
Database Management System
Prof. Partha Pratim Das

Department of Computer Science & Engineering
Indian Institute of Technology, Kharagpur

Lecture – 40
Course Summarization

Welcome to module 40 of Database Management Systems. This is for course

summarization this is the last module of the course.

(Refer Slide Time: 00:23)

So, I would just start with doing a quick recap of what all did we cover and what we

expectedly learnt.

(Refer Slide Time: 00:32)

In the week 1, we talked primarily of Introduction to Database Management System and

the Relational Model which is the foundation of a database system.

(Refer Slide Time: 00:42)

In week 2, we started off with query language SQL at an Introductory level and then at

an Intermediate level which are really really the first major aspect of a database

particularly relational database that a student must master.

(Refer Slide Time: 01:01)

In week 3, we continued with the advanced SQL and did the aspects of modeling from

specification in terms of Entity Relationship Model.

(Refer Slide Time: 01:12)

In week the next week, we did the design issues which was really the involved part and

possibly the most important aspect of the relational database design beyond query coding

query being able to write queries.

So, this is based on dependency and different normal forms and I am sure you have spent

a good time on mastering these.

(Refer Slide Time: 01:40)

We followed up in week 5 with application design and discussing aspects of storage

structure, how will actually the items, data items be stored in the different memory and

disk structure.

(Refer Slide Time: 01:56)

In the following week, in week 6, we discussed about indexing and hashing to for

making the accesses really efficient.

(Refer Slide Time: 02:05)

In week 7, we did another critical aspect of database systems that is how to make

transactions work concurrently. So, we defined transactions and define what is

Concurrency and then we took in 2 different critical aspects of Serializability that it is

possible that we can execute transactions in a manner so that their instructions are

intermixed, but then even in that case, they actually produce a result which is as if these

transactions could have been executed in the serial order and we talked about the issues

of recoverability in this respect and we specifically looked at different protocols,

particularly 2 phase locking protocol for managing this kind of concurrency and the evils

of deadlock that may happen when you do it concurrency and how simple protocols like

time based protocol can handle that.

(Refer Slide Time: 03:03)

And in the current week, we have dwelt with different strategies of recovery, particularly

log based recovery and we have touched upon query processing and optimization.

So, this is you have got a very first level overview of this course. This is in a limited time

and with limited number of assignments. So, you will just get a first level idea, this is not

to make you really an expert of database systems, but this will certainly get you started

well in terms of the database management programs, in terms of you are taking up

advanced courses later on or in terms of actually taking up a job in different database

area.

(Refer Slide Time: 03:48)

So, given that given that in this current module, I would discuss about few things beyond

the textbook actually, the space of databases RDBMS bases are quite crowded, the lot of

RDBMS bases you will see. So, I will just take a quick look in terms of the common

RDBMS systems and there had been a number of queries on the forum and in the live

session about that. I will also touch upon we would like to discuss about non relational

database systems which was not a part of the curriculum that we did here, but will just

present a brief overview.

And then finally, I would like to conclude with what should be the road forward from

you, presenting you a kind of a skill profile matrix so that what skills you must pick up to

actually get a job off certain profile and what are the companies that you might look at

working for.

(Refer Slide Time: 04:55)

So, starting with the common databases, there are several relational database systems.

So, in this slide you summarize basically what are the different aspects of relational

database systems which you have been discussing so far. So, this is just a summary of

that.

(Refer Slide Time: 05:07)

Now, these are the common database systems. So, I have chosen the ones which are most

widely used, most easily accessible and kind of large companies use them, large

databases exist on them. So, there are primarily 2 classifications; one is a set of database

systems are commercial Oracle from the Oracle corporation, Sybase from Sybase

corporation which is now SAP AG, DB2 from IBM, SQL Server from Microsoft and the

recent entrant to that who is making a regular ripples is Teradata which is a you know

joint database systems from Caltech and certain group of Citibank. So, I if you are

working for a company who subscribes to any of these database software, then you

should be able to use them and understand what all you can do, but if you are working

with smaller companies or you are working as a student, then you will need to use some

of the database systems which are free or are on the GPL licensing or open source.

So, most prominent amongst them is PostgreSQL which is from a Postgres global

development group. So, these are non commercial the software in the sense that you do

not need to pay for them and they are on the GPL and some of some part of that would

be open source as well and a very commonly used is my SQL which is was originally

from a Swedish company called my SQL AB, but now it is acquired by Oracle

corporation, but it still does not you do not need to pay for that. So, these are the

databases and systems to primarily look for and besides that there are some other

database systems which use certain object oriented features on top of the relational

features.

