Database Management System
Prof. Partha Pratim Das
Department of Computer Science and Engineering
Indian Institute of Technology, Kharagpur

Lecture - 09
Intermediate SQL/1

Welcome to module 9 of database management systems. We have discussed about the
introductory level of SQL the structured query language in this module and the next we
will take up some more intermediate level features of SQL. So, these modules are called

intermediate SQL.

(Refer Slide Time: 00:42)

PP

Module Recap

= Nested Subqueries
= Modification of the Database

e T !

R R R R

Duiabise Sysiem Concepds - § Edition [¥] Silberschaiz, Korih and Sudarshan

So, in the last module this is what we have done which was part of the closing part of the

introductory SQL the nested sub queries and modifications to the database.

(Refer Slide Time: 00:55)

g Module Objectives

+ Tolearn SQL expressions for Join and Views
+ Tounderstand transactions

:
|
|
;
E
E
?
5
?
3
H

RPEp QNS e D

Duiabuse Sysiem Concepts - § Edition k] Silberschatz, Kerih and Sudarshan

Today, we will, in this module learn about SQL expressions for join and views and we

will take a quick look into understanding the transaction.

(Refer Slide Time: 01:11)

“ Module Qutline h

+ Join Expressions
= Views
« Transactions

PP P AL BD
Dutabass System Concepls . 6* Edition [T) Bilberschatr, Korth shd Sudaiihan

This is the module outline as it will span.

(Refer Slide Time: 01:15)

FPD

+Join Expressions
sViews
*Transactions

i,

JOIN EXPRESSIONS

SWAYAM: NFTEL-MOC MOGTS Instructon Prof. P P Das, IT Kharagpar. Jan-apr, 2008

PR INs PO D

Duiabuse Sysiem Concepts - § Edition LX) Silbersthatz, Kerh and Sudarshan

So, we start with the join expressions in SQL join as we have already introduced.

(Refer Slide Time: 01:21)

Joined Relations

i,

+ Join operations take two relations and return as a result
another relation

+ Ajoin operation is a Cartesian product which requires that
tuples in the two relations match {under some condition).

* |t also specifies the atiributes that are present in the result
of the join

+ The join operations are typically used as subquery
expressions in the from clause

EWAYAM: NFTEL-MOC MOGTS Instructon Prof. P P Das, IT Knarsgpar. Jan-Apr, 2018

R R RN S R R

halabaie System Concepts - 6% Edition ns Bilberschals, Korh snd Sudaishan

=

Takes two relations and returns a result as another relation. So, it is two different

instances of two schemas and we try to connect them according to certain properties..

So, a join operation is primarily a Cartesian product, which relates tuples in two relations
under certain conditions of match. It also specifies that after the joining has been done,
what are the tuples, which will be present in the output join? So, join operation typically

uses sub query, is used in a sub query, in the from clause we will see those uses later.

(Refer Slide Time: 02:19)

g Types of Join between Relations

E + Cross join

E + Inner join

i Equi-join

i « Natural join
£ + Quter join

E Left outer join
3 + Right outer join
: Full outer join
; + Selfjoin
:

S

§

;

I R R RN A RS R

Duiabise Sysiem Concepts - § Edition L Silberschatz, Kerh and Sudarshan

So, if we look into the different types of join that SQL support, these are the different
classifications. So, we have cross join, we have inner join, which specifically could be
equi join and even more specifically natural join and we will see there are variety of
outer join, that are possible. There could be a self-join also, where one relation is joined

with itself.

(Refer Slide Time: 02:51)

PPD

Cross Join

=

+ CROSS JOIN returns the Carlesian product of rows from tables in the join
Explicit
select”
from employee cross join department;
+ Implicit
select”
from employee, department,

SWAYAM: NFTEL-MOC MOGTS Instructon: Prof. P P Das, IT KRarsgpar. Jan-Apr, 2018

R R R RN S e N

halabaie System Concepls - 6% Edition ns Bilberschats, Korh snd Sudaishan

=

Cross join is just a formal join based, name for Cartesian product of two rows. So, you

could explicitly do a cross join, which you can see here or you can implicitly also do a

cross join, but by specifying two or more relations in from clause, and taking all the
attributes from there, we have seen these kind of Cartesian products earlier. So, cross join
here is more as placeholder, in the context of the join semantics that pure Cartesian
product is a cross joins, but what would be more interesting is, when we take different

kinds of inner and outer joins.

(Refer Slide Time: 03:30)

Join operations - Example

fe=

+ Relation course

{oourse_id] —title | dept_mame | credits |
BIO-301 | Genetics Biology 4
C5190 | Game Design| Comp. Sci. | 4
C5-315 |Robotics Comp. 5ci. | 3

+ Relation prereq

course_id | prereq_id
BIC-301 | BIO-101
5190 | €510
C5-47 | C5-101

» Observe that
prereq information is missing for CS-315 and
course information is missing for CS-437

SWAYAM: NFTEL-MOC MOCTS instructon: Prof. P P Das, IT KRaragpar. Jan-Apr, 2018

‘PRI ANL A B

alabiis Sywtem Concegts . 8* Edition (1] Silbéruchits, Korth

=

So, let us start with a simple example to understand the issues. So, there is a relation
course, which has four attributes and in this particular instance, it has three tuples, three
rows and there is another relation prereq, which specifies the prerequisite for every

course.

