
Software Engineering
Prof. Rajib Mall

Department of Computer Science and Engineering
Indian Institute of Technology, Kharagpur

Lecture – 20
Modular Design

Welcome to this lecture. In the last lecture, we had looked at a some very basic issues in

software design. And, then it said that it is important to distinguish a good design and

from a bad design. And, then we are trying to characterize, what is a good design? And,

then we said that there are many factors that determine, whether design is good or bad,

but correct implementation of the functionalility that possibly the important requirement

of a good design, because unless it a correct design it is not a good design.

But, there are several design alternatives which can be we can come up with different

alternate designs, which are all correct, but then how do we decide which is a better

design. And, then we had said that understandability of a design is a major issue, we can

rate a design solution to be good or bad based on it is understandability.

But, there are 2 questions that are arise now. That how do we know? That, which design

is more understandable, because that a debatable question right, because somebody may

say that this design is more understandable other another person will say that no that is

not a very understandable design, we should be able to tell more formally what do you

mean by a understandable design?

And, also we have to address this question that how do we really come up with a

understandable design? So, let us proceed from that first let us look at the characteristics

of a design, that enhance it is understandability. So, the first characteristic is the use of

consistent and meaningful names.

(Refer Slide Time: 02:44)

Because, unless the names in the design are meaningful. In the problem context and also

they have been used consistently. Anybody, trying to understand the design will get

confused. All design components should have names, that corresponds to the problem

domain as far as possible and they should be meaningful somebody trying to understand.

And, the second characteristic of a design which is understandable is that it should have

in decomposed well into modules. This we call it as the modularity of the design, we

need to look at this question that what do we mean by modularity?

What is a well decomposed set of modules that we will do next, but then this is a

important characteristic that the design should be modular. And, the modules should have

been such that they have been well designed. Just arbitrary set of modules is not a good

design; the module should have been well decomposed.

And, also the call relationship should like a tree diagram; this is also called as layering.

Because, each layer of the tree is a implementation of the previous layer and a

specification further lower layer. This is a desirable characteristic we will see why little

later, that is not only that we should have a well decomposed set of modules, but also

their call relation should be represent able in the form of a tree like diagram.

(Refer Slide Time: 05:05)

Now, let us try to understand what we mean by modularity or well decomposed set of

modules. We say that a design is modular, if the modules are almost independent of each.

Other a set of modules are almost independent of each other, if they either do not call any

other module or they call very very less. If, a module calls another modules and it

requires many parts to be completed by other modules so, on then it becomes a

dependent module.

In a good decomposed well decomposed set of module the module should be as

independent as possible. It is not possible to have a completely independent set of

modules that no module interacts with other, but the interaction among the module

should be kept to a minimum. To understand why it is so, we will argue that this is

actually the divide and conquer principle.

A modular design uses the divide and conquer principle in the sense that to be able to

understand the design, we just take up each module and then we understand. And, if after

we have understood all the modules we have understood the design.

But, if the modules have complex relations that is each module calls several other

modules then while understanding a single module. We need to also see what it gets done

by the other modules and so on. So, as long as the modules do not interact much we can

understand them well, because based on the divide and conquer principle.

(Refer Slide Time: 07:34)

So, if the modules are independent, we can one by one you just look up the modules and

understand this, and this is based on the design and divide and conquer principle.

If a bunch of sticks are tied together and we tried to break it, then becomes very difficult,

but if we take one stick at a time and break it, then becomes very easy. It is thus the

similar thing here is that the modules one by one, we tried to understand we can easily

understand, but trying to understand all modules interconnected complex dependence

among modules, then if we start with one module we see that we need to understand

another module in the third module and so on.

(Refer Slide Time: 08:44)

Another requirement is a layering a tree like call relationship among modules is a

superior, where as in a arbitrary call relation is a inferior design. We will see why this is a

good idea the layering is a good idea; one is bug a localization if there is a bug it does

not, effect the other modules here only the once are below here.

Whereas here any bug can have effect on any other module. And, when you see the bug

system that is a failure we do not know what is the module, that is having the bug, but

here if we observe a bug here? We know that either the bug is here or in the previous one

it cannot be here we do not have to even look at this.

