Database Management System
Prof. Partha Pratim Das
Department of Computer Science and Engineering
Indian Institute of Technology, Kharagpur

Lecture - 07
Introduction to SQL/2

Welcome to module 7 of database management systems, this is a second part out of total

3 of introduction to SQL.

(Refer Slide Time: 00:31)

PFD

- Module Recap

0

 History of SQL
« Data Definition Language (DDL)
+ Basic Query Structure (DML)

an-mp

. T Kharsgpur. &

§ Swaram: NPTEL-SHOC MOOCS nsarscor: Prof. P # D

In the last module, we have discussed about the evolution of SQL the data definition

language part of it and the basic structure of queries.

(Refer Slide Time: 00:42)

PFD

- Module Objectives

.

R + To complete the understanding of basic query structure and set operations
2 + To familiarize with null values and aggregation

i

2

r

H

MnsanecIor Prof. P P D

[B R A

F SWAYAM: NPTELOC MOOCS

bae Syalem Concegt - B Edition ora Silberychals, Korth and Sedarhan

In the current module we will complete the understanding of the basics queries structure
and will see how, common set theoretic operations can be performed in terms of queries.
We will familiarize ourselves with the handling of null values and aggregation operation,

that will be frequently required for forming queries.

(Refer Slide Time: 01:05)

- Module Qutline

« Additional Basic Operations
+ Sel Operalions

« Null Values

« Aggregate Functions

. NT Kharsgpur. Jan-Apr. 2018

£ SWAYAM: NPFTEL-HOC MOOCs instrucion: Prof. P P Da

base Syibem Concipti - B* Edibion o Silberachals, Horth and Sudarshan

So, this is a module outline these are the topics, that we will discuss. So, we started the

discussion of some more basic operations in the query.

(Refer Slide Time: 01:15)

Cartesian Product

« Find the Cartesian product instructor X feaches
. select +
from instructor, teaches

generales every possible instructor - teaches pair, with all attributes
from both relations

For common attributes (e.g., D), the attributes in the resulting table
are renamed using the relation name (e.g., instructor.ID)

« Cartesian product not very useful directly, but useful combined with
where-clause condition (selection operation in relational algebra)

|
|
?5.
|
|

"

Databans Sysbem Concepts - 6 Edition ore Silberichats, Korth and Sedarihan

We have already discussed this that, if we do select star from 2 tables then it results in a

Cartesian product we have seen this result earlier..

(Refer Slide Time: 01:26)

Cartesian Product

" instructor teaches
a. T3] name depl_mame | salary n |m|m.'_|J] ,«.-_«r| wemesher } year]
% 10101 | Srinivasan | Comp. 5ci. | 65000 10001 (5101 11| Fall N0
5 12121 | Wu Finanee | 90000 10101 (CS35 | 1 | Spring | 2010
] 15151 | Mozant Musie 40000 10101 | C5-147 1 Fall 2009
E 107 | Einstein Physics 95000 12121 | FIN-201 1 Spring | 2010
E El Said History 0000 15151 | MU-199 1 Spring | 2010
£ -+ e i nm imy=.ml 1 Fall WM
]
i’ Inst. D] nmme dept_saime [salary | tenches 1D conrse_id |see_id] semaster| year
N 1o (Srinivasan|Comp, Scif g5000(10101 [CS-00 1 Fall 2009
% I mmn ‘\nnl\.h.minn'.p Scifasong | 101 JCS-315 1 Spring anon
£ | 1010 [Srinivasan|Comp. Seif gsop | 10001 (5347 1 Fall 2w
H | 10101 [Srinivasan|Comp. Seil gsop | 12121 [FIN-201 | 1 | Speing 2010
|10 \rlnl\'.mn(nmp Seil n5000| 15151 [MU-199 | 1 Spring b (11}
| 10101 [Srinivasan|Comp. Sel) 5000 | 22222 |PHY-101| 1 Fall H0%
3 |
E | 12121 |[Wu Finance |Spo00| 10101 (TS0 1 Fall pul (L]
E 12121 [Wu Finance [spo00| 10001 [CS-315 1 Spring | 2010
d | 1212 (Wu Pinance (o000 | 100001 |CS-M7 1 Fall L
i 112121 [Wu Pinance [9gop0| 12121 [FIN-201 | 1 | Spring | 2010
; 21 [Wu Finance [spoo0| 151581 [MU-199 | 1 Spring | 2010
-] 21 [Wu Pinance |90000| 2222 [PHY-101 | 1 Fall 2009
i

