
Database Management System
Prof. Partha Pratim Das

Department of Computer Science and Engineering
Indian Institute of Technology, Kharagpur

Lecture - 08
Introduction to SQL/3

 Welcome to module 8 of Database Management Systems. We have been discussing

basic SQL queries and this is the third and closing part of that introductory discussion

that we started in the 6th module.

(Refer Slide Time: 00:34)

So, just to quickly recap, this is these are the things that, we did in the last module

completing the understanding of basic operations the null values and aggregate

functions.

(Refer Slide Time: 00:44)

In the current module, we want to understand a feature which is very very important in

SQL query forming it is called the nested query or more formally nested sub query. In

SQL and we would like to understand the process of data modification.

(Refer Slide Time: 01:05)

And those are the two things that are outlined here.

So, let us start with nested sub queries.

(Refer Slide Time: 01:12)

A sub query is necessarily a select from where expression that is nested within another

query this is. So, these are the key things where expression. So, it is nothing new over;

what we have already learned? But it is a part of another query it is nested within another

query and that is the reason it is called a sub query. So, it by itself is not the result this

will be used, this is a select from where expression that will be used in a nested form in

another some other queries to actually generate the result.

So, that is a nested sub query. So, the nesting can be done in one or more of the three

clauses that a select from where SQL query has an attribute can be replaced a relation

can be any valid sub query or a sub query could form the part of a predicate in the where

clause all of these are possible. So, we will discuss them one by one. So, first we will

start by discussing how sub queries work in the where clause.

(Refer Slide Time: 02:44)

The common use for you having sub queries in the where clause is to perform different

kind of tests for membership comparison cardinality and so, on.

(Refer Slide Time: 02:58)

So, let us look at this; you have already seen this query before find courses offered in fall

2009, and in fall in spring 2010. Earlier we have shown different ways of coding this,

now we are showing yet another way to be able to code this in SQL.

So, first from the beginning certainly we need the courses. So, the select clause is trivial

it has to be the distinct course id is certainly the information will come from section

which has information about offering of courses as we have also seen already ah. So,

those two are no brainer. Now let us see what how do I find courses that are offered in

fall 2009 and in spring 2010. So, again the first part, the courses offered in fall 2009 is

coded in this part; in part of that where clause predicate when he says semester has to be

fall and here is 2009. So, this part is also done.

Now, we need to ensure that whatever I mean e e if I assume that after this this part were

not there, then this will only give me courses which are offered in fall 2009, but we want

the courses that are in fall 2009 and in spring 2010. So, we do something interesting

what I do is we write a separate query here which is courses that are offered in spring

2010. Select course I d just in the same way, select course I d section semester year. So,

this particular query will give me the courses offered in spring 2009. So, what do we

have in one part? I have so, if you look at this part this courses that happened in fall

2009; if we look at this part courses that happened in spring 2010 good.

Now, what I want I need that the; it I am interested in the courses that happened in both.

So, for a course that exists here I want to specify that that course Id that course Id must

be present here. So, what I am checking for? I am checking for a set membership; this is

a set right. So, I am trying to check, whether that course Id which is being selected in the

first part exists in in is another keyword. In this particular, this particular relation that is

specified by the second part of this query which is courses offered in spring 2010.

If it is if the course Id is present, then that course must have been offered in both the

semesters if it is not present, then it is offered only in fall 2009, and not in spring 2010

and certainly the courses that were not offered in fall 2009, and only offered in spring

2010 will feature here, but they do not exist here. So, they will never come up for tests.

So, as a result what I get finally, is the effect of computing courses that are offered in fall

2009 and in spring 2010 this part of the query which I used as a part of the where clause

is my nested sub query.

And in this case as we have seen it is used for set membership and this is a basic idea of

using nested sub queries; that is a nested sub query will always give you a relation. So,

you try to put that relation in the right context of the where clause from clause or select

clause, and then make use of it in building up your logical.

(Refer Slide Time: 07:14)

So, let us run through some examples this is, what you are saying is is earlier one was the

courses offered in both here we are trying to do kind of the difference saying the courses

offered in fall 2009, but not in spring 2010 certainly we easily get that by changing the

membership to negation of the membership earlier it was in now you do not in you will

simply get that it is up to you to take some examples and convince yourself that this kind

of a nesting will work ah.