(Refer Slide Time: 10:05)

A bad design can come up with a very complex set of module interactions, it is not really

a set of modules and interactions it is best diagram for some other purpose, but I just

showing it for illustration, that it can look extremely odd and for one module to

understand it you might have to understand this module and then this module and then

this module and so on. And, we will end up to for understanding one we need to address

all the modules and it becomes very very difficult to understand we need a nice tree like

diagram.

(Refer Slide Time: 10:55)

So, far we said that modularity is a set of independent modules and the we said that

independent modules are actually not practical let all modules are independent. There

will be some interactions between modules, but can we give a more meaningful

characterization of modularity. We, had intuitive understanding of what is modular that

modules are almost independent of each other, do not depend too much represented in a

tree like diagram and so on.

Let us try to give a better characteristic or more precise characteristic of what is a

modular design?. And, we will do that in terms of 2 concepts; one is called as cohesion

and the other is called a coupling. A modular design should display high cohesion and

low coupling.

And, if we understand this terms cohesion and coupling and we can measure them, then

given a design solution, we can check whether it has high cohesion and low coupling

compared to another design which is given to us.

(Refer Slide Time: 12:25)

So, let us try to understand how to measure define cohesion and coupling? And of

course, the module should be layered a good layering a tree like diagram, we will see

that it has the low fan out abstraction; we will look at these concept as we proceed.

But, then let me just mention briefly, that in a tree like diagram. If, we want to let us say

understand this module, then we see that it calls only the lower modules and maybe we

will have to look at this 2. If, we want to understand this one then we do not even have to

look at this. We know that this will call only it is lower layer modules. And, there are no

there are no layer modules, then we can understand this we can understand these and

then based one that we can understand this and so on.

But, if it is a module structure like this, then we can do that to able to understand one we

need to just go across all other modules and so on, becomes very very difficult. So, a tree

like hierarchy, we have low fan out that is it depends on less number of modules. And,

also there is a abstraction, abstraction in the sense that these are you can consider these

modules or implementation of this module. And therefore, you start from the leaf layer

modules and then look at more concrete module and so on.

(Refer Slide Time: 14:54)

This is an illustration of how bad it can become if the modules are having lot of

dependencies. So, this there are no dependencies, this there are very less number of

dependency, but look at here that there are very high dependencies across modules and it

becomes very difficult to understand maintain this kind of design you would rather go for

this if not go for this.

(Refer Slide Time: 15:32)

Now, let us see the concepts of cohesion and coupling. If, we can determine the cohesion

and coupling of a given design solution, we can tell that whether that is a good design or

bad design. We say that a cohesive a module is cohesive, if it performs a single task or

function. If, it tries to do too many things then it is not cohesive on the other hand the

coupling is defined between 2 modules, 2 modulus are coupled if they dependent on each

other.

So, that they exchange some data items call each other and then, we say that these are

coupled modules, this is 2 important concepts cohesion it defined it for a single module.

(Refer Slide Time: 16:43)

And then we say that a single module is cohesive, if it performs a single task it does

many things then that is not really cohesive. Coupling is that how much dependent one

module is an another module. If, they exchange too many data items call each other

frequently exchanging data items and so on. Then, they are highly coupled, but if they do

not call each other there is no data exchange between 2 modules we say that these 2

modules are independent.

And, if that is a characteristic of almost every module, we will say that there is a

independence. And, similarly they are cohesive there is a high cohesion and low coupling

then we say that this is a good design.

Now, let us look at how do we determine the cohesion and coupling? Before, that if a

design solution we find that it as high cohesion and low coupling, then we say that is a

functionally independent set of modules. So, they are each module is doing some

function independently, it is not dependent on others and the term that we use is

functionally independent.

So, the goal of any good design technique is to come up with a functionally independent

set of modules.

(Refer Slide Time: 18:32)

But, we should be clear why we want a functionally independent set of modules. as, you

said that this results in better understandability this functionally independent set of

modules, compared to a highly dependent set of modulus.

If, we have a functionally independent set of modules the complexity in the design is

reduced and we can take up one module at a time quickly able to understand. Similarly,

we can if there is a bug we know that which module it contains a bug. Otherwise we

might see that whether it has come from some module to which it has called.

