
Database Management System
Prof. Partha Pratim Das

Department of Computer Science and Engineering
Indian Institute of Technology, Kharagpur

Lecture-06
Introduction to SQL/1

Welcome to module 6 of database management systems, this is the starting of week 2. In

week 1 we have done 5 modules, after the overview of the course, we have primarily

introduced the basic notions of DBMS and we have discussed about the relational

module, the fundamentals of it.

(Refer Slide Time: 00:28)

(Refer Slide Time: 00:54)

In this background, in this week we are primarily focusing on the query language the

structured query language SQL. So, all the 5 modules will relate to discussions on query

language and this module 6 7 and 8, the 3 modules will introduce SQL at a first level and

the last 2 modules 8 and 9, I am sorry 9 and 10 will discuss about intermediate, that is

somewhat advanced level of features in the SQL.

The objective of the current module is to, understand the relational query language and

particularly the data definition and the basic query structure, that will hold for all SQL

queries, particularly this the modules this week would be important for writing any kind

of database applications, squaring the database to find information from the existing data

and to manipulate it. So, please put a lot of focus in the whole material of this week and

practice them well, to understand the basic issues of database systems, in depth in a well

oriented manner. In this module we will first talk about the history and then we will see

how to define data and start manipulating them.

(Refer Slide Time: 02:25)

 (Refer Slide Time: 02:37)

SQL was originally called IBM sequel language and was a part of system R, it was

subsequently renamed as structured query language and like any other good

programming language that we have, SQL also gets standardized by ANSI and ISO and

there have been several standards of SQL, that has come up with SQL 92 in the most

popular one, and the commercial system, most of them try to provide support for SQL 92

features, but they do vary between themselves. So, it is possible that the examples that

we show here, may or may not all of them execute in the system that you are using. So,

you will have to look at what standard your system is actually following.

So, the first what we will talk about is a DDL data definition language, as we had

discussed earlier this is the features to create that schema the tables in a database

management system.

(Refer Slide Time: 03:59)

So, it allows for the creation or definition of the schema, for each relation that we have in

the database it specifies the domain of values associated with each attribute of the

schema and it also defines a variety of integrity constraints, later in the course we will

see that, it also has to specify other related information like indexing, security

authorization, physical storage and so on.

(Refer Slide Time: 04:30)

So, first the domain of possible values. So, we have already specified that, every domain

in SQL is more of an atomic nature. So, they are more like the primitive or built in data

types of languages like c, c plus plus, java. So, the common domain types are character

which are basically strings of character, having a certain length then you can have

variable character string which means that the length here specifies that, the maximum

length that the string can take, but a string could be shorter than that integer; obviously,

then small integer, which in a system may give a smaller range of integer values.

Then there is a numeric type which is often very important, which says what is the

precision of the numbers that are to be written in this format stored in this format. So, d

basically gives that precision value and p gives the size, then you can have real and

double precision numbers you have can have floating point numbers and so on, and there

are some more data types, which we will discuss later in the course.

(Refer Slide Time: 05:52)

Given all these domain types; so, what we will try to do is, here is a schema for the

university database, which has multiple different relations designed in that showing the

attributes and marking out, what are the keys? And what are the foreign keys? So, we

would take examples of some of these and try to code them in the SQL.

(Refer Slide Time: 06:19)

Now, to create a table this is how you go about, the SQL keywords create table is the

basic command. So, with the create table you have to specify a name, here the name that

is given is in terms of this name r, which is the name of the relation and then you provide

a series of attributes, separating by comma A I are different attributes and for every

attribute, there is a corresponding type domain type specified. So, is it says that A 1 is of

domain type d 1, A 2 is of domain type d 2 and so on. And all of these attribute

descriptions, are then followed by a series of integrity constraints. It is possible that a

create table may not provide any constraint, but often you will have a number of

constraints to work with. So, here is one example.

So, in this we are trying to code the creation of this instructor table, as you can see it has

4 different fields ID name, department name and salary and for each one we have

specified the domain type. So, ID is char 5, this means that the identity of this table

instructor will be strings of length 5 whereas, the name or the department name are

strings, but they have a maximum length 20, but they could have be of variable length

where a salary is of numeric type having specification 8 2. So, it can have 2 decimal

places and be of size 8 maximum. So, this is the basic form of definition that we have for

creating a table, defining a table or defining a schema.

(Refer Slide Time: 08:28)

Now, we can add a number of integrity constraints to the create table, 3 integrity

constraints we will discuss here, one is not null, one is primary key and other third is

foreign key. So, not null we specify whether a field can be null or not, primary key as we

have seen will specify the attributes which form the primary key, and the foreign key will

specify the attributes which reference some other table and our key in that table. So, here

is an example, in the instructor relation here we have we had seen this part, the attribute

what we have added here is, this not null. So, we say the name is not null which means

that, in the instructor table it is not possible to insert a record, where the name of the

instructor is null that is unknown, but it is possible if the same thing is not said about

department name same thing is not said about salary. So, it is possible that these could be

null.