So, if you look in through these, then in most cases you will find in terms of the gross

functionality of the kind of SQL that you can write, a large subset of the SQL that you

can write on databases maintained through these database systems will be same. So, what

you have learnt here would be applicable irrespective of which database which of these

database systems you are using, but of course there are specifics which would be

different amongst them. So, in the next couple of slides, I have 4 on each one slide, I

have given a brief background about the particular database system.

(Refer Slide Time: 07:48)

So that you know you know how stable, how old or you know what are the basic nuances

of that database system for example, Oracle started in 77. So, you can say, it is a it is a 40

year old database system. The latest version is 12 C and these are the different supports

that it has.

(Refer Slide Time: 08:13)

Sybase also started in 1987. So, that is almost 30 years, but it is less you know less

vibrant right now, the last stable released happen in 2014 about nearly more than 3 and a

half or 4 years ago and, but Sybase is a has been a very good database systems for

programming through API’s and it has really good support for that.

(Refer Slide Time: 08:42)

DB 2 is also a very old possibly the oldest surviving database systems which started in

1970. So, when almost the E. F Codd of the Boyce Codd normal form published the data

manipulation schemes from IBM. So, this is also a widely used, last release 2016.

(Refer Slide Time: 09:07)

Microsoft the started database systems in 1989, last release happened last year and that is

very widely used if you are particularly on windows system, it is one of the most popular

one in terms of the windows operating system.

(Refer Slide Time: 09:24)

Teradata is relatively new. It was released in 1984 and it is, but it is it is one where lot of

new developments are still happening and new experiments keep on happening and the

current version is a Teradata 15.

(Refer Slide Time: 09:43)

And in terms of the ma free or open source GPL databases Postgres started in 1988 about

30 years back and as I said, this is this is has a release even half of this year.

(Refer Slide Time: 10:04)

So, it is a very vibrant system. MySQL probably most widely used amongst the free

community among the open source community also where the first internal release

happened in 1995. The recent releases happened this year. So, these are the common

database systems that you will come across. So, I mean given the organization that you

are working with, first find out which database system it uses and then look into the

specific manual for that and specific features.

(Refer Slide Time: 10:34)

Beyond these a Relational Database Systems also, there are certain database systems

which use Object oriented notions in that. So, if you are familiar with object orientation

then you would have understood that the relational approach does not make keep things

object oriented because you are always flattening out in terms of attributes and you are

trying to look at the attributes, but it went for example, when you want to model the

same thing in terms of a C plus plus or java program, you would like to look at a course

as an as an object, as a class you would like to look at instructor as a class, you would

like to look at teaches as a as a kind of class and their instances. So, there has been

attempts to make give a object orientation kind of layer on top of relational databases or

define things in that way. Objectivity DBO 2 objects store are some of the examples, but

unfortunately this is have not been as popular as a regular relational databases.

So, if you happen to use any one of them, then you should be cause a cautious that you

know you really know why you are using it and you would be able to go a long way in

terms of that.

(Refer Slide Time: 11:53)

Now, when you come across a particular system that your company or your university

needs to use and you would like to choose, then it will be good to look at the different

aspects of that system. These are here are some of the parameters on which these

database systems vary in a in a minimal to a very large extent, in terms of what operating

systems it supports, what are the fundamental features, what are the limits for example,

every database sets a number of limits in terms of the index size, in terms of the table

size and whole lot of that.

How are the tables and views created what the kind of restrictions you have that, what

kind of indexes has support the capabilities the data types, the different databases

support. We have talked about a very limited set of data types in terms of SQL, but in an

actual commercial or even you know open source database, the data types could be wider

than that what kind of other objects partitioning access control mechanism. Access

control is very important for ensuring security and finally, what kind of programming

language support do you have.

Because as we have seen in the application development module, that it is not enough to

just have a you know the database firing SQL queries, no application user will actually

fire SQL queries. The application user needs and in GUI possibly or a text interface

through which it will put queries in a different form and that needs to be processed by

taking it to the database engine. So, you need possibly an interface which is in terms of

C, C plus plus, Java, Python, this kind of programming language. So, how do you

connect to or embed such embed your relational query into different languages that differ

between different database systems. So, these are the parameters that you must look at.

In the next series of slides, which I will not you know discuss really because the these

are more like data.

(Refer Slide Time: 14:03)

But here after given a compilation of different you know on different aspects, how do

these common database RDMS systems agree or differ. So, this is like a slide which

shows what are the operating system support for different databases. So, if you are for

example, working on android, then you can easily make out that you do not have a

choice to use SQL server or to use Oracle, but you can use Sybase.