So, it has two attributes; the course id and the corresponding prerequisite course id. It
also has three rows, three tuples here, and if you look at the instances carefully, you will
find that the three courses that are specified in the course relation all are not specified in
the prereq relation. Bio 301 and C S 190 is present in prereq, but C S 315 is not present
in at the same time, the prereq has one particular tuple, specifying the prerequisite of C S
347, which in turn is not present in the course relation. So, with this observation, let us

start trying to see what different joint mean.

(Refer Slide Time: 04:54)

., Inner Join / \
= e AW
» WY | \
(A8 B)
.[f
* course inner join prereq \ /
rl ‘.‘{ ‘ o
lcourse_id] —title dept_name | credits | prere_id [Surse_id])
BIO-301| Genetics Biology 4 | BIO-101 | BIO-301 ",
C5190 |Game Design| Comp.5ci. | 4 | C5101 | C5190 b

If specified ad natural, the 2 course_id field is skipped
i 4 b
5 k'l
course_ii litle dept_name | eredits course_id ;m-;-[-gii
BIO-301 | Genetics Biology % > BIO-301 | BIO-101
C5190 |Game Design| Comp. 5ci. | 4¢ »| Cs |§l] 5-101
A C5315 |Robotics [Comp.Sci.| 3 | "]~
A ODOLIC amp, el | C_‘)-‘i.l]" (‘:-]m

SWAYAM: NFTEL-MOC MOGTS Insaructon Prof. P P Das, IIT Kharagpar. Jan-apr, 2008 '

R R R R T RS R

Duiabase System Coneepts - § Ediion .18 Ailberschatz, Korih

So, in a join is computed, then in terms of the two relations that we have, there is an
attribute course id, which is common. So, once we have taken the cross product, we will
from the cross product, only retain those rows, where the course id in relation course and
the course id in relation prec prerequisite are same. So, when we do this particular
record, when it gets mapped with this corresponding record, it will generate the
corresponding output record. Similarly, C S 190, when it is mapped to the C S 190, in the
prereq, it will generate the second record, we have already understood this, the third

record in the courses C S 315 has no match here in prereq..

So, that will not feature in the output. Similarly, in the prereqs C S 347 that exist has no
match in courses. So, that also will not appear in the output and also in the output you
find that the course id has actually featured twice. This is the first column course id
comes from course. So, it should more formally be called course dot course id whereas,
the second one comes from prereq. So, it should that should formally be called prereq dot

course id.

Now, if in addition to saying that, this is an inner join, if I also specify the word natural, I
can say natural here, if say natural, then this second duplicate attribute course id will be
dropped from the output that becomes a natural join, inner join as the name suggests,

finds out the inner part of the two relations..

So, if we look at the two relations as A and B only those records, which are both have
instance in A as well as B, in terms of equality of this course id attribute will come in the

output. So, this is the basic type of join, inner join which is most commonly used.

(Refer Slide Time: 07:34)

QOuter Join

o

» An extension of the join operation that avoids loss of
information

« Computes the join and then adds tuples form one relation
that does not match tuples in the other relation to the result
of the join

= Uses null values

SWAYAM: NFTEL-MOC MOGTS Insaructon Prof. P P Das, IIT Kharagpar. Jan-Apr, 2008

‘PP LIRSS

Daiabiuse Sysiem Concepts - § Edition LAl Silberschaiz, Korih and Sudarshan

Now, we can extend this into a different kind of join, known as outer join in the inner
join. As you have seen that courses that exist in the course relation, but are not there in
the prereq or the ones that exist in the prereq and is not there in the course are not
featuring in the final inner join output. So, there is some loss of information in terms of
this. So, why we are doing this we can compute and add tuples from one relation that
may not match with the with any tuple in the other relation and if we want to do that then
naturally for the other attributes of that tuple in the target relation we will not know the

values. So, we will use null values this is the basic idea of outer join..

(Refer Slide Time: 08:34)

Left Quter Joinf Ve
A

b=

4

¥ i Vi ¥ r
» course natural left outer join prereg

lcowrse_id] ~ title | dept_name | credits| prere_id|

BIO-301 | Genetics Biology 4 | BIO-101 v
C5190 |Game Design| Comp. 5ci.| 4| C5-101 it
(5-315 |Robotics Comp.5ci.| 3 |lmll 3

course_id ille dept_naime | credits course_id !,ﬂ-,-[.,i_j,[)~
BIO-301 | Genetics Biology 4 BIO-301 | BIO-101
C5190 |Game Design| Comp. 5ci.| 4 cs |;30 €5-101
(5315) | Robotics | Comp. 5ci.| 3
(C5-347 | C5-101

SWAYAM: NFTEL-MOC MOGCTS Insiructon Prof. P P Das, IT Kharagpar. Jan-apr, 2008 '

rpPleaugste 0D

Duiabase System Concepis - § Ediiion .12 Ailberschatz, Korth and Sudarshan

So, let us see what it specifically means? We first talked about left outer join, left in the
sense that we have, this is how it is written. Left outer join is a sequence of commands
that you give, you are also saying it is natural, which means that the common attribute
will not feature twice in the output and this is the left relation and this is the right
relation. So, left outer join specifies that in the output all records of the left relation, in

this case the course relation must feature..