(Refer Slide Time: 07:43)

We find the set of the find the total number of distinct students, we have taken the course

section taught by the instructor Id some Id is given. So, again we form a nested query

here is a nested query, which tells me the courses taught by this particular teacher 10101,

and then we check set membership. In terms of this course Id section Id that is fields of

the takes relation to see that, whether that particular tuple can exist in the course offered

by the specific teacher; if it does then take out that I d which is which will turn out to be

the student Id. In this case because that is the text relation has the student I d take out the

student I d and count it as distinct. So, this can simply give you the answer to this

squared; obviously, [laugher] we we agree that this can be written in a simpler form also,

but we are including it here just for the sake of illustrating the feature ah.

(Refer Slide Time: 09:03)

There is another clause called the some clause look at this fine names of instructor;

salary is greater than that of some which means at least one instructor in biology

department and we have already seen this coding before.

Now, we can do this in terms of the nested query by using again this is certainly the

salary of instructors in biology department and we are doing greater than sum; that

means, that the salary here being checked must find at least one record here. So, that it is

greater than that salary value. So, it is greater than some is a nice way to find existential

records using the nested sub query.

(Refer Slide Time: 10:02)

The logic of some clause I have detailed out here. So, we will not go through each one of

them in this discussion.

(Refer Slide Time: 10:09)

I leave it unto you to study and convince yourself, that you understand the semantics of

some. So, similarly we have an all clause which say that if we want to say, they find the

names of all instructors; whose salary is greater than the salary of all instructors in the

biology department in case of sum we can write or we will write all and it will check

every salary will check with the whole set of salaries in this sub query. And only if that is

greater than that particular record that particular name will be included in the result.

Otherwise it will be excluded from the result.

(Refer Slide Time: 10:52)

Similar to some there is a basic semantics of all which is also worked out here and I

leave that to your study at home.

(Refer Slide Time: 11:03)

You can test for empty relations by using the existing construct. So, if you say exists r,

then that is a predicate which mean that r is not empty; if r is empty then exist is false

and not exist is the negation of exist. So, it can be used to specify the query like find all

courses taught both in fall 2009 and spring 2010. So, all that you have to do earlier you

did it by set membership.

So, now you are trying to do this by this exists. So, you are saying that this is again the

same query which gives you the courses that are in spring 2010 and also in this fall fall

2009 and you check whether this relation whether this particular nested query is an

empty one or not if it is an empty one, then exist will fill and the whole where clause will

fail, if it was not an empty one then you have found such an entry it was offered and

therefore, it will get included.

So, these are just different ways of expressing similar things, but what you should note is

the nested sub query is a very convenient way to frame up the logic in multiple different

ways that you would like to do. So, these are the different names given the correlation

name and the correlated sub query incidentally; the nested query is often referred to as

the inner query and the query in which the nesting has happened, is known as the outer

query ah.

(Refer Slide Time: 13:04)

Here is another example which illustrate the use of not exist; so which I leave it for your

own study.

(Refer Slide Time: 13:15)

We can check for uniqueness that is; test for absence of duplicate tuples by using the

unique keyword. So, we can you can see here that here is a nested query and using

unique to find out all courses that were offered at most once in 2009. So, if it a course

was offered more than once, then naturally multiple records will feature and the result

the unique will fail unique will be true only if; there is only one entry which shows that it

is offered at most once in that semester.

Now, I move on. So, we have been discussing about sub queries in the where clause; now

we move on to sub queries in the clause.

(Refer Slide Time: 14:09)

So, as we have already seen a nested sub query is a relation. So, it can naturally be used

in the place of any relation that we have in the clause. So, we are trying to find out

average instructor salaries of those departments where the average salary is greater than

42,000. So, look at this is a nested sub query. So, where what is been found here this will

compute the average salary department wise average salary which we have already seen

group by department name and then you do average on the salary and you give it a give

me that field a new name.

So which means that; this is equivalent to having a relation which has two attributes

depth name and everyday salary. So, from that you are now trying to do the selection and

what is the condition that the average salary has to be written. So, you already have that

as a part of the field the average salary. So, you just need to put that in the where clause

and you have only those coming out of this particular relation where average salary is

greater than 42,000 to be selected in this select query. So, these will feature in the output

of this selection.