But you can use Postgres and MySQL actually, if you look into these two columns, right

most columns which are for the open source databases, you will find that they have the

widest choice in terms of operating system. In many aspects you will find that these free

database systems have a better you know options for you; obviously, when it comes to

you know really the core, core of database systems in terms of really really supporting

very large databases, really really supporting very fast operations, really really

supporting very secure applications, you might need to only work with commercial

software because they offer that, but otherwise for a large number of common you know

medium scale or low cost applications the free database systems, Postgres and MySQL

are really good options there are different such features.

(Refer Slide Time: 15:23)

The basic features are compared to here.

(Refer Slide Time: 15:27)

At compile different limits of different database systems here. So, you can see in terms

of maximum row size, columns per row and so on and so forth, how do they differ. So, if

you are making a choice in terms of what database I will use.

(Refer Slide Time: 15:42)

You can use these information. This talks about tables we use the type systems, what

kind of typing is used.

(Refer Slide Time: 15:48)

The different data types that are used are given here.

(Refer Slide Time: 15:52)

The index mechanisms are discussed here.

(Refer Slide Time: 15:57)

The capabilities of the database, what it can do overall.

(Refer Slide Time: 16:01)

Other kinds of objects that it supports.

(Refer Slide Time: 16:05)

The different partitioning mechanism.

(Refer Slide Time: 16:08)

The access control which is critical for ensuring good security and good management of

that database are given here.

So, these are kind of the different across different features, this is parameters, this is how

they compare. So, well this is for your you know reference only, this is this is not for

your assignment or examination, but I just wanted to have a view that with all the theory

and you know a small hands on that you have seen, when you go to the real life what are

the expected things what are the expected system this will have to work with. Now let us

just move on and let us let me just briefly talk about the a group of database systems

which are non relational and of course I would warn you that the basis for these DBMS

is are not covered in this course, is beyond the course, but just for your information and

to keep in keep you in tune with what is happening frequently around the industry today.

(Refer Slide Time: 17:16)

So, the non-relational database systems have arisen from what they all have must have

heard of is the whole aspect of Big Data. Big Data as a name suggests is certainly

voluminous data, complex data and now the question that you might have is if I i have

done a good relational design, if I have a good RDMS, can I not handle big data. The

question here really is, big data is not only about volume, the volume is only one aspect

which is really large. So, big data typically are characterized by certain Vs.

So, these are not any very standardized characterization, but these are more commonly

accepted once. So, one is volume, that the quantity of data when a for a big data situation

has to be very very large. Now again what is a very very large is again a subjective

question, some you can say that a million record is large, someone else would say no

million record is small, it is actually 10 million is large; some might say that it is a

database need to be petabytes to be large and so on.

But these are all subjectivity, but it is large has a voluminous existent in certain sense,

there has to be different variety different types of data. So, all that we have seen in the

relational database is basically your you know strings and numbers if you look at it in

different ways we are seeing, whatever we have dealt with in all these through all this 39

modules so far, they are primarily about strings and numbers, but nothing else we have

not, but big data can be about free text, it could be about natural language comments

your regularly writing comments on your Facebook.

So, those Facebook comments are phrases and if I want to make certain query based on

that, if I want to make a query that, how many Facebook users has commented on the

success of Virat Kohli as a captain of India if I want to make such a query, then the

question is how do I do that? Because it is not something where you have a at the

information in a very structured way this is no there is no relational schema which says

that well the values are put in terms of Virat Kohli having done very good, moderately or

marginally or you know the captain Indian captains are successful, not successful and so

on.

These are this happen in terms of various texts, phrases, clauses that we write. So, variety

is a major issue then, it could have word your images video. So, big data includes all of

that. The third V is about velocity that the processing speed may need to be really really

fast, often in big data often we say that the processing has to be real time which means

what is real time. Real time is basically that from the time I fire the query and to the time

I get the result, there is a fixed time limit within which it has to happen.

So, if I if I if I really want to do a railway reservation that also is a kind of real time, but

that is not very critical because it is if I get the reservation done in one minute, it is also

ok, if it takes 5 minutes, it is good if we can happen in 10 seconds, but I do not ever need

it in say 20 millisecond. So, but in when you talk about real time, it could really be about

getting all these processing done in millisecond, microsecond, nanosecond and so on.

And those kind of real time systems with a large volume of varied data, it is a big

challenge.