So, naturally when we do the join, we will get these two records as we have got in terms
of the inner join, in terms of course 315 the C S, C S 315, the third course there is no
instance in the prereq, we will still have that in the output, but since the prereq value for
that, the prerequisite value is not known, the prerequisite id will be set to null here. So,
left outer join ensure that, all relations of the left relation, all tuples of the left relation
will necessarily feature in the output and that is a reason. If you see in the Venn diagram,

the whole of this set, A is shown whereas, this part certainly will not feature..

(Refer Slide Time: 10:05)

"

Right Outer Join

» course natural right outer join prereq

\

7

®

A

Duiabase System Concepis - § Ediion

Wil

&

i (course_id] fitle | dept_name [credits | prere_id |

i BIO-301 | Genetics Biology 4 | BIO-101

& (5190 [Game Design| Comp. Sci. | 4| C5-101

E C5:347 | null null all | C5101

:

§

E course_id] tille dept_name | eredits course_id prur['&

E B[F)-:‘UI (.Ecnutics . “.\L\]!.'Q.'h\’” 4 BIO-301 | BIO-101
C5190 |Game Design| Comp. 5ci.| 4 €5-190 | €8-101

S 5315 |Robotics | Comp.5cl.[3 Cs:}u b

§.

:

P4 s e D

Bilberschaiz, Kerih and Sudarshan

Now, similarly we can have a right outer join, where the concept is the same except that.

Now, we ensure that all records of the right relation, in this case the prereq relation will

feature and therefore, C S 2347 for which there is no entry in the course relation will also

come as a record and since we do not know the title department name and credits for

these fields, we will put them as null and this again is a natural one. So, course id is

featuring only once. So, you will understand that since, we have a left version and we

have a right version.

(Refer Slide Time: 10:47)

—

.

Joined Relations

Join

fypes

full

inner join
left outer join
right outer join

outer join

SWAYAM: NFTEL-MOC MOGTS Insiructon Prof. P P Das, IT Knaragpar. Jan-apr, 2008

Duiabase System Concepis - § Ediiion

+ Join operations take two relations and return as a result
another relation

+ These additional operations are typically used as subquery
expressions in the from clause

« Join condition - defines which tuples in the two relations
match, and what atiributes are present in the result of the join

+ Join type - defines how tuples in each relation that do not
match any tuple in the other relation (based on the join
condition) are treated

Join Conditions

Wi

natural
on < predicate>
using (Ay, Ay, ..., A,)

Silbersthatz, Kerh and Sudarshan

We can actually have a full version as well. So, if we look into the join relations in
general, it takes two relations and returns a result and those additional operations are
used in the sub query in from and there is a set of join conditions. So, these are the join
conditions that we are specifying, whether it is natural and we will soon see that we can
actually not depend only on the attributes that are common, we can actually specify that
which attributes should be used in computing the joint. So, those are on condition and the
using clause, we will just illustrate them soon and finally, there are four types of join that
can happen, that is the inner join. We have seen the left outer join, right outer join and we

will soon see the full outer join..

(Refer Slide Time: 11:52)

PPD

Full Quter Join/
course natural full outer join prereg _

[amm'_r'ci title dept_name | credits prm'qif
BIO-301 | Genetics Biology 4 | BIO-101
5190 |Game Design| Comp. Sci. | 4 | C5101
CS-315 | Robotics Comp.Sci.| 3 [null
C5-347 | null null mull | C5-101

i F

course_id) tille dept_name | credits course_id }m-,-[.gi_m
BIO-301 | Genetics Biology 4 BIO-301 | BIO-101
C5190 [Game Design| Comp. Sci.| 4 cs |“JU 5101
(5315 | Robotics Comp. Sci.| 3 - f.-
C5-347 | C5-101

SWAYAM: NFTEL-MOC MOCTS Instructon: Prof. P P Das, IT KRaragpar. Jan-Apr, 2018 '

e

So, full outer join as you must have guessed will ensure that you get certainly the tuples
from the inner join, which is here, you will get the tuple from the left outer join that is
here, that is a tuple which exists in course and there is no corresponding matching tuple
in the prereq and you will also get the tuple from the right outer join, that is for tuple,
which exists in the prereq relation, but there is no corresponding tuple in the course
relation and corresponding missing values are all set to null. So, these three kinds of

outer join are possible.

(Refer Slide Time: 12:38)

Joined Relations - Examples

course inner join prereq on
course.course_id = prereq.course_id

|c‘uur:':'_r'|i title dlept_mame | credits | preve_id | course_iil
BIO-3011 Genetics Biology 4 | BIO-101 | BIO-301
C5-190 |Game Design| Comp.5ci. | 4 | C5-101 | C5190

* Whatis the difference between the above (equi_join), and a
natural join?

* course left outer join prereq on
course.course_id = prereq.course_id

|fllhr:-|‘_1if| title [dept_name J :‘rr'a.l':'i:] preve_id ‘ course_fd |
BIO-301 | Genetics Biology 4 | BIO-101 | BIO-301
C5190 | Game Design| Comp. Sci.| 4 | CS101 | CS190
(5315 |Robotics (:nmp. Si.| 3 il il

SWAYAM: NFTEL-MOC MOGTS Irsaructon Prof. P P Das, IT Kharagpar. Jan-apr, 2008

R R R e N

Daiabise Sysiem Concepds - § Edition LA Ailberschatz, Korh and Sudarshan

So, you can also specify join by saying that explicitly saying what attribute we want to
join on and if you specify that, then you are saying it is a course inner join prereq. This
part was same then you are putting an on clause, saying in the on clause, you will have to
provide a predicate that is, which field should equate or match with what field. So, you

are saying course dot course id is equal to prereq dot course id.