Now, we additionally say that primary key is ID. So, this field ID is a primary key and it

is a property of SQL create table command that, if an attribute is referred as a primary

key, then it cannot be not null. So, you do not need to specify that is here you do not need

to write not null, because it is a primary key it will be known to be not null, because

certainly we have discussed that key is the distinguishing attribute in a database a table.

So, it cannot be null.

So, it will not be able to distinguish similarly, we have finally we have the third integrity

constant which is foreign key which says that, it is referencing this table department and

the foreign key of this is here, the depth name this particular field is a foreign key, which

is a key of the department table. And so, we will be able to refer this, from this table as a

foreign key and we know that it will be key in the department table. So, these are the

ways to specify the integrity constraint.

(Refer Slide Time: 11:24)

So, here are a couple of more examples. So, I will not go through them in detail, I will

request you to take time and carefully understand them, again these are about different

relations that exist here, about the student and about the courses that the students take,

and in every case we have specified the set of fields, that you have in the table in the

design of the schema are listed, in the create table the ID information about the primary

key is provided and also the information about the foreign key.

Here department name is the foreign key which is mapping to this point, similar things

can be observed about the takes relationship which show the how students are actually

taking courses. So, it relates different it has a set of fields but it has 2 kinds of primary

foreign keys, one that relate to the student through the ID and this combination of

attributes which refer to the section.

So, this is how different tables can be created using the data definition language, here is a

note that you should observe that if you consider this section ID, the section ID is a part

of the primary key which means that 2 records cannot be same, if they are different in the

section ID, then such records are allowed. So which means that it is possible that, a

student can attend or take a course in the same semester, in the same year with 2 different

section IDs because they are primary keys.

So, they can be different. So, if we drop this from the primary key then we will enforce

the condition that, no student will be able to take a course, in 2 sections in the same

semester and the same year. So, this is these are the different design choices that we have

and we will move on, here is one more example trying to show you the create table

command for the course relation, that we have in the university database.

(Refer Slide Time: 13:59)

 (Refer Slide Time: 14:11)

Moving on, let us look at how to update or actually put in different records, in a table

which has already been created, the basic command is insert, and the keywords for that is

insert into and values, in between you write the name of the relation, where the record

will have to be inserted and then the values, will have to be put as a tuple in the same

order in which you would have defined the attributes of that relation, and certainly each

of the values like this is ID value, next is the name value the department the salary, each

one of them should be from the same domain type, as has been specified during the

create table come on.

 So, these things will have to remember. And so, every record will get inserted through

one insert command, similarly a deletion can be done by delete from students, if you do

delete from students without specifying which record you want to delete, basically all

records will get deleted. We will see how selective deletion will happen, that will come

on later. Drop table is a command to remove a table, a table that has been created can be

removed from the database altogether, by doing drop table and the relation name you can

also change the schema of a table by using alter table.

So, the form is altar table is a the key words, you can add a new attribute to relation are

by writing the name of the attribute and the domain of the attribute one after the other.

Similarly, it is possible also to drop an attribute that already exists and the syntax for that

will be, alter table the relation name drop is a keyword and the name of the attribute,

mind you all database systems may not allow you to drop an attribute to alter table to

remove attributes. And so, it works in some and it does not work in the rest.

 (Refer Slide Time: 16:54)

Now, let us. So, that was about the definition of the table and the basic definition of the

data. So, now we will get into the basics query structure which is with tables with

existing data, how do I query and find out different information.

So, the structure of an SQL query and this you should observe very carefully is normally

said to be, select from where colloquially will often say, let us have a select from where.

So, it has 3 keywords select which is followed by a set of this is a set of attributes. So,

this specifies that, when a select query runs it will finally give us a new relation and in

that relation, the attributes that will be available are the attributes that feature in the

select list. The next clause or the next keyword in this is from, which specifies a set of

existing relations.

So, r 1 r 2 r m represent different relations and these are the relations, which will be used

to actually find the information extract the information. Finally, the where clause has a

predicate as a condition, which specify that what condition has to be satisfied. So, that

certain peoples from the relations r 1 to r m, will be chosen and put in this new selected

result, table in terms of the attributes a 1 to a n.

 (Refer Slide Time: 18:37)

.

So, this is the basic understanding of the or structure of the SQL query and naturally as I

mentioned that will result in a relation. Now, we will go over each and every clause

carefully, the select clause as I said will list all the attributes. So, it is like a projection in

terms of the relational algebra that we have done. So, if we write select name from

instructor then this will result in finding the names of all instructors from the instructor

table, because this is this you know is a relation, because it is happening it is a featuring

in the from clause and in select, we are saying that the attribute that we want to select is

the attribute name.

So, it will the instructor table has 4 attributes ID, name, depth name and salary from that

it will simply take the name of the instructor and list that in the output table. So, the basic

form of selection that happens and this point you may also note, that in SQL everything

is case insensitive, it does not matter whether you write in upper case or lower case. So,

you can choose the style that you prefer to use.