So, if there is a bug while executing this design module we observe it, then it might have

come from here or it can have come from here etcetera.

(Refer Slide Time: 19:43)

So, in a error debugging becomes easy and also understandability is easy and not only

that, we can re use module. Let us say this is a module and we want to use it in another

project, we can just take this and use it there, but here observe that it we want to use this

module in another project. We will see that this needs help from here and this in turn

needs help from here and similarly this needs help from here and so on.

So, they are all coupled we cannot take just one module and use it we have to take across

all this modules that entire project you have to take and that becomes in feasible. So, if

you have a functionally independent set of modules, any module that we need in another

project we can easily re use that.

(Refer Slide Time: 20:56)

Each module in a functionally independent set of module has well defined precise

functions. And, it does not interact with other modules and or you fetal it interfaces with

other modules simple and minimal. And therefore, becomes easy to re use modules.

(Refer Slide Time: 21:20)

But, how do we measure functional independence? Even though we know that a

functional independent set of module has high cohesion and low coupling. Can, we look

at a design and say that whether there is a low coupling.

Let us try to explore this further; we will classify the different types of cohesion and

coupling. So, that given a design we will try to see, which class of cohesion and coupling

it has and based on that we will say that, whether it is a cohesive highly cohesive and low

coupling etcetera.

(Refer Slide Time: 22:09)

First let us look at the cohesiveness and let us try to classify what are the type of

cohesion? So, that if we look at a design, we will see that what set of cohesion it has?

(Refer Slide Time: 22:26)

Let us see the different types of cohesion, we can look at a design and we can say that it

has any one of these 7 types of cohesion.

(Refer Slide Time: 22:32)

We can look at a module and you can say that this module has either this co incidental or

logical temporal, procedural, communicational, sequential or functional cohesion.

If, it has functional cohesion then the, it has high cohesion it is a good design, but if it is

has coincidental cohesion on the other hand, it is not a good design. And, something in

between is moderate cohesion and we want to look at all modules. And, see what type of

cohesion are there in most of them are high cohesion or a slightly moderate cohesion we

will say that the design is good or ok, but if they have low cohesion, we will see that we

will say conclude that it is not a good design.

(Refer Slide Time: 23:41)

First let us look at the worst form of cohesion it is called as the co incidental cohesion.

 Here, if we look at the module look through what functionality it has we will see that the

functions are rather random collection of the functions. There is no thinking or plan

behind putting some functions in the module, we just taken out random functions and

made them into a module.

(Refer Slide Time: 24:15)

Just to give an example, let us say we look at one module some name A A A and then it

contains the functions print-inventory, register-student, issue-book.

So, this actually correspond to the functionalities required by various other various

requirements, print inventories part of some inventory functionality register student is

some registration issue book. So, these are random set of functions, they do not neither

belong to the same requirement nor there are any relationship between these functions.

And, if we ask that what does the module A achieve? We cannot really answer we will

say that it has some part of the inventory does some register in student, it also does issue

book etcetera. So, there is no single thing single function that this module achieves it.

Does various things here and there somebody has just put these modules randomly into

this module A A A and this you call as co incidental cohesion.

(Refer Slide Time: 25:45)

We, consider logical cohesion module has logical cohesion, if all elements, all functions

in the module performs similar operation. For example, all functions in a modular doing

error handling or all functions in a modular reading the data input or all functions in a

modular just print f kind of thing data output.

Then, we say that this module has a logical cohesion that is the functions are logically

related that they are doing similar things and that is why designer has put them there.

And, this is also not a very good form of cohesion slightly better than co incidental

cohesion, but still it is not good.

(Refer Slide Time: 26:43)

Let us look at an example of logical cohesion, let us say we look at a module and find

that it is name is print and then it does various types of printing, across various

functionalities printing, grade, certificates, salary etcetera. These are part of various other

functionalities or requirements.

And, then we say that this module has logical cohesions, it is not the bottom most

cohesion, but still it is not a good cohesion.

(Refer Slide Time: 27:23)

Next we look at the temporal cohesion, we will stop here continue in the next lecture.