So, this result incidentally happens to be same as just doing the inner join, but we are
illustrating that, on clause can explicitly use. For example, between the two relations, we
have more than one common attribute, but we may want to actually do the inner join

based on only one of them or equality on two of them and so on..

So, this kind of a join, where inner join, where you set two fields to be equal or two or
more fields to be equal is also known as equi join and since we have not specified
natural, you can again observe, then the course id attribute has occurred twice. If it was
said natural then the second course id attribute would not have come in the result, this is
a showing. The left outer join in terms of on clause and we have seen similar results. And
now, this can be seen in terms of the on clause as well, and you can see in that second
course id field. This entry is null, because actually you do not have that in the

prerequisite set and; obviously, this set will be null, this field will be null..

(Refer Slide Time: 14:35)

Joined Relations - Examples

=

+ course natural right outer join prereq

course_id title dept_name | credits | preve_id
BIC-301 | Genetics Biology 4 | BIO-101
C5190 |Game Design| Comp. 5ci.| 4 | C5-101
5347 | null null null | C5-101

course full outer join prereq using (course_id)

{course_id] — title | dept_name | credits

BIO-301 | Genetics Biology 4 | BIO-101
C5190 |Game Design| Comp. 5ci. [4 | C5101
(5315 |Robotics Comp. 5d.| 3 | null
CS-347 |null null mll | C5-101

rere_id
prere_

SWAYAM: NFTEL-MOC MOGTS Insiructon Prof. P P Das, IT Kharagpar. Jan-apr, 2008

I R R R RN A B R

Daiabise Sysiem Conceps - § Edition a7 Silberschaiz, Kerth and Sudarshan

So, this is another example, showing you the natural right outer join, this is you, showing
you full outer join and we are showing the use of the using clause. We can say using and
put a set of attributes and the meaning is the join will be performed, based on those

attributes. So, here in this case again the join will be based on course id.

(Refer Slide Time: 15:01)

FPD

sJoin Expressions
- Wiews
*Transactions

VIEWS

SWAYAM: NFTEL-MOC MOGTS Insaructon Prof. P P Das, IT Kharagpar. Jan-apr, 2008

P 4N st D

Daiabise Sysiem Concepts - § Edition .18 Silberschatz, Kerih and Sudarshan

So, that was about different kinds of join that we can do, which we going forward. We
will see that form, a very critical has a very critical place, in terms of query formulation.

Now, we take you to a different concept known as views now.

(Refer Slide Time: 15:20)

Views

+ |n some cases, it is not desirable for all users to see the entire
logical model (that is, all the actual relations stored in the
database.)

+ Consider a persen who needs to know an instructors name

and department, but not the salary. This person should see a
relation described, in SQL, by

select ID, name, dept_name
from instructor

+ A view provides a mechanism to hide certain data from the
view of certain users

relation that is not of the conceptual model but is made
Dle to a user as a “virtual relation” is called a view

SWAYAM: NFTEL-MOC MOGTS Insiructon Prof. P P Das, IT Kharagper. Jan-apr, 2008

I R R RN A NN

Daiabise Sysiem Conceps - § Edition .18 Silberschatz, Kerh and Sudarshan

We have seen that. So, far we have been computing certain query results, based on one or
more relations one or more instances. Now, in some cases, we may want the results to be
restrictive in terms of based on the user or based on the context, in which the result
should be used. So, we may not want all fields of a result to be visible to all the users or
to the application. So, we may not expose the whole logical model and in those cases, we
introduce a view. So, here we are showing one, where, from the instructor relation, we

are only picking up three fields and we are not picking up the salary field..

Now, you would think that, well this is what we can do in terms of the normal query and
certainly then, what is the point of using this? Now, what we can do is, we can create this
not adjust as a query, but as a view one, once we create this as a view, it actually this
query expression is treated as what is known as a view expression and every time you
want to use that view. The actual tuples in that view are computed, but this is not actually
a relation that exists in the database. So, it is a kind of, can be thought of as a kind of

virtual relation, which exists, which can be seen only when you use that..

(Refer Slide Time: 17:22)

E View Definition

il

+ Aview is defined using the create view statement which has
the form

create view v as < query expression >

- where <query expression= is any legal SQL expression
+ The view name is represented by v

= Once a view is defined, the view name can be used o refer to
the virtual relation that the view generates

+ View definition is not the same as creating a new relation by
evaluating the query expression

Rather, a view definition causes the saving of an expression;
the expression is substituted into queries using the view

SWAYAM: NFTEL-MOC MOGTS Insiructon Prof. P P Das, IT Knaragper. Jan-apr, 2008

PPRsQus e iU

Duiabase System Concepis - § Ediion 0.1 Ailberschaiz, Korth and Sudarshan

So, there is a subtle, but very strong difference between, actually computing a result,
through a select query and defining a view, based on a select query and then making use
of the view, as if it were actually a relation that existed. So, to do this, this is how we go
about. It is the send text, is very similar to the create table. So, you do a create view give
a name and then you specify as is the connective and specify the query expression, which

is an SQL query, which will let you compute the view, every time you actually need it..

