
Software Engineering
Prof. Rajib Mall

Department of Computer Science and Engineering
Indian Institute of Technology, Kharagpur

Lecture - 13
Extreme Programming and Scrum

Welcome to this lecture. In the last lecture we looked at the agile development. In the

changing software projects, we had seen that over the years a lot of changes have

occurred to the software projects themselves. From multiyear projects this have become

couple of weeks and also lot of reuse and customization is being made and from product

development, many projects are now service oriented projects.

In this context the agile model has become extremely popular. In any software

development organization you go see that large number of projects they are following the

agile development practices. And, we had said that agile is actually an umbrella term,

there are certain characteristics that all agile development projects have to follow, but

then there are several methodologies which come under the agile umbrella. And 2

prominent methodologies here are the extreme programming and the scrum.

In this lecture we look at these 2 agile methodologies the extreme programming and a

scrub let us proceed. We will first look at the extreme programming also called as a XP.

(Refer Slide Time: 02:08)

It was proposed by Kent Beck in 1999. The name extreme here, implies that the best

practices are taken to the extreme level, whatever works will in some projects why not

put it to the maximum use. So, that is the main focus of this model and it has all other

characteristics of a agile model.

So, the principle here is that if something works and is good why not maximize it is use.

(Refer Slide Time: 03:08)

Now, let us see what are some of the good practices? And how these are taken to the

extreme level? Research results suggests that code review is a very good practice, code

review is a much better than testing, code review can eliminate bugs in the software most

cost effectively, and even can eliminate bugs which cannot be detected by testing or is

very difficult to detect by testing.

So, it has been accepted by all developers, that code review is a good practice. The

extreme programming proposes to take this code review to extreme level by pair

programming, but then what is pair programming? In pair programming the code is

written by 2 programmers on one desk. So, on one computer there are 2 programmers,

one programmer writes the code while the other programmer reviews that. And, then the

interchange every half an hour or so one programmer writes the other reviews then the

switch their place. So, 2 programmers have understanding of the code they put their

mind together and also the review any mistakes and so on is pointed out by the other

programmer.

The other good practice is testing is good it makes software more reliable, to make

testing to take testing to the extreme level the extreme programming suggests to write the

test cases continuously. So, that is called as test driven development in test driven

development, even before the code is written the test is written the test cases are written.

And, after the test cases are written, the code is written, and each time the code is written

to some extent the test cases are run to see if the code passes that, otherwise the code is

modified. Incremental development is good it said that it eliminates lot of problems of

the waterfall model. And therefore, extreme programming says come up with a new

increment every few days.

Simplicity is good because it produces less bugs easy to maintain and therefore, the

extreme programming says take the simplicity to the extreme level and for that it says

that only focus on what is needed now and do the simplest design for that. Do not worry

about what will be needed after 10 years that may never be needed, do not worry about

that at all do the best design under the present circumstance.

So, pair programming test driven development, incremental development in a few every

few days’ simplicity of the design these are important characteristics of the extreme

program.

(Refer Slide Time: 07:28)

The other things that are taken to the extreme are designing is good. So, do designing

after the code works. Everybody will design daily they will refactor once the code works,

but design into it that is called as a refactoring architecture overall design is important.

So, metaphor that is the agile principle everybody will define and refine the metaphor.

Integration testing is a important we had seen that in the waterfall model. The delay starts

from integration testing the schedule slippage initially starts at the integration testing and

becomes worse after the integration testing, but here in the extreme programming. We

must build every day and whatever we build same day we must integrate all together and

integrate several times a day continuous integration. So, that later surprises are not there.

(Refer Slide Time: 08:47)

Just like any other agile model, enhanced communication among team members, face to

face communication and also with the customer. Simplicity; builds something simple that

will work rather than make it extremely complicated about something which never be

required. Take continuous customer feedback and the customer can be part of the team

and if the code structure has become bad discard it write new code.

(Refer Slide Time: 09:29)

Coding is a important a place in extreme programming at most attention need to be

placed on coding, testing is important and also listening to the customer is essential to

develop good quality product.

So, listen very carefully to the customer feedback.