(Refer Slide Time: 15:56)

So, that is how you can very easily use a nested sub query in the; from clause and for this

we did earlier. We solve this problem using the having clause, but they here we will not

need we did not need the having clause to do this there is this is another way. So, here

what we have done is the same; if we if we look into the nested sub query. This is

actually the same all that we have done we have given it a new name by the renaming

feature, and then this as if becomes a relation and on that the computation is done rest of

it is similar.

(Refer Slide Time: 16:50)

There is a clause that provides a way of computing a temporary relation and that can be

subsequently used.

So, let us look at example. So, we are trying to find all departments with maximum

budget. So, this is my basic value we want to find department name, department dot

name, that is; a departments name from the department table and the budget must be

same as maximum budget. So, for that I need to know the maximum budget that exists

across the department. So, look at what has been done here we have a nested query

which aggregates the maximum budget from the departments.

So, this gives you the value of the maximum budget. We make that into a temporary

table max budget with an attribute value. So, this is renaming. So, you cannot see the

renaming is being used in very interesting ways. So, this is my nested query that gives

me a relation and this is my definition of the relation. So, max budget now is a temporary

relation a relation that I used subsequently in my; from clause and with allows me to do

that this relation will not be available.

Otherwise after this query this relation will not exist this is just a temporary one

computed for this query. So, this gives me the budget value this gives me the department

and department specific budget, and this condition tells me that I can choose all the

departments which has the maximum budget very nice way of using this.

(Refer Slide Time: 19:06)

So, with clause can be used in even more involved way again this is an example which is

more complex use and I leave it to you to practice study and understand we move on to

sub queries in the select clause finally, ah.

(Refer Slide Time: 19:26)

A scalar sub query is one; where there is a single value is expected. So, we can very

easily use that in the select. So, what if you look at this part which is the sub query? So,

you are saying list all departments along with number of instructors each department has.

So, this condition tells that the from the instructor; we are taking out those that

department name where the instructor works to count them and then you form that in as a

new attribute mind you in while we were using this in the from clause.

We were treating that as a relation because nested query will give a relation, but here in

the select clause the entities are attributes. So, this as is renaming of attribute which

means, but this is a relation that is why this notion of scalar sub query is required that is

they though this is a relation what does the relation compute it computes a single value.

So, that value we are putting as an attribute named num instructors.

So, we have department name and the number of instructor, then for each and every

department; that we actually have from the department list. So, it is a very interesting

way of using this nested sub query in terms of the select clause naturally; since thus in

the select clause I cannot have I mean every entry in the select clause has to be an

attribute pure relations are not possible.

So, if the sub query returns more than one table which cannot be conceived as a as a as

one or more attributes, then it will be runtime error that will not be allowed; because we

do not know how to handle multiple tuples in terms of a select clause ok. Next we move

on to discussing the modifications to the database, how do we modify the database?

(Refer Slide Time: 22:12)

So, we will look into some of the ways of changing the records or removing records from

that earlier. We saw a delete of record which removed all records from a relation, but

now we will see selective deletion insertion and update of values.

(Refer Slide Time: 22:33)

Now, deleting all instructors are easy delete from instructor all records sorry this and this

becomes an empty table, but suppose we want to delete all instructors from the finance

department, then like we do in the select from where we again use the where clause as a

predicate and say that delete from instructor, but you do the deletion provided this

condition is satisfied that is; department name is same as finance. So, it is very similar to

the select from where, but the effect is unlike select from where where no tables change

in the database here.

The table is actually changing; because these instructor records are deleted whose

department name was finance. The third example shows delete all tuples in the instructor

relation for those instructors, associated with the department located in the Watson

building. So, it Watson building may have multiple departments. So, all instructors who

worked on those departments which are located in the Watson building that will go. So,

you do this is again you are using nested query.

Now, you know how to use a nested query. So, you use nested query which will give you

the names of departments, which it gives you a relation with a single attribute with

names of departments housed in the Watson building, then you use the set membership to

check whether a particular department belongs to that set if it does then it is in Watson

building; otherwise, it is not in Watson building if it does belong to the Watson building

then this where clause becomes true and the corresponding instructor record is deleted

and that is of this whole different kinds of selective deletion can happen.