Ditabsans Sysbem Concepts - 6 Edition arr Silberichals, Korth and Sudarshan

(Refer Slide Time: 01:32)

PO

- Examples

« Find the names of all instructors who have taught some course and the |' ||
course_id / e

an-apr. 2018

select name, u?se_m;

from instrucfor, teachés

where instructor.D = teaches.ID ‘
I(Eijui-Jmn, Natural Join
i

b T sumed T depit_panic | salary
0100 | Sewnivasan X
i}

.l T

s, BT KRarsgpur. 5

I | FHY-10

Know by itself as we had said that, by itself the Cartesian product may not really make a
lot of you may not be very useful, but suppose we want to answer this kind of a query,
that find all names of all instructors who have taught some course and for those you also
write the course id. So, what we are interested in is the name of the instructor and

course_id.

So, we put that on the select course these are the 2 tables that are required because, the
name of the instructor is there in the instructor table relation and then the relationship
between which instructor teach which course is in the teachers table. So, in the instructor
table we have the name in the teachers table, we have the course id and also this
relationship as to which course is taught by which teacher and here, we have the
relationship between which id of the instructor has which name. So, what we do is, when
we do this Cartesian product will get something like this, as we have already seen, but
we want to qualify it by with a predicate which say that, we will out of all these
combinations will choose only those where, the instructor.ID equals the teachers.ID. So,
if we look at say in the first row the instructor.ID is this, teachers.ID is this, which is id
of the teachers table they are same. So, which says the this instructors Srinivasan actually
teaches the course CS-101 whereas, if you look into this row it says that instructor.ID is
this and teaches.ID is this and we are really not interested in this combination, because
this combination does not convey anything meaningful. So, by the use of this where
clause, we will try to choose only those records where, these 2 ids are same which will

tell us that, this particular instructor actually teaches that particular course.

So, if we do that, then you will find that majority of the records that, actually came about
in the Cartesian product are eliminated from this result. So, I have struck them out. So,
you can currently see in this part you can see only 4 records the 3 courses taught by
Srinivasan. So, and the one course taught by you. So, in the output you will have this
name, this name part and this course _id part because, you are projecting on these 2. So,
this will be the output table which will get generated and just to remind you, this is the
notion of natural join that, we had discussed in relational algebra in this case we will
actually call it equi join because, we are using a equality condition after the Cartesian
product to join these 2 relationship. So, this is a very critical operation in many of cases

in our database query system.

(Refer Slide Time: 05:23)

- Examples

» Find the names of all instructors in the At department who have taught
some course and the course_id

select name, course_id
from instructor, teaches
where instructor ID = teaches.ID and instructor, dept_name = 'Art’

as. BT Kharsgpur. Jan-Spr. 2018

E SWAYAM: NPTEL-HOC MOOCs Instrector: Prof. P P O

Silbwrachaty, Korth and Sudarshan

There is and this is another extension of this similar example. So, here we have added
another predicate in the where clause, specifying that instructed or department name is

art..

So, which means this will now, give the names of all instructors in the art department
only who have taught some course and specify their course id. So, in different such

ways, you can manipulate and create queries.

(Refer Slide Time: 05:57)

- The Rename Operation

« The SQL allows renaming relations and atiributes using the as clause
old-name as new-name

« Find the names of all instructors who have a higher salary than
some instructor in ‘Comp. Sei

select distinct T.name
from instructor as T, instructor as §
where T salary > 5 salary and S.dept name = ‘Comp. Sci.”

5. BT KNArBQPUT. Jan-apT. 2018

« Keyword as is optional and may be omitted
instructor as T = instructor T

§ SwAYAM: NFTEL-WOC MGOCE insanecaor: FTof. P F D

R Silberychals, Korth and Sedarihan

It is possible to read them, we have already seen examples you can rename a relation you
can rename an attribute and the style is to use as. So, here you can see that, in the select
query we have said from instructor as T. So, the name of this relation can be treated as T
and we again see that as instructor as S. So, actually what we are doing a join between

the same relation instructor and instructor.

So, and we are trying to find out all instructor. So, you have higher salary than some
instructor in computer science. So, the some instructor in computer science is specified
by this condition, because department has to be computer science and the fact that salary
is higher. So, as if you treat that, though it is actually a join between a product between
instructor and instructor the same relation, but by renaming you treat them as if they are
2 different tables having name T and S, and then it becomes easier to write this kind of
query. So, otherwise it is it is quite difficult to write this query to find out, because you

need to actually create a product of one relation with itself..

