation we might look at the next level of the models and so on.

So, for very complex problems we would create a hierarchy of obstructions. As we

proceed with software design we will look at hierarchy of obstructions that are used, and

in this hierarchical model a model at a any level is actually the details on which the next

level of model is built. So, a model is an abstraction of a lower level model and we say

that it is a implementation of the higher level model.

(Refer Slide Time: 09:32)

Let us look at abstraction of a complex problem; how a hierarchy can help, a hierarchical

set up models can help. Let us look at a very complex problem that you have been asked

to understand all the life forms that inhabit the earth. And remember there are billions or

trillions of species.

So, in order to understand this life form if you go on examining various species nobody

can complete the study in his lifetime. But then, what you do is you create an hierarchy

of abstraction.

(Refer Slide Time: 10:27)

If you look at a biology book you will find such an abstraction, because they want to

explain the reader the simplest way and they have constructed this abstraction that at the

top level there are only three types of living organisms: the animals, plant, and the

fungus. And then we have the mollusca, chordate, etcetera, etcetera. And there are further

hierarchies until you reach the bottom most. And these are the species I was just saying

that there will be trillions or species here.

So, for a complex problem the number of layers in the hierarchy can be large and each of

these layers is basically a model.

(Refer Slide Time: 11:29)

Let us just try to examine our understanding of what we disused, because this is after all

a very important principle what exactly is a model. We said that a model is a abstraction,

where we focus on some issues and we ignore the rest and several types of models can be

there for a problem. And if it is a complex problem we would like to create a hierarchy of

models.

But then the next question that we would like to answer is that why is it necessary to

develop a model, how does construction of a model help. The answer is straight forward

that understanding a complex problem is extremely difficult due to human cognitive

limitations. We would like to first understand the simplest form of the problem. That said

the top of the hierarchy and then we will look at the other models to develop an

incremental understanding of the problem.

The third question is give some examples of models that you are aware off, try to think

the different items that you deal with everyday and can you think of places where model

is used. What about the content page of a book, is it a model of the book, what about a

simulation experiment? Are we constructing a model and then trying to experiment on

the model as if we are experimenting on the real system and so on.

So, you may come up with hundreds of different models that we use in the real life.

(Refer Slide Time: 13:47)

Now, let us look at the other important principle which is decomposition. Decomposition

as it means is to decompose a complex problem into small independent parts, because the

problem in its entirety is extremely complex hard to understand it takes exponentially

large time, but we would like to break it into small problems. And then we look at

examine and understand the small problems and then once we put them together we have

the understanding of the entire problem.

Have you come across some such principles in daily life? Yes, there were many places

where we use decomposition. We divide a large problem into small parts, and then these

small parts are easily grasped and solved and then we put them together this solution to

the small parts and we have the solution to the full problem.

(Refer Slide Time: 15:06)

One of the very popular example of the decomposition principle is that if you try to

break a bunch of sticks tied together it would be extremely complex, but then if you

decompose it then you can break the sticks individually.

But then, one what a question when using the decomposition principle is that a arbitrary

decomposition of a problem may not help. We have to decompose such that each small

problem can be solved separately. If we want to let us say draw an elephant, if you

decompose in arbitrary ways it does not help. We thought that we will just draw each of

them separately and then we will put them together, but each individual part drawing that

may not be much easier.

So, we need to decompose properly; we will see how to properly decompose a problem

and then we can solve it easily. And this is also a corner stone in all software engineering

principles. Let us look at some examples.

(Refer Slide Time: 16:38)

Let us say a book is written half (Refer Time: 16:47) it is all mixed up. It would become

extremely complex for somebody trying to read the book. What he somebody get helped,

what will really help if that a book is nicely decomposed into different chapters each

chapter is independent: introduction chapter one deals with something, chapter two deals

with something else and so on. So, a chapter organization of a book is actually a

decomposition into a complex large thought into small manageable parts.

(Refer Slide Time: 17:31)

So far we saw that software engineering really helps when we have large problem to

solve as are the industry standard problems. But then, we saw that there are two main

techniques: abstraction and decomposition. Now let us see; what are the benefits that we

will accrue from study of the software engineering principles.