(Refer Slide Time: 09:55)

Designing after the code works put design into it called as a refactoring; feedback is

important learning the exact customer requirement.

(Refer Slide Time: 10:07)

The planning are only a short term and each story or requirement is assigned a cost. And,

these are grouped into deliverable increments. Design is keep it simple principle use of

CRC cards that is class responsibility collaboration, which is pioneered by Kent Beck we

will see the technique as we look into the design aspects.

And, whenever there are confusion about which is the best way to go create a spike

solution alternate between, choose between alternative solution by designing prototypes

and after a code works refactor and put design into it.

(Refer Slide Time: 11:10)

The coding is by test driven development first write the test cases before any code is

written. And, then write the code until it passes the test cases written pair programming is

encouraged all software that is developed that tested daily and acceptance tests are

defined and are executed.

(Refer Slide Time: 11:46)

These are the full list of the extreme programming practices, planning, only short term

plans are made, small religious, metaphor, simple design, testing, continuously write and

execute test cases.

(Refer Slide Time: 12:05)

Refactoring, Pair-programming, collective ownership not only that 2 programmers they

write a piece of code, but any programmer should be able to modify any other

programmer’s code. Continuous integration every day whatever code is written has to be

integrated with the existing code.

(Refer Slide Time: 12:29)

40-hours week customer must be part of the team and coding standards to be followed,

as you can see that many of these are actually philosophical and little bit sketchy.

And therefore, good quality manpower is needed for extreme programming or any other

agile projects.

(Refer Slide Time: 13:07)

It emphasizes test driven development any increment starts with a user story the first

thing is to develop test cases based on the user story. And, then develop the software get

the customer feedback based on the customer feedback alter necessary and then put

design into the code, make the code refine it into good quality code and then take up the

next feature.

(Refer Slide Time: 13:44)

Extreme programming is successful in small projects and also the projects which are of

challenging nature.

(Refer Slide Time: 14:00)

Now, having looked at several development models including some of the agile models

let us try to check our understanding with few questions. Can you identify what are the

stages of the waterfall model? It is a very very basic question feasibility study

requirement analysis and specification design, coding, unit testing, testing and

maintenance, but then how are the feedback paths organized between them?

What are the documents that are produced at the end of every phase? Now, next question

is what are the disadvantages of the iterative waterfall model? If, you recollect one major

disadvantage is with respect to accommodation of change requests the customer is

required to identify all the requirements upfront. The customer has to visualize what the

software will be and it is extremely tough job it is a hard to identify all, the requirements

that are required at the beginning and invariably 40 percent or 50 percent of the

requirements changed during the development time itself.

And therefore, the iterative waterfall model is very inflexible. The second problem with

the iterative waterfall model is that it is a heavy weight model emphasizes production of

documents, rather than production of code in increments. The third disadvantage may be

that it does not allow overlapping of the phases and so on. We have discussed several

points and disadvantages of iterative waterfall model please review them why has agile

model become so popular ok.

We discussed that the software projects have changed over here, the projects are now a

short duration lot of code reuse been made and now the customer satisfaction is very

important need to deploy incremental software at the customer site and so on. What

difficulties might be faced if no lifecycle model is followed for a certain large project?

So, that is basically exploratory lifecycle model is followed ok. The answer would be

that the project may not complete there will be too much of cost overrun, it will cost too

much, it will take too much time to develop or it may not complete at all the quality of

the software will be poor and so on.

(Refer Slide Time: 17:46)

Now, suggest a suitable lifecycle model for a software, which is to be developed for an

academic institution to automate it is activities like course registration and grading fee

collection, staff salary purchase and in store inventory. The software would be developed

by tailoring a similar software that was developed by developed for another educational

institution, it is expected that there will be 70 percent reuse of the code, 10 percent of

new code to be written and 20 percent modification will be done.

Waterfall model is clearly unsuitable for this, because it will involve tailoring a similar

software. So, an agile model can be suitable answer for this.