(Refer Slide Time: 07:30)

- - Cartesian Product Example*

+ Relation emp-super

person | supervisor

Bob Alice
Mary | Susan
Alice | David

David | Mary

* Find the supervisor of "Bob"
Find the supervisor of the supervisor of "Bob”

* Find ALL the supervisors (direct and indirect) of “Bob

SWAYAM: NP TEL-WOC MOOCE Wsansctor: Prof. P # Das, BT KRarsgpur. Jan-agr, 2018

Ditibia Syite Concepti - 6 Edition LAY Silberuchats, Korth and Sedarhan

Keyword as is optional you can just write instructor, and then the name the new name
that you want to give and that itself field work here. Is another Cartesian product
example, here given a relation which is which lists a person and his or her supervisor, we

want to find out all supervisors direct or indirect of that person.

So, I leave this as an exercise to you to think over as to how we can actually compute

this query?

(Refer Slide Time: 07:56)

String Operations

* 5QL includes a string-matching operator for comparisons on character
strings. The operator like uses patterns that are described using two
special characlers

percent { %). The % character malches any substring
underscore (_). The _ character matches any character

« Find the names of all instructors whose name includes the substring
“dar’
select name
from instructor
where name liki

SWAYAM: NP TEL-SOC MOOCE Msansctnr: Prof P F Des, BT KRarsgpur. Jan-apr. 2018

LA Silberichats, Korth and Sudarshan

Distabiasa Sysbem Conceph -0 Edition

SQL supports several string operations and of particular interest at 2 specific symbols,
characters which allow us doing certain match, percentage is used to match any substring
and underscore is used to match any particular character and we use a keyword like, to
find out different string patterns that can be matched. So, here we want to find the names
of all instructors, whose name includes the substring d a r and by writing this so saying

the predicate is formed is named like this.

So, what is there is a percentage before there is a percentage after. So, anywhere d a r
will feature in the name, this predicate will turn out to be true otherwise if there is no d a
r in the name the predicate will turn out to be false and that particular record will not get
selected. So, in this way we can using like, we can actually do different kinds string

operations as conditions in the weight loss or also..

(Refer Slide Time: 09:07)

- String Operations

« 50QL includes a string-matching operator for comparisons on character
strings. The operator like uses patterns that are described using two
special characters

percent { %). The % character malches any substring
underscore (_). The _ character matches any character

« Find the names of all instructors whose name includes the substring
“dar’

select name
from instructor
where name like “dar%

= Match the string “100%"
like 100 \%" escape "'

= in that above we use backslash (1) as the escape character

FWATAM: NFTEL-9OC MOOCE Mmsanecion Prof. P P Des, BT KRarsgpur. Jan-apr. 2078

Silbsrachats, Korth and Sedarihan

g

So now, naturally this brings in an issue of for what if my string itself has a percentage or
an underscore character. So, the rule followed is you will need to escape that, with the
escape character that you define. This is a style which you have seen in C programming

as well.

(Refer Slide Time: 09:29)

ol String Operations (Cont.)

« Patterns are case sensifive
» Pattern malching examples:
‘Intro%" matches any string beginning with “Intrg”
“%Comp%' matches any string containing “Comp” as a substring
___ matches any string of exactly three characters
" _ _ %' matches any string of at least three characters

SWATAM: NP TEL-WOC MOOCE Wsansctor: Prof. P # Des. BT KRarsgpur. Jan-agr, 2018

Ditibis Syiten Concests - 1 Edition LIAE] Silberychats, Korth and Sedarhan

Patterns are certainly case sensitive. So, it depends it will distinguish between upper case
as well as lower case, and these are different examples of string matching that you can do
where, you can match at this beginning of a string, end of a string, anywhere in the
string, specific number of characters in a string and so on. SQL supports concatenation
conversion of lower to upper case and vice versa and different other common string

operations, those are available as functions in SQL and can be used for convenience.

(Refer Slide Time: 10:09)

Ordering the Display of Tuples

+ List in alphabetic order the names of all instructors

select distinct name
from instructor
order by name

+ We may specify desc for descending order or asc for ascending
order, for each attribute; ascending order is the default

Example: order by name desc
» Can sort on multiple attributes

Example: order by dept_name, name

SWAYAM: NP TEL-WOC MOOCE Msanecinr: Prof P F Des, BT KRarsgpur. Jan-apr, 2018

Ditibsaia Syitem Concepti - 1 Edition LIAT) Silbervchals, Korth and Sudarshan

Now, let us different question let us say, we have computed a query and then often we
would want, that the result be ordered in according to certain order particularly the value
of certain field if we want the result to be ordered, then SQL allows you to do that by
another clause that you add to the query, which is called order by. So, what this will do
we have already seen this query this will find out the names of all the instructors and the
names will occur in a distinct manner because, distinct is specified, but then the output

will be in terms ordered by the name.

