
Software Engineering
Prof. Rajib Mall

Department of Computer Science and Engineering
Indian Institute of Technology, Kharagpur

Lecture – 28
Essentials of Structure Chart

Welcome to this lecture, in the last lecture we were discussing about structure design

some very fundamental aspects of structure design. We said that the structure design we

take the result of the structured analysis that is the DFD model and through methodology

we come up with the structure chart representation of the design. Therefore, the output of

the structure design is a structure chart. The structure chart is also called as the high level

design or the software architecture and this high level design is next transformed into

detailed  design,  well  for  each  module  we write  the  module  specification  that  is  the

algorithms to be used in the data structure. 

But towards the end of the last lecture we were discussing about what is a good structure

design and we said that a good structure design should have a layered structure and lower

layer module should not call a higher layer module and that will violate the principle of

abstraction. It will make it difficult to understand the design and also to debug. Now, let

us look at how a good structure design should look like.

(Refer Slide Time: 02:02)



So, if we apply structure design methodology we should typically come up with this kind

of a structure, where we have nice layering the different modules are arranged in layers

and also there is no back arrow here. That is not violating the principle of abstraction of

course, a module at a layer different modules can come called the same module and if

many modules are using a module then that is a library module, need to make it into a

library module and that can be called at different layers.

(Refer Slide Time: 02:55)

This is an example of a bad design, now see here even though we have some layering

here, but then there are back arrows here. So, a bad design is one where we either do not

have layering, so we just have arbitrary module structure and also there are back arrows

here. So, either layering is not present or back arrows are present this will be called or

this will be considered as a bad design.



(Refer Slide Time: 03:44)

Before we see how to come up with a structure chart representation, let us be aware of

what are the shortcomings of a structure chart.  If we have a call relation represented

between two modules we do not know here it just says that this module M 1 calls M 2

and M 3. But it does not tell us that how many times does it call M 2 does it call 5 times,

does it call 10 times and M 3 20 times etcetera. These information is not represented it

just says that it calls one or more times and also by looking at this representation we do

not know whether M 1 calls M 3 faster M 2 first. So, that information is not represented

here.

(Refer Slide Time: 04:52)



Just  to  complete  our  discussion we will  discuss  about;  how does  it  compare  with  a

flowchart, even though this is a bit of digression, but for sake of completeness we will

see that how does a module structure represented in a structure chart represent it differs

from a flowchart. We know flowchart is a very popular technique represents the control

flow as different statements are executed we draw them. It is a very popular notation I

am sure that everybody knows about this, that we have decision loops and so on. These

are sequential flow decision and back arrows would be loops and so on.

(Refer Slide Time: 05:59)

Given a flowchart representation the first thing we would notice is that the flowchart

does not tell about what are the modules, the module structure of the software is not

represented in a flowchart. The second difference is that the flow chart represents only

the control flow among the statements, but what data is exchanged between these is not

represented. And also in looking at a flow chart we can trace through how the execution

occurs.  So, there is a sequential  nature that is  we can identify after which statement

which statement etcetera get executed, but in a structure chart there is no such order and

this is suppressed in a structure chart.



(Refer Slide Time: 07:10)

Now, let us look at the methodologies to transform DFD representation into a structure

chart representation. Given a DFD model depending on the context or depending on the

specific  DFD we will  either  apply the transform analysis  or the transaction analysis.

These two are two different methodologies and therefore, by looking at the DFD we have

to  first  understand  which  methodology  is  applicable  and  then  we  must  apply  that

methodology  which  is  the  systematic  procedure  to  come  up  with  a  structure  chart

representation of a DFD.

So, let us now look at what exactly is involved in transform analysis, that is what is this

methodology and also in which situation or by looking at the given DFD model can we

make out whether to apply transform analysis and similarly we will look at what are the

steps in the transaction analysis. And also by looking at a given DFD can we identify

whether to apply transaction analysis to that or transform analysis to that. Over the next

few minutes we will be addressing that issue.