(Refer Slide Time: 18:43)

Which types of risk can be better handled using the spiral model compared to

prototyping model. In prototyping model the risks, which can be identified upfront those

can be handled, but in the spiral model the risks which appear after the development

starts, they can be handled better, which type of process model is suitable for the

following project customization software ok. An agile model payroll software for

contract employees that would be an add on to an existing payroll software.

So, there is basically a small increment to a existing software ok, this can be also an agile

model.

(Refer Slide Time: 19:36)

Which, lifecycle model would you select for the following project which has been

avoided to us by mobile phone vendor? A new mobile operating system upgrading the

existing operating system needs to work well efficiently with 4 G systems, needs to do

power uses minimization, directly upload backup data on cloud infrastructure maintained

by a mobile phone vendor. So, there is lot of challenge in this project new technology

and therefore, agile model will be suitable. Now, let us look at one more agile model

which is also very popular the scrum.

(Refer Slide Time: 20:20)

The scrum model has all the characteristics of an agile model, but it has it is own

characteristics over the agile model; one is self-organizing teams, the self-organizing

teams means that the small team they decide who will do which work.

Here, the terminologies are also bit different the increments are about a month and these

increments are called as sprints. And, the requirements are captured as product backlog

that is also another terminology with this is the software requirements are captured

continuously, and those which are yet to be developed are called as product backlog, this

is the crux of the scrum model.

(Refer Slide Time: 21:26)

The product backlog keep on arising and in the sprint planning meeting one of the

product backlog that is a user story these are all user stories. So, appear as product

backlog some of them are chosen for the next sprint, a sprint is about a month long and

this form the sprint backlog.

And, then every day the developers meet. So, this is the scrum every day the developers

meet the daily scrum, they identify if any problem is being faced. And, then they provide

any solution and then after the daily 10 15 minute meeting they go to do their work. And,

the sprint backlog after it gets completed then there is a sprint review meeting. And then,

the product increment is produced after the sprint review meeting is successful the

product increment is deployed at the customer site.

(Refer Slide Time: 23:04)

Here, the project progresses in a series of “sprints” these are similar to the iteration time

box is the increments and typically about a month is the duration. In this sprint software

increment is designed, coded, and tested, but one thing is that once the sprint backlog is

formed during the sprint for that one month no change to that is entertained. The idea

here is that, when the short term plan is made and the team is working on it we should

not disturb it otherwise it will never converge.

(Refer Slide Time: 24:01)

Here, there are some terminologies which constitute the scrum framework, there are 3

roles in the team one is the product owner. The product owner is either a customer

representative or one of the development team member he acts as if he is the customer he

is called as a product owner, the scrum master who is actually the project manager and

then the team members. There are some meetings here these are called a ceremonies the

sprint planning meeting, sprint review meeting, sprint retrospective meeting, and daily

scrum meeting.

There are some documents which are used the product backlog, which is all the

requirements the sprint backlog, which is basically the requirements per one sprint and

then various types are Burndown charts, which capture how far the project has

progressed.

(Refer Slide Time: 25:14)

The product owner acts on behalf of the customer he may be a customer representative or

maybe a team member who acts like the customer. The development team about 5 to 9

people with cross functional skills like testing GUI development database development

and so on. The scrum master is the project manager; facilitates the scrum process and

resolves any problems that the team may be fashion. And, also interacts with the

customer and also the top management and shields the team from outside influence.

(Refer Slide Time: 26:02)

The product manager the product owner acts as if the customer defines the features,

decides on the release date, prioritizes the features according to what is his requirement?

Adjust the features and priority value and then at the end of a sprint either accepts or

rejects the result.

(Refer Slide Time: 26:30)

The scrum master is actually the project manager, removes any problems like a

infrastructure etcetera. Ensures that the team is fully functional enables cooperation and

seals the team from external interfaces.

(Refer Slide Time: 26:53)

The scrum team members are actually 5 to 10 people they are have expertise in various

cross functional areas like quality assurance, coding, user interface design, database

etcetera. The team members are self-organizing that decide who can do the work best and

then they decide among themselves. And, in between one sprint membership is not

changed new members can be added only at the end of a sprint.

We are towards the end of this lecture hour, we will stop here. And we will continue from

this point in the next lecture.

Thank you.