(Refer Slide Time: 24:34)

Delete all instructors whose salary is less than the average salary of instructor. Again this

is; so, you compute the selection sub query which computes the average salary and check

if the salary is less than the average salary and delete that sounds straightforward, but

just where you I just wait just wait I mean did we do it do a right thing an average salary

is computed by taking the sum of all salaries in the relation. And then dividing it by the

number of relations this has to be the average salary certainly if I remove a record then

the average itself will change.

So, if I write the query in this manner then what I am saying on the face of it looks

correct, but then actually can it be correct because the moment a condition is satisfied

and that record is deleted this average value itself has changed. So, that is not. So, that

will depend then the result will depend on the order in which the deletion is happening,

but that is not what was meant what was meant is take all the records for the present find

out the average find out all records which have a salary less than that average and

remove them.

So, this initially you know easy trivial looking solution is not actually correct. So, you

will have to do the solution in two stages: first compute the average salary, find all tuples

to delete? Next delete all tuples found above without recomputing. The average in the

present solution the average is recomputed, which is the wrong thing.

(Refer Slide Time: 26:32)

So, again I will leave that for you to solve we move on to looking at modifications in

terms of insertion. So, we had seen this earlier we can add a new tuple by inserting to

then the relation names, and then you save values and the tuple of values. We can specify

the; if we if we do not remember the order of attributes in the relation. Then we can also

specify the order in which we are spaced actually giving the information.

So, you are saying insert into course and what we have done here is we have actually

specified the order in which that tributes occurred and that order and the order of values

must be the same. In the first case this order of values is decided by the order of the

attributes that exist in terms of the create table. Add a new tuple to student with total

credit set to null that is I do not know; we were adding a student initially does not have a

credit right. The credit is a nullable field the credit will be earned after the student has

gone through the courses and all that. So, if I do not know the value of a field then I can

write n u l l null which is a special value designating unknown for at the time of

insertion.

(Refer Slide Time: 28:00)

And all instructors to the student relation with total credit set to 0. So, I can also combine

insert with select. So, we are taking the first part this part is selection which generates a

whole lot of records having ID, name, department name and the total credit set to 0.

From the instructor and insert them into the students. So, these will get instruct in

inserted into the students select from where statement is evaluated fully. So, this first

select from will be done before any of its results are inserted in the relation. So, that is

the basic condition that SQL guarantees; because if that were not the case then such

situations will become circular and will cause problem.

(Refer Slide Time: 29:03)

Updates can be done based on particular values. So, you can update a table based and

what it means that? It you could update the values of specific fields.

So, here in the in the first case; we are giving trying to give a 3 percent salary raise for

salaries which are more than 100, 1,000 and some 5 percent raise for salaries which are

less than equal to 100, 1,000 and mind you this order in which you do the update is

important, because if you do the later update first then someone who was what qualified

in the later part was less than 100, 1,000 with the increase will become more than 100,

1,000 and will also qualify for the second one. So, that will become wrong. So, update

often is dependent on the order.

(Refer Slide Time: 29:58)

And therefore, you have yet another ah feature to take care of this when you have a

specific order to do things it is called the case. So, you say when salary case is a new

keyword, when is a key word when salary is less than equal to 100, 1,000, then this is

how you hike otherwise this is how you hike. So

(Refer Slide Time: 30:28)

It can it looks more like the; if statement of c c plus plus you can do updates with scalar

sub queries. We have seen scalar sub queries already. So, you can use a scalar sub query,

again I would not go through that details please study and you will be able to understand.

(Refer Slide Time: 30:50)

So, these are different examples. So to summarize, we have introduced a very powerful

feature or in SQL query known as nested sub query, where we can write a select from

where expression. As a part of the where predicate or as a relation in the from clause or

as one or more collection of attributes in the select clause and it can be used in several

other places also. We have seen the ways to perform data modification in terms of

deleting inserting and updating records. And we have also seen how nested sub query

often may be very useful not only in terms of performing a query, but also in terms of

performing certain data modifications.