(Refer Slide Time: 09:09)

First  let  us  look  at  the  transform analysis  this  is  much simpler  than  the  transaction

analysis. Here given a DFD model we divide it into 3 parts input, logical processing and

the output. So, given some DFD model let us say this is a DFD model this is a DFD

model and of course, we will have the data annotations and so on and the annotations on

the processes name of the processes. We will divide this DFD into 3 parts based on some

observation which we will discuss we will label them as the input part and as the name

implies it takes the input from some processor some from user and it transforms it from

physical input to some logical form. For example, it may take input as a text and come

up with a tree structure or it  may take numbers and develop a table  structure of the

number.

And then the processing part that represents the processing that is done on the input data

and also from other data elements. And then finally, the output part it transforms data

from a logical  representation like a table  or a  tree or something and it  produces the

output which is nicely formatted output. So, from our discussion can consider that the

input  part  is  responsible  for  reading  the  input  and  carrying  out  on  that  input  some

validation and structuring into some logical form. The output part is does just the reverse

of this it has some modules, which convert the logical data into physical part and it takes

care of formatting and displaying it nicely for the user, the rest of the modules sorry rest

of the processes at the central processing.



(Refer Slide Time: 12:19)

So, the input portion of the DFD it converts input data so it reads data from another

process or from the user and converts from physical form to logical form; for example, it

may read characters from a terminal and store in a list. Technically we call its input part

as a afferent branch so this is the technical term the input part of a DFD is called as

afferent branch so far we are not really discussed that. Given a DFD model what do you

observe so that we decide to apply the transform analysis that we will discuss next. Right

now we are just looking at the methodologies of the transform analysis and we said that

given a DFD model we need to identify the input part which we call as the afferent part

or the afferent branch the efferent branch at the output part in the central processing ok.

So, this is the DFD model which is given to us and we see that this takes the input here

you see others are producing output or does not take anything just take the data here.

This takes the data  from another  process or maybe from the user and we can easily

identify that this is the input part at the afferent part.



(Refer Slide Time: 14:24)

These is the efferent part and just see here that this is the one that is producing output and

this we will call as the afferent part, the afferent part takes the input and it stores in some

logical  form we call  the logical  form as a board here.  And the output part  takes the

logical form and it produces a nice output properly formatted and the rest we call as the

processing part, central processing part 

But then you might ask the question that; so this is also producing some output why not

make it a output or afferent why not this part of the afferent branch. Here comes the

design alternative you can make it a afferent part, but then that will not become a good

design because the main tasks done by the check winner is a processing. Even though it

produces an output, but still we will consider as a processing part this is the discretion

that we have to use based on the experience. Just by observing that it takes input data

produces output data many times is not sufficient to label them as afferent or efferent

branch. We need to see what really they do the check winner even though it produces

some output, but the main work it does is processing and not really converting data from

logical form and just nicely displaying.

So, given a DFD we need to if we find that the transform analysis is applicable we divide

it into 3 parts the input part, the processing part and the output part which technically

called as the afferent branch, efferent branch and the central  transform. And once we

have done that we just need to represent that in the form of a structure chart. So, if this is



the input part this is the output part and this is the central processing part the ones that

are not part  of either  input  or output they become the central  processing part  or the

central  transform.  And  from this  coming  up with  the  module  structure  it  is  straight

forward we just draw root which we will call these 3 the validate move, display board

and let us say check winner or we will call it as process move. Process move we will call

it we need not use the same name we will say that get move process move and output

move output game.

So, the transform analysis is really very simple once you determine that it is applicable,

transform analysis is applicable to a DFD. We identify the input part. output part and the

central processing and in the structure chart we draw a root level and from there we call

these 3 modules.

(Refer Slide Time: 19:22)

So, the output of transform analysis is structure chart, where we just draw the 3 modules

corresponding to the afferent branch, central transform and the efferent branch.