So, those are the challenges of big data, then there could be variability inconsistency of

the data that you are because maintaining integrity is a big problem; there could be issues

in terms of quality of the data that is called veracity. So, actually these things

characteristics that I have put, there are lot of debates in terms of that or many people

take these 3 and say that there these are the 3 V s of big data. There is a 3 main

characteristics, but off let more and more people are also considering variability and

veracity are as the characteristics of big data. Now as it happens, is if you look into these

requirements and what you have you have a fairly good idea of relational databases now

what they can do, how to design them, how to query them, how to implement them, you

will understand that it is not easy to meet these requirements using the relational model.

(Refer Slide Time: 22:07)

So, we need their non-relational databases to effectively support big data. That is that is a

one major reason that you need big data.

(Refer Slide Time: 22:16)

So, that in non-relational databases certainly as the name suggests, do not follow

relational model, they offer flexible schema design. The schema may itself change while

the database is evolving which is not the case in the relational schema is fixed, only the

data can change, but here the schema itself can change. It may be able to handle

unstructured data, make natural language comments like images like audio coming in

which do not fit nearly into your you know table structure, some of the other feature sites

they are typically open source because you know still in an experimental stage and needs

to be scalable and some of the popular ones are, these are the names you must have heard

about at least some of them like MongoDB like Cassandra like HBase and so on.

Now again in terms of the non relational database, it does differ in terms of all non

relational database error are not of the same type, there are there have been 4 different

styles or strategies to actually generate realize these non relational databases, they are

called key value store graph, store columns stores and document store. They are also

known as no SQL databases. I, I personally find the name no SQL a little misnomer, it no

SQL does not mean that you are strictly prohibited from not using SQL in these

databases.

But I would rather like to read it more as no SQL means that it is not only SQL like in a

relational database, you can use only SQL and solve problems; here you need to do lot of

other things beyond that.

(Refer Slide Time: 24:00)

So, here is a quick comparison between the relational and the non-relational, in terms of

the flexibility of the data model, relational is very structured when on relational has to

have handle unstructured data, semi structured data and therefore it has to be flexible in

terms of the data model, cost complexity and speed faster less capable, but cheaper and

less complex, but in non-relational, you are talking about much more database operations

highly complex in internal structure usually costlier, performance and scalability

certainly non-relational ones need to be better scalable, consistency have a very strict

consistency rules in relation, but in non-relational you use some kind of you know

eventual consistent system. So, maybe not always not everything is consistent in that

way, enterprise management and integration, relational fits very well into because it is

been around for as you have seen the little bit of history of all these common databases,

it is more than 40 years that they have been around.

So, they easily fit into the IT stack whereas, non-relational is still on the in the in the

agile form of development that is becoming more and more common it fits into the cloud

based development and so on. So, these are some of the distinctions that exist.

(Refer Slide Time: 25:27)

And these are the different types of no SQL databases, there is a key value store strategy

Redis and MemcacheDB follow this strategy, graph store is used by orient DB and

Neo4J; column store is used by Cassandra and HBase document store, MongoDB,

Couchbase, they use document store. So, these are I am in this is not just about going a

deeper into what they are or how they are distinguished, I just want you to have an idea

that well. These are different from the relational databases they can do lot of structured,

handling of unstructured data they can actually use a scalability of volume a variety

which is relationships cannot do and, but they have there are different principles for

actually implementing them and there is a deeper.

So, if you are interested, you can take specific courses which deal with the big data and

prepare yourself for the bigger challenges ahead.

(Refer Slide Time: 26:29)

I have also done similar to the relational database, I have presented here a tentative

comparative study between these different non no SQL databases in terms of what is the

context in which you use them.

(Refer Slide Time: 26:46)

Or now while you are doing this unstructured data handling, there will be lot of data

which is also structured.

So, how do you, along with this know SQL, how do you handle the relational data with

these?

(Refer Slide Time: 26:59)

Databases what how do how do the performance compare between these different no

SQL databases and based on all that you can make some judgment and it is it is very

important to in today’s time naturally knowing relational databases the foundational ones

are very important, but it is always good to look forward be with the time and I will urge

that if you have started growing interest in handling of data do take specific courses on

big data and no SQL databases. I will end this discussion with a very simple skill job

profile matrix which Will give you some idea in terms of, it will you can use it for a

certain kind of self-assessment as well.

(Refer Slide Time: 27:37)

So, let me just explain the structure of this matrix, what I have tried to do is here I am

sorry. Here on the left, I have given different typical job profiles this is if you look into

LinkedIn, Naukri and all that you will find these kind of profiles being. So, then at the

lowest level there are application programmers for which typically 0 to 4 years of

experience are asked for.