So, this is a view name, once a view is defined, the view name can be used as a virtual
relation, it can be used exactly as we use any of the really existing relation, the
conceptual relations that we have created, through create table. So, it is the difference,
this is what needs to be understood very well, the view definition is not the same as
creating a new relation, once you create the new relation, the time you have created it,
you get the result and that result is explicitly available as a set of tuples as a table rather a
view is a definition, which you stored in the database as an expression. So, every time
you make use of that view, at that time the set of tuples are computed. It is not existing in
the database as stored like the real relations and based on that computation, all the rest of

the query will actually be executed..

(Refer Slide Time: 18:58)

-‘.;. Example Views

-

« Aview of instructors without their salary
create view faculty as
select ID, name, dept_name
from instructor

» Find all instructors in the Biology department
select name
from faculty
where dept_name = 'Biology’

+ Create a view of department salary totals”*
create view departmenls_total-salary(dept_name, total_salary) as
select depf_name] sum (salary) d
from instructor '
group by dept_name;

SWAYAM: NFTEL-MOC MOGTS Instructon Prof. P P Das, IT Knaragpar. Jan-apr, 2008

R R R R R AR

haiabuse Sysiem Concepls - § Edition WH Silberschatz, Korih

=

So, let us take a quick look, this is a create view, we have created the view of a, of view
called faculty, from instructor relation. Instructor relation is the real one, I existing one
and faculty is a view expression being created and in that, what we have done? Simply,
we have taken a done, a projection, we have lived left out the salary field. Now, we can

make use of that view, you can see that we are doing from faculty..

So, this actually is a view, but this behaves as if this is varying relation. So, from faculty
we are trying to find out the name of all those faculty; who belong to the biology
department. So, what will happen, when they want to execute this query? This will refer
to this view. So, to execute this query, it will have to first execute this query, get the
temporary virtual instance of the virtual relation, created and based on that, this query

will be computed and the results will be given accordingly.

So, that is the basic purpose of the view that the whole thing, the whole view expression
remains as an abstraction in the database and computed whenever it is used. So, this is
showing you another view, which shows certain computed information. For example, we
are creating a view for departmental total salary, which will show as two fields

department name and total salary, which has been created by aggregation..

So, anytime we make use of this view in a from clause, we will get, we will feel as if
such a relation really exists where the department name and the total salary of the

instructors in that department are stored, but it really does not exist. It is computed

whenever it is needed, whenever it is used, you can actually use views to create other

VIEWS.

(Refer Slide Time: 20:52)

1 Views Defined Using Other Views

i,

« create view physics_fall_ 2009} as %
select course.course_id, sec_id, building, room_number
from course, section
where course.course_id = section.course_id
and course.dept_name = Physics’
and section.semester = 'Fall
and section.year = '2009';

* create view physics_fall_2009_watson as
select course_id, room_number
from physics_fall_2009
where Building="Watson’;

FPREPIE NS S T

“un Bilberschats, Korh snd Sudaishan

£ SWAYAM: NPTEL-MOC MOOTS Insiructon: Prof. P P Das, IT Kharagpar. Jan-Apr, 2018

For example, this is one view which is the view of physics fall 2009, which are all
courses that are offered in physics, from the physics department in the semester fall of
year 2009 and using that we can create another view. See here again, we are in the, from
clause we are using this view. So, creating this using this view, we are creating yet
another view, which shows the courses that ran in the Watson building. So, views can be

used as | have already said as any other.

(Refer Slide Time: 21:35)

View Expansion

+ Expand use of a view in a query/another view

create view physics_fall_2009 watson as
(select course_id, room_number) <
from (select course.course_id, building, room_number |
from course, section |
where course.course_id = section.course_id
and course.dept_name = Physics’
and section.semester = 'Fall
and section.year = '2009') %)
where building="Watson'’;

\
)

.

SWATAM: NPTELMOC MOGGS Instructor: Prof. P P Das, IT Kharageer. Jan-apr, 2018] !

LR R R R EEA V]

Daiabise Sysiem Concepls - § Edition 0.n Silberschatz, Kerih and Sudarshan

Actual relation, but they do not really exist. So, if you expand out, if you just put the
physics fall 2009 expression, within the view definition of physics for 2009 Watson, this
is your earlier view relation. So, this is known as view expansion. So, this is actually the

query that, you are executing and that has a lot of value.

(Refer Slide Time: 22:04)

w4

Views Defined Using Other Views

* One view may be used in the expression defining another view

+ Aview relation v, is said to depend directly on a view relation
v; if v, is used in the expression defining v,

* Aview relation v, is said to depend on view relation v, if either
v, depends directly to v, or there is a path of dependencies
from v, fo v,

« Aview relation v is said to be recursive if it depends on itself

SWATAM: NFTEL-MOC MOOTS Instnucton Frof. P F Das, IIT Kharagpar. Jan-apr, 2008

(R E-EE RN A NN

Daiabase System Concepts - § Edition W Bilberschaiz. Korth and Sudarshan

So, as we have said views can be defined indirectly from one relation. So, these are

called direct dependence or they could be defined in terms of a chain of relations v one in

terms of v 2 v 2 in terms of v 3 and. So, on and a view relation can be recursive also that

a view could be in terms of itself.