And the ordering can be descending or ascending by you can control that, by specifying
whether you want descending or ascending by default the ordering is ascending. So, that
makes the presentation of the result of and very easy and you can certainly sort on

multiple fields as well, so it can be ordered based on combination of fields.

(Refer Slide Time: 11:15)

- Where Clause Predicates

« 5QL includes a between comparison operator

» Example: Find the names of all instructors with salary between 590,000
and $100,000 (that is, = $30,000 and < $100,000)
select name
from instructor
where salary between 90000 and 100000

« Tuple comparison

select name, course_id \
from instructor, teaches h
where (instructor ID, dept_name) = (teaches.ID, Biology');

an-apr. 2018

s, BT KRarsgpur. 5

Mnsarecior Prof. P PO

“, -
o ~

e ——

Silberachats, Korth and Sedarihan

SQL were closed also allows between as a comparison parameter. So, between can
specify 2 values. So that, whenever the field value will be between these 2 given values
the condition will be predicated will be taken to be true otherwise is taken to be false.
You can compare based on people as well. So, in this case you could have written, you
could have checked for equality of instructor.ID with teachers.ID and department name
with the literal biology, but you can compact it by writing a tuple notation as is shown

here. So, these are common convenient ways of writing different back clause..

(Refer Slide Time: 12:02)

L Duplicates*

+ In relations with duplicates, SQL can define how many copies of
tuples appear in the result

+ Multiset versions of some of the relational algebra operators - given
multiset relations r, and r,
Gylr,): If there are ¢, copies of tuple f, in r,, and ; satisfies
selections @5, then there are ¢, copies of £, in @ y(r,)

[14(r): For each copy of tuple t; in r,, there is a copy of tuple
[(t,) in [14 (r;) where [1, (t,) denotes the projection of the single
luple t,

fy X ry: If there are ¢, copies of tuple {, in r, and ¢, copies of tuple
fzin 1, there are ¢, x ¢; copies of the tuple . & in v, xr

SWAYAM: NFTEL-90C MOOCE Msinecior: Frof. P P Des, BT KRarsgpur. Jan-ag:. 2078

Dtibinia Syitem Concepts - 1 Edition LAl Silbervchats, Korth and Sedarhan

Now, we have specified that SQL does carry duplicates. So, unlike relational algebra
which set theoretically specify that, their duplicates should not be there if in SQL there
could be duplicate entries in the same relation. So, there is a this is called when
duplicates are allowed in set theory, then such sets where duplicates are allowed and
known as multi sets. So, there are multi set versions of the SQL queries or so to say the

relational algebra operations.

So, you have a selection, which can be multi set selection which means that, if there are
certain cl number of copies of a tuple in the relation, which satisfy the condition theta
then all of them will feature in the result. And all those copies can be seen
simultaneously, because it is a multi-set condition, similar definitions are hold for
projection, as well as for Cartesian product. So, I will leave it to you to go through the
details and convince yourself that, these multi set relations really extend the traditional

single set distinct definition of the relational algebra.

(Refer Slide Time: 13:27)

- - Duplicates (Cont.)*

« Example: Suppose mulliset relations r, (A, B) and r, (C) are as
follows:

- r.={n.i}t2.$a;} 2,03
+ Then [1g(r,) would be {(a), (a)}, while([15(r,) ¢ r, would be ({0} (,,L)
. {(a,2), ;_(.23. (a.3), 44 [gbsﬁ]} L

+ 5QL duplicate senfantics

select4; A, .. A,

fromr, .., Ty
where P

an-agpr. 2018

. BT harsgpur.

is equivalent to the multiset version of the expression

]-[&.J_- ﬂ,(aﬂ’(rl Xf? XinX r’|:))

SWATAM: NP TEL-WOC MOOCE insansciorn: Prof. P # D

e

stibiia Sysber {onceph - 6 Edibon LAl Silberichals, Korth and Sedarihan

So, here is an example where, there are 2 multi set relations as you can see particularly
this one, which has identical duplicate entries. So, using that you can define a Cartesian
you can define a projection of r1 on B rl on B, which will certainly give you it is you are
doing projection on B. So, it will give you a only. So, you will have this result itself will
be a multi set because you will get 2 as. So, this result will be like a a, and then you have
r 2 with which you are doing the Cartesian product. So, you will have all possible
combinations all these 6 are the result in the SQL whereas, in set theory typically the
result should have been only these 2 tuples.