The first thing is that we will get the skills to develop the large programs, because the

intuitive technique of build and fix just try to program and then debug does not work for

developing large programs. We should be able to create models that is abstraction, we

should be able to decompose the large program, and that would be the way to handle

exponential growth in complexity. So, this is a very important skill that how do we use

the abstraction and decomposition principles in developing large programs.

As we proceed we will see the techniques that make use of this and help us create models

and also decompose a large problem. So, these are systematic techniques which will help

us in applying the principles of abstraction and decomposition.

(Refer Slide Time: 19:08)

The second most important reason why we need to study software engineering is that we

will learn systematic techniques. How to specify a problem, how to go about designing,

how to do the user interphase development, how to do testing, how to do project

management, maintenance, etcetera. So, these are the various specialized aspects of

software engineering and we will get a glimpse of this. And we will appreciate the issues

that arise in team based development.

(Refer Slide Time: 19:50)

Not only that for large projects software engineering principles will be useful; the skills

that we acquire will also help us in developing small programs in a better way, so that

even for small programs after studying the software engineering principles we will have

a higher productivity and we will be able to write better quality programs.

(Refer Slide Time: 20:18)

Now, let us look at a few basic issues before we look at the software engineering

principles. The first thing is that; what is the difference between the job and the project.

A job is something which is routine, we can easily do it; project involve some challenge

and exploration is where there is a uncertainty of outcome. A job is a repetition of some

well defined and well understood tasks with very little uncertainty. For example: I ask

you that go to the market and fetch a chocolate; yes, it can be done you know how to go

to the market, you know how to buy a chocolate. So it is a well defined, well understood

task can be easily done, there is no uncertainty you can definitely do it.

An exploration is a work whose outcome is uncertain. For example: I ask you that find a

cure for cancer. You will go about doing the work, but never know whether there will be

any success at all. Project is somewhat in between, between a job and exploration which

is completely uncertain and also completely deterministic at the projects where there are

many challenges, but then some of the work is also routine.

(Refer Slide Time: 22:08)

So, we know that what exactly is a project. A software development project consists of

some routine work as well as there are challenges in it. Now let us look at the different

types of software projects that currently the industry undertakes.

There are mainly a two types of software projects: one is product development projects

or generic software development projects and services projects or custom software

development. So, these are the two broad categories of projects: the product development

projects and the services. The total size of the industry for software development is

extremely large, several trillions of US dollar. And right now nearly half of this is about

developing and selling products and the other half is about services.

But then, the growth in services is much more than in products and soon we will have the

services market much more than the product market. And just remember that about 50

year back almost everything was product, there was hardly any services.

(Refer Slide Time: 23:58)

Let us examine the issues in the software product development project and the services

projects. The product development projects are basically packaged software. These are

available of the self. Anybody can order and buy this software. Already this, have been

made and you just have to buy. But then, if we look at the packaged software or the

software products there are two main types: one is the horizontal product, this meet the

needs of many companies. For example: let us say a word processing software or let us

say an operating system and so on. These are horizontal, because a large number of

companies and individuals are interested.

Whereas, a vertical market software a vertical product focuses only a small group of

companies. For example, let us say we may talk about the telecom domain and here there

are software for the telecom domain; let us say chemical plant simulation. So, that is

another vertical market or the banking software that is another vertical market where

only the banks are interested.

So, there are two types of products: one is the horizontal products. This is developed for

almost everyone might need this product, whereas the vertical only a specific type of

industry they would be interested in the vertical product. But a custom software projects,

these are the services. Here the software is developed at some user’s request let us say an

academic institution wants to automate its book keeping activities like let us say

academic grading, fees collection, establishment, salary, etcetera. So, it might get a

software it might request a company to develop its software, but then the company try to

develop it will not develop from scratch. It would usually have some solution for

educational software and then it will tailor only small parts of it to meet the requirement

of this specific educational institute. Every custom software is basically will have some

software generic version or let us say done for some customer and then it is tailored or

custom made for the other customers.

So, we will just stop here, the time is getting over. We will stop here and we will

continue from this point in the next lecture.

Thank you.