(Refer Slide Time: 22:29)

g View Expansion*

» A way to define the meaning of views defined in terms of other
views

» Letview v, be defined by an expression e, that may itself
contain uses of view relations

+ View expansion of an expression repeats the following
replacement step:
repeat
Find any view relation v,in e,
Replace the view relation v, by the expression defining v,
until no more view relations are present in e

+ As long as the view definitions are not recursive, this loop will
inate

SWAYTAM: NFTEL-MOC MOCTS Instructon: Prof. P P Das, IT Kharagear. Jan-Apr, 2018

PRIV 4SO B

hilabiie System Concepls - 6* Edition [Silbérschatr, Korth avd Sudarshan

=

A lot of power view expansion is the process that SQL uses to evaluate a view. So, |
would request you to study this and understand that this process works. This is pretty

much like pseudo code C program..

(Refer Slide Time: 22:47)

— Recursive View

+ In SQL, recursive queries are typically built using these components:
+ A non-recursive seed statement
+ Arecursive statement
+ A connection operator
« The only valid set connection operator in a recursive view definition is UNION ALL
+ Aterminal condition to prevent infinite recursion

£ SWAYAM: NPTEL-MOC MOOTS Instructon: Prof. P P Das, IIT Kharagper. Jan-Apr, 2018

" Bilberschats, Korh snd Sudaishan

Now, moving to recursive views, the views where the same relation can be used in the

view to define another view, we need like every other recursive structure. We need first a

non-recursive statement, which is called the seed statement. we need a recursive
statement, which can recur, we need a connection operator, which can connect the non-
recursive and the recursive results together put them together, the only connective that is
valid is union, all that is multi set union and we also need some kind of a terminal

condition to guarantee that the recursion really a terminus, it does not go on forever.

(Refer Slide Time: 23:36)

PPD

yol Recursive View - Example

7N

£ SWAYAM: NPTEL-NOC MOOTS Instructon Prof. P P Das, IIT Kharagpar. Jan-Apr, 2018

+ In the conlext of a relation flights:

create table flights (Epti;ce de\i_ynaiion carrier cost

source varchar(40), Paris ™, Detroi KM 7

dsstlination varchar(40), Paris NewYork KLM 8
carrier varchar(40),)

cost decimal(5,0)); Rara Eoval Arerican Aoy 8

Mew York Chicago American Alrlines 2

Boston | Chicage American Alrlines 6

Detroit "'\San Jofe American Alrlines 4

Chicage San Jose American Airines 2

+ Find all the destinations that can be reached from "Earis' ST e A “
A / i [A) AV

A

YD

[¥ Bilberschats, Korh snd Sudaishan

So, let us take an example. So, this is in context of a relation flights, where the four fields
are as specified and there is an instance shown, which show that different source
destination of different carriers, carrying people from one source to the other destination
and what do you want to find is all destinations that can be reached from Paris. Now, you
can see that from Paris, if I can reach Detroit and from Detroit I can reach San Jose, then
I can actually reach San Jose from Paris. So, that is the basic reach ability. So, that will
necessarily, if [want to compute that, then I will be able to compute this very easily by

doing natural join of flights with flights provided, I take say source..

(Refer Slide Time: 24:38)

- Recursive View - Example

i

+ In the context of a relation flights:

create table flights soprce destination carrier cost

source varchar(40), Pafis Detrait KLM 7

destination varchar(40), Paris NewYok KLM P

carrier varchar(40), o bont Aarerican Al 8
cost decimal(5,0)) aris /Boston erican Afrlines

Mew York | Chicago American Alrlines 2

BDst/un 7 Ghicago American Airlines [

Deol Sandose American Ailines 4

Chicage SanJose American Alrlines 2

+ Find all the destinations that can be reached from ‘Paris'

a it
K\

2
Kok A
0\

SWAYAM: NFTEL-MOC MOGTS Insiructon Prof. P P Das, IT Kharageer. Jan-apr, 2008

PPRsQEI SO iU

i Edition axn Silbersthat, Kerth and Sudarshan

Daiabise Bystem Coneepts

Let us compute it like this, flights f 1 join, flights £ 2 and I will have f 1 dot destination
equal to f 2 dot sources. So, the idea is if something goes from Paris to Detroit that is in f
1 and if some flight goes from Detroit to San Jose that is in f 2, then the destination in f 1
and the source in f 2 have to be equated. So, if we do this kind of a self equi join, then we
will be able to find out all flights that go from Paris to San Jose or all places that you can

reach from Paris in one hop.

Naturally, once you reach, once you do that then you may be able to go to another
destination in two hops and once you do that then, you may be able to reach another, yet
another destination in three hops and so on. So, we do not really know how many hops,
maximum would be required to compute this reachability information. So, that is the

reason we need to make use of the recursion and so, this is how we express it.