(Refer Slide Time: 14:38)

PPD

- sAdditional Basic
. Operations
% *Set Operations
: *Null Values
g "Aggregate Functions

5. BT KRarsgpor. &

SET OPERATIONS

AT AM: NPTEL-SOC MOOCS Insarecor: Prof. & # D

5

atein Eencaph - I Edition A1) Ailberschats, Korh and Sedarshan

(Refer Slide Time: 14:43)

Set Operations

+ Find courses that ran in Fall 2008 or in Spring 2010

an-apr. 2018

(select course_id from section where sem = ‘Fall' and year = 2009)
union
(select course_id from section where sem = 'Spring’ and year = 2010)

5. W Mnarsgpur.

+ Find courses that ran in Fall 2009 and in Spring 2010

(select course_id from section where sem = ‘Fall' and year = 2009)
Intersect
(select course_id from section where sem = 'Spring’ and year = 2010)

sanecIor PTof P P D

Find courses that ran in Fall 2009 but not in Spring 2010

(select course_id from section where sem = 'Fall' and year = 2009)
except
(select course_id from section where sem = 'Spning and year = 2010)

B R R R

E SWAYAM: NFTEL-#OC MOOCE

fibaie Syatem Concepti - B Editios 11 Silberichats, Korth and Sedarihan

Now, we take a quick look into the common set operations. So, it is possible to do union,
intersection, difference kind of operations very easily with SQL queries. So, suppose we
want to find all courses, that ran in fall 2009 or in spring 2010. So, certainly the first part
of the query is simple. This will give you all courses that ran. So, you are taking out the
course_id from section is where, the course running information is provided and you part

putting 2 conditions, which say that they actually this courses ran in fall 2009.

So, this is the first query the second query says the courses, that ran in spring 2010 and
you are you have an or condition in the statement of what you are looking for. So, you do
a union, union is another keyword. So, this will simply give you a relation of the
course id attribute as the only attribute, which has records from the first as well as the
second query. Similarly, you can find out the courses that ran, both in fall 2009 and
spring 2010 by using intersect, which basically give you the intersection of the result of

the first and the second query.

You could also do difference set difference by doing find courses, that ran in fall 2009,
but not in 2010. So, what will that mean, that will mean that the result of the first query
from the results of the second query be subtracted be done a difference from. So, those
that, had run in the fall 2009 and then was again run in spring 2010 will get removed. So,
that is done through the accept keyword.

So, in this way you can very easily do set operations, whenever that is easy to conceive;
obviously, you can write these queries in several other different forms, but this is just to

show you how set theoretic operations can be easily written.

(Refer Slide Time: 17:00)

- Set Operations (Cont.)

+ Find the salaries of all instructors that are less than the largest salary

select distinct T salary
from instructor as T, instructor as 5
where T.salary < S.salary

5. N7 KRArSgpUT. Jan-ApT. 2018

+ Find all the salaries of all instructors

select distinct salary
from instructor

MsIreCIOr PO P P D

+ Find the largest salary of all instructors

(select ‘second query”)
except
(select “first query”)

F SWAYAM: NPTEL#OC MOOCS

030 Silberachats, Korth and Sedarihan

You can do set operations like, this in terms of fine salaries of all instructions that are
less than a largest salary. So, again we are using renaming to think of the same relation as
2, and then as if from the relation T you are trying to look at relation S and finding out
what are the salaries, which are smaller than that and certainly whatever comes in out is
the one which is not the largest because, certainly the largest will not satisfy this
particular condition, because it will get compared with itself. You can find salaries of all

instructors, and then you can find the largest salary.

So, this is all salaries which are less than largest, this is all salaries including the largest.
So, what happens if you subtract that is from this if you subtract this from all salaries, if
you remove the salaries, that are not largest naturally what you get is a largest salary. So,
this is a interesting way to find the largest salary we will see later on that there could be
several other ways particularly the use of aggregate function, which make these
computations easier to perform, but these are the typical ways to use set theoretic

operations.

(Refer Slide Time: 18:29)

yus Set Operations (Cont.)

+ et operations union, intersect, and except
Each of the abave operations automatically eliminates duplicates

+ To retain all duplicates use the corresponding multiset versions union
all, intersect all and except all.