(Refer Slide Time: 19:51)

This is a very important factor, that you should keep in mind that we said a while

introducing relational algebra, that in the relational algebra every relation is a set and

which means that according to set theory. We cannot have 2 tuples in the same relation,

which are identical in all it is values, because set theory does not allow that, but please

keep in mind that SQL actually allows duplicates in relations. So, it is possible that in the

same relation in the same table, I may have more than one record which are identical in

all the fields, in all the attributes of that table and this will have lot of consequences and

we will see how often, this property will have to be used.

So, if you want a typical set theoretic kind of output, that is if you want the result to be

distinct, all records to be distinct, then you have to explicitly say that you want distinct

values to be selected. So, all that you are doing is you are after select and before the

attribute name, you introduce another keyword distinct.

So, select distinct depth name from instructor will actually, select the departments of all

instructors and quite why if it just selects department name of all instructor, then it is

quite possible that the same department name will appear number of times, because

every department has multiple instructors. But when we use distinct, then the every name

will feature only once in that selection, then you can also specify another keyword all

which ensures that the duplicates are not removed. So, if you do select all depth name,

then all the names will feature with duplicates, if some department had 3 instructors the

name of that department will feature thrice.

(Refer Slide Time: 22:05)

You can use an asterisk after select, to specify that you are interested in all the attributes

that the relation or the collection of relations in the from clause has. You can also specify

a select with a literal and without a from clause, if you do that then it will simply return

you a table with a single row having that literal value and you can also rename that table,

using what is known as clause as command. So, this will give you a table Foo, where

there is only one row and that row has an entry 437. You can use that, for other purposes

also you can do a select of a literal, from a table with using a from clause where in a, you

will get a single column table, where as many is as there are records in the instructor will

be produced.

(Refer Slide Time: 23:16)

Select clause can also use basic arithmetic operations for example, here we are showing a

select where the third attribute as you can see, the third attribute is salary by 12,

assuming that the instructor table has a salary number which is annual salary by 12

naturally you give you the monthly salary. So, those such arithmetic choices can also be

made, you can also rename that field that particular salary by 12 field by a new name, as

I said as can be used to rename. So, if we if you use that then, when you get the output

you will get the column names are ID, name and monthly salary and in monthly salary

you will actually have a computation, which is salary by 12 and in the same way, you can

use multiple different kinds of arithmetic operators.

(Refer Slide Time: 24:16)

Now, we come to the where clause, where clause specifies the condition is a predicate

which corresponds to the selection predicate of relational algebra. So, it will specify

some condition, here is an example if we want to find all instructors from the instructor

table, who are associated with computer science department, then you can say select

name from instructor and to specify that they are from the computer science department,

you will specify department name is equal to computer science.

So, this will ensure that you select the records only when this condition is satisfied. So,

all records for which department name is different from computer science will not be

included here. You can also write predicates using the different logical connectives and

or not and so on. So, here is an example, where you are finding all instructors in

computer science with salary greater than 80000. So, here we have used and clause. So,

only records where the department name is computer science and salary is greater than

8000 will be chosen in the result. So, and then the projection will be done on the name of

those instructors, you can apply comparisons of arithmetic expression. So, where clause

can really write different kind of things.

(Refer Slide Time: 26:04)

Finally, the from clause is sets all the different relations from where you are actually

looking for the records. So, it kind of corresponds to the Cartesian product of the

relational algebra. So, if we want to say compute instructor Cartesian product teachers,

then you can say select star instructor one table comma teachers. So, this will choose

records from instructed relation, as well as from teacher’s relation and in all possible

combined way, it will put them in the output we have used a star.

So, all fields of in tractor and all fields of teaches will be there in the output, and since

some fields may have identical name like ID in instructor and there is ID in teachers,

they will be qualified by the name of the relation, from can have 1 relation 2 relation any

number of relations as you require. So, this will cause the Cartesian product to be

computed which may not be very useful as a an independent feature, but we will see in

the next module how it can give very important computations, in terms of computing

joints and so on.

(Refer Slide Time: 27:37)

So, here is an example of the Cartesian product that we talked of. So, here is a instructor

relation, the teacher’s relation and as you can see when we have done this cartesian

product, that is select star from instructor comma teachers, then all fields this is a ID of

the instructor it has there is an ID in teachers.

So, that is also specified here qualified by the name of the relation whereas, name comes

in directly because there is no attribute called name in teachers, the department name

comes in directly, salary comes in, directly course ID comes in, section ID comes in,

semester comes in, year comes in and so on. And the combination of all tuples in their

instructor relation, against all tuples of the teacher’s relation all possible combinations

have come in this result, which eventually is a cartesian product of the relational algebra.

(Refer Slide Time: 28:50)

So, this is the what we have to summarize, we have introduced the relational query

language and particularly familiarize ourselves with the data definition, that is creation of

the table creation, of the schema with the attribute names, domain types and constraints.

And the updates to the table in terms of insertion and deletion of values or addition or

deletion of attributes or removing a table altogether and then, we have given the basic

structure of the select from where query of SQL, which will be the key language feature

of a query language, that we will continue to discuss all through this course.