(Refer Slide Time: 25:54)

FPD

Recursive View - Example

create recursive view reachable_from (source destination depth) as (
select root source, root destination, 0 as depth

from flights as root o *A non-recursive seed statement
where root.source = 'Paris' *A recursive statement
union all #A connection operator

select in1.source, out1 destination, in1 depth + 1 =A ferminal cendition 1o prevent infinite recursion
from reachable_from as in1, flights as outi

where in1.destination = out1.source and source destination carrier cost

in1.depth <= 100); Parls Detroit KLM 7

+ Get the result by simple selection on the view: Paris New York KLM 6

select distinct source, destination Paris Boston American Aifines]

from reachable_from; source destination NewYork Chicago American Airlines 2

Paris Detroit Boston Chicago American Aifines g

This exarmple view, raachable_rom, s Paris New York Detroit SanJose American Aldines 4

called the transitive closure of the Paris Boston Chicago ~ SanJose American Airfines 2
flights relation Paris Chicago

Paris San Jose

Source: hitps.info, teradata com/MTMLPubsDB_TTU_16_DVindax him#page/SOL_Reterence®2FBO3S5-1184- 160K %2F sme 1472241 135807 himi% 2 3wwiDOEJZIT
(R R RN A NN

Duiabise Sysiem Conceps - § Edition LF Silberschaiz, Korih and Sudarshan

SWAYAM: NFTEL-MOC MOGTS Insiructon Prof. P P Das, IT Kharagpar. Jan-Apr, 2008

So, if we look into this, we are specifying that is a recursive view. It will happen with
itself, this is the name and this is what we want to compute source destination and we
take another dummy attribute kind of which specify the depth of recursion. So, the

present instance of the relation is at depth 0.

So, which defines your non recursive seat part so, it says select. So, you have renamed is
at flights as route, you are specified that it has to start from Paris and you can find out the
source destination pair at depth 0, then you specify the recursive part that is the second
hop has to be defined. So, we are saying that, if you had the reachability then call, let us
call it in one. This reachability maybe in one hop that is a depth 0 maybe in 2 hops that is
a depth 1 maybe at 3 hops; that is a depth 2 and you take another instance of flight as out
1 and what you need is the destination in the first in one has to be same as the source in

the other..

So, that they get connected and then you output the source from the first one destination
from the second one and naturally the depth has got incremented, because you have done
added one more hop and so, this is the and you add another condition saying that in one
dot depth should be less than equal to 100. This is as I mentioned is a terminal condition
which makes sure that, you do not get into infinite recursion. So, this view, recursive

view cannot be used to compute any reachability, which has more than 101 hops.

So, that is to be noted and finally, we need to connect these two results, which is the

initial start seed and the recursive one. So, this is the connection operator.

So, this is basically the idea of the recursive view, those of you who are more familiar
with discrete structure, would have known among relations in some more depth, you
would know that, we can define a transitive closure of a binary relation. So, this
recursive view is necessarily computing the transitive closure from the flights relation.
So, this is the instance of the flights and on the final computation, this is what you get.

This gives you all the destinations that can eventually be reached from the source Paris.

(Refer Slide Time: 28:41)

The Power of Recursion

« Recursive views make it possible to write queries, such as transitive closure queries, that
cannot be written without recursion or iteration

Intuition; Without recursion, a non-recursive non-iterative program can perform only a
fixed number of joins of flights with itself

This can give only a fixed number of levels of reachable destinations

Given a fixed non-recursive query, we can construct a database with a greater
number of levels of reachable destinations on which the query will not work

SWAYAM: NFTEL-MOC MOGTS Isaructon Prof. P P Das, IT Kharsgpar. Jan-apr, 2008

I R R RN E-FE S RS R

Daiabase Sysiem Concepts - §* Edition wa Siltsrschatz, Karih and Sudarshan
So, the recursive is very powerful in the sense that without recursion a non-recursive
version can only find flights up to a certain number of hops and whatever ma query you
write it is always possible to write out a database instance which will have more hops

and your query will necessarily fail.

(Refer Slide Time: 29:05)

!
|

The Power of Recursion

L

+ Computing transitive closure using iteration, adding successive tuples to reachable_from
- The next slide shows a flights relation

Each step of the iterative process constructs an extended version of reachable_from
from its recursive definition

- The final result is called the fixed point of the recursive view definition.

* Recursive views are required to be monotonic. Thatis, if we add tuples to fights the view
reachable_from contains all of the tuplés it contained before, plus possibly more

1 18
|

SWAYAM: NFTEL-MOC MOGTS Insiructon Prof. P P Das, IT Kharagpar. Jan-apr, 2008 '

[B -SSR N A R

So, we make use of the recursion here to make sure that you can actually extend this to
whatever depth you want and to compute this we keep on computing till no changes are
possible and in that sense this recursive views are said to be monotonic in that every time
you compute your result necessarily becomes larger and that is the reason you for the
purpose of being monotonic you are actually making use of the union all. So, that makes

it all inclusive

(Refer Slide Time: 29:49)

g Example of Fixed-Point Computation
source destination carrier cost
Paris Detroit KLM 7
Paris NewYork KLM 8
Paris Boston American Airlines 8
New York Chicago American Airlines 2
Boston Chicago American Airlines L]
Detrait SanJose American Alrlines 4
Chicago SanJose American Airlines 2

Iteration # Tuples in Closure
0 Detroit, New York, Bosten
1 Detroit, New York, Boston, San Jose, Chicago
2 Detrolt, New York, Boston, San Jose, Chicago

SWAYAM: NFTEL-MOC MOGTS mstructon: Prof. P P Das, IT KRarsgpar. Jan-Apr, 2018

R R RN RIS R

atabiie System Concepts - 6° Edtion CE] Silbeeschatz, Koth snd Sudaishan

=

So, now, if we go and this is the instance and this you can. Here, I have shown that how
the iteration actually happens in the iteration 0, in the flights itself, you had three
destinations, then you add two more in iteration 1, in iteration 2, you do not add anything
else. So, your result henceforth will not change. So, you have reached a fixed point and

you have computations, are over.