5. BT KNArBgPUT. Jan-apT. 2018

+ Suppose a tuple occurs m times in r and n times in 5, then, it occurs:
m +n times in runion all s
min(m,n) times in r intersect all s
max(0, m - n) times in r except all

E SWaYAM: NFTEL-0OC MOOCE Wsarscion Prof. F F D

E

0.1 Silberuchats, Korth and Sedarhan

The set operations, so we have seen 3 of them union, intersect and except they
automatically these operations are set theoretic. So, each of them automatically, eliminate
the duplicate, unlike what SQL by default, SQL by default does what allows duplicates,
but set operations will eliminate duplicates, because they are set operations. So, if you
want the SQL type of behaviour, if you want the duplicates to be preserved, then you can
have a multi set version of these set operations, which are known as union all, intersect

all, accept all like that.

And naturally if you do these operations then, here is the simple formula of the number
of tuples, that will get computed in different cases you can study and convince yourself
that these are the correct numbers. Let us, go to the treatment of we talked about null
values, that we said that it is possible that certain records in a relation may have one or
more attributes where, the value is not known and to represent, that the value is not

known we are putting a placeholder called null.

(Refer Slide Time: 19:52)

o Null Values

« It is possible for tuples to have a null value, dencted by null, for
some of their attributes

» null signifies an unknown value or that a value does not exist

« The result of any arithmetic expression invalving null is null
Example: 5+ null returns null

+ The predicate is null can be used to check for null values
Example: Find all instructors whose salary is null §~——

select name
from instructor
where salary s null

—

5. BT MRarsgpur. Jan-agpr. 2018

SWAYAM: NFTEL-90C MOOCE Mnsinecsor Frof. P F D

e

atabsans 5 dftn [1F) Silberychals, Korth and Sedarihan

So, let us see what is the consequence of that null value in terms of doing these query
operations. So, the null signifies an unknown value. So, if I do 5 plus null then naturally
the result is null. So, what you are saying that [am adding an unknown quantity to 5. So,
then what would you say is the result is unknown. So, that is the basic semantics of
adding null to a number. So, it is possible to check, if particularly a field is a null for a

record, and that is done by a predicate is null.

So, in this particular query we are trying to find all instructors, whose salary is null that
is not known. So, this is a predicate. So, for a particular record for which salaries null,
this will become true and that will get included in the result, but for all records for which,
there is some value for the salary. So, salary is known it is not null those will not get

included in the result.

(Refer Slide Time: 20:58)

- Null Values and Three Valued Logic

= Three values - true, false, unknown
= Any comparison with null returns unknown

Example: S<null or null <> null or null = nulf
« Three-valued logic using the value unknown

OR: (unknown o true) = frue,
(unknown or false) = unknown
(unknown OF Unknown) = Unknown

5. BT KNArBgPUT. Jan-apT. 2018

AND: (true and unknown) = unknown,
(false and unknown) = false,
{unknown and unknown) = unknown

NOT: (not unknown) = unknown

‘P Is unknown" evaluates to true if predicate P evaluates to
unknown

F SWAYAM: NFTEL-#OC MOOCS insanscior Prof. P P Om

0134 Silberichats, Korth and Sedarhan

So, the basic semantics of null is then, combined with the truth values because, we know
our basic predicate logic is 2 values true and false. But now, you have a third value
unknown that is, you may not know the value of a predicate. So, how does it play around
with the true and false values you can reason through that quite easily if you are
comparing with a null in whatever way, then naturally the result is unknown. So, it
returns a null, if you are doing any connectives for example, if you are doing or of null or
true, then the result should be true because, in or we say that if any of the components is

true then the result is true.

So, here you do not need to know what is that unknown well you can say it is true, but if
you do or with false or of unknown with false the second row or of unknown with false if
you do this, then naturally this is unknown because, since this is false the result would be
true only if unknown value is true and the result would be false if the unknown value is
false, you do not know what that unknown value is. So, you have to say that you have
result is unknown. So, using that same logic you could see verify I would ask you to
verify offline at home you please verify, that all these combinations of true false with
unknown are valid. So, if P is unknown is evaluate will is as a predicate will evaluate to

true if P is not known..

(Refer Slide Time: 23:05)

ol Aggregate Functions

+ These functions operate on the multiset of values of a column of
a relation, and return a value

avg: average value

min: minimum value
max: maximum valug
sum: sum of values
count: number of values

F SwWaATAM: NFTEL-OC MOOCS msarecion Prof F P Das. BT KRarsgpur. Jan-agr, 2018

Now, we come to the aggregate functions, there are several aggregate functions they can
be used for convenience and these are the common months, that operate on the multi set
values naturally aggregate functions operate on a particular column they try to aggregate
in a particular column and return a single value for example, average would be meaning,

that you are trying to find average of the values of a particular column.