(Refer Slide Time: 19:38)

As we have seen that it is not really totally mechanical it requires some experience and

skill even though input data to a process indicates that it should be part of the input, but

then many times it may not be. And similarly just because this produces output may not

be an output part, it maybe central transform or something. 

But  there  are  some  guidelines  how  to  identify  the  central  transform,  the  guideline

essentially says that it should not be involved in its main activity should not be to just

read  data  from user  and convert  it  to  logical  form.  And similarly  it  should  not  just

transform logical data into physical part here we trace the input, where the output cannot

be deduced from the input alone so that means, that it is not a input branch. In the input

branch we just read the input in any input branch the process reads the input and it does

some transformation and that.

So, the output is determined based on the input to this, but for a central processing unit a

central transform, it will use some previous data and so on and just by looking this data

will not be able to identify will not be able to that there will be no simple function to

convert this to this. And of course, the processes which just validate input etcetera these

are not central transform their part of the input part, but then if it does some processing

on the input like filtering, sorting, validating sorting and filtering these can be central

transforms.



(Refer Slide Time: 22:15)

 

So, once we identify the input part, output part and central transform we just represent

them three  different  modules  and have  a  called  relationship.  And once  we have  the

module  structure  like  this,  next  we  refine  it  by  drawing  any  module  that  may  be

necessary to carry out the work of this for example, we might see that we need to let us

say validate we need to let us say format it nicely and so on.

(Refer Slide Time: 23:16)

Once you have the basic structure of a structure chart, we factor the lower level modules

we might I add read write modules, error handling modules, initialization modules and so



on. And the final check whether we have correctly transformed a DFD into a structure

chart is to observe and see that each of the process belongs to either input part or the

output part are the central transform and they are represented on the structure chart. It

should not be the case that we have not included a process neither input, output or the

processing part.

So, once by the factoring once we have the basic module structure we add modules at the

lowest level to add read write modules read from terminal, read from file, read from

network and so on, error handling initialization etcetera.  So, we can add a couple of

layers here if necessary and these are the lower level modules which will be called by

this module to do some activities and this is called as factoring, where the basic skeleton

of the structure chart we might need to enhance it by factoring. 

(Refer Slide Time: 25:05)

Let us look at an example this is the simplest example we had discussed it earlier for

developing the DFD representation computing the root mean square. And the context

diagram if you remember we had a single user who would input data items and this will

return the result which is the root mean square.



(Refer Slide Time: 25:36)

And if you remember we had developed the level 1 diagram where we identified the

activities of the RMS software, that is accept input validate the number; whether they lie

between minus 1000 and plus 1000 and calculate the root mean square and display the

result.

(Refer Slide Time: 26:01)

And based on that we had come up with such a DFD representation, read data items and

these numbers are passed on to validate number either produces valid numbers and these

are passed on to the compute RMS, which produces the result and this is passed on to the



display. And the validate  numbers may also produce some error messages which are

passed onto the display.

(Refer Slide Time: 26:38)

And now if we apply the transform analysis we will make this as the input part, because

validate read etcetera are part of the input, display is part of the output and the rest are

the processing part. And for this we will draw 3 modules for the input part, output part

and the central processing part.

(Refer Slide Time: 27:14)



So, this we will get here get good data, compute solution and display solution and we

might factor get good data into get data and validate data. Observe that these two were

two different bubbles on the DFD representation. We have made them into two modules

here, but that is not really done all the time, it is just a guideline that if you have some

bubble many bubbles match mapped on to a module, then we need to factor that and this

will become the bubbles.

We are almost at the end of this lecture we looked at the transform analysis methodology,

to transfer a DFD into structure chart representation.  Next we look at the transaction

analysis  and  how  to  come  up  with  the  module  structure  for  a  DFD  based  on  the

transaction  analysis.  And we will  also discuss when to apply transform analysis  and

when to apply the transaction analysis.

We will stop now and continue in the next lecture.

Thank you.