(Refer Slide Time: 30:10)

Update of a View
+ Add a new tuple to facully view which we defined earlier
insert into faculty values (30765, 'Green', ‘Music');
This insertion must be represented by the insertion of the tuple
('30765', 'Green’, 'Music’, null)

into the instructor relation

£ SWAYAM: NPTEL-NOC MOOTS Insiructon Prof. P P Das, IIT Kharngpar. Jan-Apr, 2018

"ur Bilberschats, Korh and

You can also update a view you can insert a record directly into a view, but since view
only is partial information on the relation, when you insert into a view since, view is
virtual. There will have to be an insertion, in the real relation and in the real relation you
may not know certain fields. So, if you are doing this insertion into faculty, which is a
view of instructor, then the salary field is not known. So, in the actual instructor a null
will have to get inserted in the salary field. So, the salary field needs to be null able kind

of field so updates on views have certain restrictions.

(Refer Slide Time: 30:47)

Some Updates cannot be Translated Uniquely

« create view instructor_info as
select D, name, building
from instructor, department
where instructor.dept_name= department.dept_name;

+ insert into instructor_info values (69987, 'White', 'Taylor');
« which department, if multiple departments in Taylor?
« what if no department is in Taylor?
+ Most SQL implementations allow updates only on simple views
The from clause has only one database relation

The select clause contains only attribute names of the
relation, and does not have any expressions, aggregates, or
distinct specification

Any atiribute not listed in the select clause can be set fo null
The query does not have a group by or having clause

s T 20 o s P -, 1 s s 201t [!
i‘ I

L e e e

So, there are some more instances that I have given, which you can study and try to
understand that what are the difficulties of updating on the view. So, it can be done, but it
has to be done in a restrictive sense. So, these are the different conditions that has to

happen for views to be updated.

(Refer Slide Time: 31:08)

- And Some Not at All
create view history_instructors as
select*
from instructor

where dept_name= 'History';

+ What happens if we insert ('25566', 'Brown', 'Biology', 100000) into
history_instructors?

SWAYAM: NFTEL-MOC MOGTS Insructon Prof. P P Das, IT Kharagpar. Jan-apr, 2008

rP 4SSt D

Duiabse Sysiem Concepts - § Edition L) Silberschatz, Kerih and Sudarshan

(Refer Slide Time: 31:11)

4

Materialized Views

+ Materializing a view: create a physical table containing all the tuples in the result of the query
defining the view

+ If relations used in the query are updated, the materialized view result becomes out of date

Need to maintain the view, by updating the view whenever the underlying relations are
updated

SWAYAM: NFTEL-MOC MOGTS Insiructon Prof. P P Das, IT Kharagpar. Jan-apr, 2008

(R B R RN A RS R

Daiabuse Sysiem Concepts - § Edition 0.5 Silberschatz, Kerih and Sudarshan

So, please go through these slides to understand what are there in terms of the views?
Finally, view is a virtual relation, but it can be materialized also, that is materializing is
basically computing a physical relation at the at the instance of the view, but naturally if
you materialized then there is a certain point of time, where you have materialized where
you have made it into a physical relation and hence, if your original source data in the
view changes in future the materialized view also need to be updated otherwise, your

data will get bad.

(Refer Slide Time: 31:43)

PPD

sJoin Expressions
Views
*Transactions

it

TRANSACTIONS

SWAYAM: NFTEL-MOC MOCTS Instructon: Prof. P P Das, IT KRaragpar. Jan-Apr, 2018

R - RN A NS N

halabaie System Concepls - 6% Edition (.5 Bilberschats, Korh snd Sudarihan

=

(Refer Slide Time: 31:49)

—— Transactions

= Unit of work
* Atomic transaction
either fully executed or rolled back as if it never accurred
« |solation from concurrent transactions
= Transactions begin implicitly

Ended by commit work or rollback work

But default on most databases: each SQL statement commits
automatically

Can turn off auto commit for a session (e.g. using API)
In SQL:1899, can use: begin atomic ... end
Not supported on most databases

SWAYAM: NFTEL-MOC MOGTS Insaructon Prof. P P Das, IT Kharagpar. Jan-apr, 2008

R B R RN A R R

Daiabise Sysiem Concepds - § Edition ax ilberschatz, Korth and Sudarshan

Finally, in this module, we mentioned that, there is something called transactions, which
we will take up at a later stage, in much depth. This is just to get you familiar with atom
a transaction is a unit of work, which is usually atomic, which is either fully executed or
if it fails, it will be rolled back as if it never occurred and this is required for isolation in
concurrent transactions. So, we will talk about this lot more when we take up

concurrency and related issues..

So, come transactions implicitly begin and they end by either committing the work that
they have successfully finished or rolling back that, this cannot be done. So, there are
some features in the SQL for doing transactions and, but usually you can transactions,
commit by default and the only it is exceptions, when the rollback is happening and we

will see more of that later.

(Refer Slide Time: 32:49)

Module Summary

.,
E = Learnt SQL expressions for Join and Views
H * Introduced transactions
i
x
-
i
&
1Y
3
1Y
%

r
i
&
i
g
] R RSN RN A NS R
Daiabase System Concepts - * Edition (5] Bilberschatr, Korth and Sudarshan

So, to summarize in this module, we have learnt about two important SQL features in
terms of join and views and we just introduced the basic notion of committing

transactions.