(Refer Slide Time: 23:28)

7o Aggregate Functions (Cont.)

« Find the average salary of instructars in the Computer Science
department

select avg (salary)
from instructor
where dept_name='Comp. Sci.’
+ Find the total number of instructors who teach a course in the Spring
2010 semester

select count (distinet 1D)
from teaches
where semester = 'Spring’ and year = 2010;

* Find the number of tuples in the course relation

select count (%)
from course,

FWATAM: NFTEL-SOC MOOCE Msineciorn: Prof. P P Des, BT KRarsgpur. Jan-ag:. 2078

Database System Concepts - * Edition (I F Silberachats, Korth and Sodarha

So, here is an example. So, we are trying to find the average salary of instructors in
computer science department. So, naturally what you output is average salary. So, mind
you this will this output relation will have one attribute, which is average salary and

since, average salary is a single quantity it will only have one, and here I have made use

of this aggregate function average. So, it says you do average on the attribute salary and
where do you get that attribute, from you get it from the table instructor and then we are
saying that we are not interested to find average of salary of all instructors. We are
interested to find the average salary of those instructors who work for computer science.
So, you put this back clause. So, this will ensure, that you find the average salary of

instructors in computer science department.

So, in similar way you can use other aggregate functions like, if you want to know the
total number of instructors who teach a course in this semester. So, you first put the
where clause, naturally you where will you find this information you will find this
information in teachers, teachers is the relation which tells you which instructor is
teaching what course. So, that comes in from then you have to specify that teaching a
course in spring 2010 semester. So, the where clause specifies, that the semester is spring
and the year is 2010. So, this will give you all records, which show that the some

instructor is teaching the course in spring 2010 semester.

Now, naturally there could be multiple the same instructor could happen multiple times,
because an instructor may be teaching more than one course. So, you make the
instructor.ID, instructor.ID that you have here, you make that distinct. So, that you get
only those instructors every instructor who is teaching one course or more than one
course will feature only once in this total list, and then you simply count it use aggregate

function count on that.

So, that will tell you how many instructors are teaching some course in spring 2010 mind
you if this is critical to use this key word distinct, because unless you use that, then all
that you will eventually find out is not the number of instructors who are teaching the
course you will find out the number of courses, that are being offered in spring 2010
because, there could be the same instructor teaching more than one course. If you just
want to count the number of tuples you can do count on star because, what is star is all
the attributes. So, from if we want to find out the number of course, I suggest to count

star on course..

(Refer Slide Time: 27:03)

- Aggregate Functions - Group By

% « Find the average salary of instructors in each department

{ select dept me,avg{sa!_arrﬂas avg_salary

1 from instructorg——— =

; group by dapt_narne;

: P :

5 f D | nane dept_ninite | salary | f____,/__a-—-\

H ¢ [o =

a =, | 76766 | Crick nmh‘i_"} 72000 ! .

N) (45365 [Katz Comp. Sci :,:mle- | dept_name Javg satary

E !_fr 10101 | Srinivasan (:ump Eft'l 63000 | Blulug\' 72000

§ / 83821 | Brandt Comp. Sci. | 92000 | Ca ,’S i 7

i /. [58345 Kim Elec. Eng. | 80000 s s |

H 12121 |Wu Finance ‘Jl]llllf], Flll'{'an' ﬂl}ﬂl][)

E 76543 |Singh Finance | 80000) Finance | 83000
32343 [FSaid | History | 60000)| History | 61000

§ | 58583 | Califieri | History | 62000 Music 40000

g l 15151 [Mozart | Music 400008 Physics | 91000

: \ 33456 | Gold Physics .'_n'ruugk ‘ :

£ 22222 |Einstein | Physics | 9500 |

’i =

Ditibaia Syiter Concegt - B Editin 0w Silberychats, Korth and Sedarhan

So, this is showing you the computation of average salary of instructors in each

department.

So now, what do you want to do is earlier you try to find out the average salary in one
department. Now, you want that for all the departments for each department I want. So,
my result now, is not a single row it is not a single value it is a pair where, I show the
department and the average salary in that department. So, this is what I want visible and

this is what I have.

So, naturally the information comes from instructor, that is from what I want is a
department name and the average salary and I want to give it a nice name avg_salary. So,
I have done a rename. So, I get avg_salary here, but then what [want is I do not want an
average d1 over this whole set of fields I want separate average to be done here, to be
done here, to be done on this to be on this. So, these are these are basically groupings by
the department as you can see, that this particular relation has been sorted according to

the department name.

So, when I want to do apply an aggregate function on certain subgroups of records, I use
this particular clause group by and use a name of a field. So, what it does is if the values
in the group by field in this case department name are identical those records are put
together and over those records and average is computed. So, the average, that is

computed over these records are put in here, average that is computed in terms of these

records are put in here, there is only one record, so average that is computed in terms of
that is put in here. So, group by is a very useful feature along with the aggregation
functions and it allows you to club information based on certain attribute and then

compute the aggregation on some other field..

(Refer Slide Time: 29:27)

- Aggregation (Cont.)

+ Attributes in select clause outside of aggregate functions must appear in group by list

an-aps. 2018

[* erroneous query */

select dept_name, ID, avg (salary)
from instructor

group by dept_name;

an, BT Mharsgpur. 5

Msanecaor Prof. P P O

F SWAYAM: NPTEL-#OC MOOCS

Mind you will have to when you do group by and create the result id result table you will
have to make sure that, all your result table attribute are used in the group by, which is
not an aggregate function. So, here ID is not used. So, this is not a query, that SQL would

support.

(Refer Slide Time: 29:53)

Aggregate Functions - Having Clause

» Find the names and average salaries of all departments whose
average salary |s greater than 42000

an-ape. 2018

select dept_name, avg (salary)
from instructor

group by dapt_name

having avg (salary) > 42000

5. BT Mnarsgpur. -

Note: predicates in the having clause are applied after the
formation of groups whereas predicates in the where
clause are applied before forming groups

saacIor Prof B P D

F SWAYAM: NPTEL#OC MOOCS

b Syitem Conceghi - £ Ediion 130 Silberuchals, Korth and Sedarshan

You can further refine your result is saying that, fine names and average salary of all

departments this much you have already done.

Now, you are qualifying that, whose average salary is greater than 42000. So, of all that
we have for example, if we look in here for example, in this music department average
salary is less than 42000. So, you do not want that in the result you want only those
where, the average salary is greater than 42000 and the way to do that is to have add
another clause called having they say that, the average salary is greater than 42000. So,
you are adding another predicate for actually qualifying the aggregated value. Now, the
having clause actually applies after along with the group by because, naturally the having

relates to the grouping.

So, once the grouping has happened groups have been formed then the having clause will
be evaluated on that, in contrast where clause also has a predicate, but the where clause
is applied before forming the groups. So, this point this note has to be understood
carefully because, if you have a where clause to choose the records they it will first
apply, then out of those records chosen the grouping will happen and once the grouping
has happened, then the aggregate function will evaluate and the having clause will get

evaluated the predicate of having clause will get evaluated.

(Refer Slide Time: 31:45)

n Null Values and Aggregates

« Total all salaries

select sum (salary)
from instructor

Above statement ignores null amounts
Result is null if there is no non-null amaunt

* Al aggregate operations except count(*) ignore tuples with null values
on the aggregated attributes

5. BT MRarsgpur. Jan-apr. 2078

« What if collection has only null values?
count returns 0

all other aggregates return null

FWAYAM: NFTEL-WOC MOOCE Insinector: Prof. P & D

e

stibass Syibem Conceph - 6 Edibon Lk Silbervchats, Korth and Sedarihan

Certainly, if there are null values in terms of aggregates, then there is a question of what
will happen. So, the general strategy is that, whenever you perform aggregation then the
null values are all ignored. So, if on that field there is no value which is not null, that is if
all values are null then the result is null otherwise the result is computed by ignoring the

null values..

So, these are what do you have of course, if you count then if the collection has only null

values the count will return you 0, but all other aggregates will return you simply null.

(Refer Slide Time: 32:29)

an Module Summary

+ Compleled the understanding of basic query structure and set
operations

« Familiarized with null values and aggregation

mE. 0T KRArBEPUT. Jan-ApT. 2018

BWAYAM: NFTEL-9OC MOOCE Mrsanecior: Prof. P P D

5
B

So, to summarize we have we had started the basic understanding of the basics query
structure in the last module. Now, we have completed that with some more additional
operations, we have understood the set theoretic operations and very importantly we
have familiarized with the treatment of null values and aggregation functions particularly
the group by and having clauses and how do null values and aggregation interact in terms

of an SQL query.