Then the next level, this is so, this is your kind of your career progression also. If you if

you choose to take up databases as your primary job profession, this next level is a senior

application programmer which requires 2 to 6 years of experience depending on the

organization and depending on your skills. Then you move on to database analyst or

architect which you happen in 4 to 8 years of time and on a little different track because

these are these are primarily in terms of application development and hierarchy on that

and the other is an administrator track who actually administers the database in an

organization, controls all the all that is happening in different database applications,

typically 8 to 10 year’s experience is required.

And some of that, so this these are the about actually in terms of you know profiles that

are related to applications and this is a profile which is related to, if you really want to

become a database engineer in a sense that you want to you know make changes in

Oracle, you want to make changes in say MySQL, you want to make changes in say

MongoDB or say that relation will say the Sybase.

So, if you want to become a database engineer who changes the database system itself or

develops the database system itself, then this is the kind of background you will need.

There is a kind of number of years, you would need and of course it is not a single grid

there are multiple grades, you know junior and mid levels in here and those kind and last

which have shown in different color are the whole set of profiles which relate to

programming the big data, analyzing the big data and so on.

We are at present, it is companies are typically asking for 0 to 6 years of experience

depending on actual skills that you have. On this side, I have shown a whole grouping of

skills, this is the first basic level that you must understand specs and schema, without that

you cannot do any of this and you must have a skill for coding in inquire in SQL, the

DML part significantly, without that as you can see you cannot pick up any of these

profiles whereas, if you go a little if you go little senior you know gaining experience

and you should be able to analyze specs that is, you should be able to design schema do

normalization and get into this.

So, at a very initial level, you may not be expected to do all of that schema design and

normalization by yourself, but it would be good to be able to do that, but well there will

be seniors to help you, but if you once you become a senior application programmer that

becomes onward that becomes a critical skill to have. Then the next level would be in

terms of application or database architecture management deciding on how to index,

performance optimization.

So, between these two, there will be certain overlaps a senior application programmer in

addition to doing this might do some of these optimization techniques depending on how

competent he or she is. Or some database architect may focus only on this, but these are

the typical skills that you need. But to be a database administrator, you need all of these

skills, but you are specifically administering a certain organizations enterprises whole

database system. So, it is just not one database application, but a whole lot of databases

and whole lot of user groups, security, network connectivity and all that.

So, that needs certainly bigger experience it can, you can see that experience level is

much higher and the skill sets. If you want to become a database engineer, that is not

focus only on the application side, but also have some more understanding in terms of

actually doing working in the internals of the database systems, then you need whole lot

of additional skills like good knowledge and algorithms, in architecture, in compiler all

of that; only then and coupled with coupled with all the database knowledge, then you

will be able to work as a database system engineer. And in the emerging areas of what is

big data where, you need to have now of course, the I am saying this is 0 to 6, it could be

0 to 8 kind of, not more than that because it did not exist quite a long time ago, but you

need to have a basic level of at least this much of the relational database understanding

and knowledge, but what is critical is a whole set of other skills like, you must be aware

with big data the data mining, warehousing strategies machine learning or is often very

useful in this kind of big data applications, python programming, tensor flow all these

become critical. You have to be a good programmer in any case I mean not only just an

SQL program and you might have to be a good program and in C or C plus plus or

python of these, but that is it that is a very very emerging area.

So, if you can acquire a little bit of besides database you know he said that the basics of

the database along with that if you pick up few basics or from here, you will be able to

enter into the space and that will give you a very very bright future in my view otherwise

you can focus on the application programming stat as I have mentioned. So, this is the

basically skill profile matrix that you have mapping that you have that you can focus on.

(Refer Slide Time: 33:49)

So, finally, before I close here a glimpses of companies that are in the very active in the

RDMS space really really any big organization you talk about, they have consultancy

projects, product development different database management back end services and so

on. So, DB application development, I have listed some around 20 companies, but there

are really 100s of them almost. Any big organization in any area you think of, they

require databases. So, in terms of beta based application programmer and senior

programmer and to some extent architect, you have a wide range of jobs available which

you may just grab; if you have been able to study write the basics of the database. The

second group of companies which I show here, these are system development companies

who are actually working on the new DBMS products and services around that.

So, these are companies like Oracle, Teradata or Microsoft and so on, naturally these are

big companies and you need more lot of more skills besides the database like I said

algorithms programming and all that to crack a job here and here are some of some

companies which I have mentioned, but there are many others who are focusing on the

big data space.

So, I have tried to you know these may not be absolutely accurate because you know

these are all collected from different sources, but these are the different companies and

the kind of non relational database that they are focusing with working with. So, if you

pick up certain skills in those in a certain non-relational no SQL database, then you can

target the corresponding companies better or other companies and you can see that all.

You know new generation companies, the companies were working for products for the

next 10, 10, 15 years are in this space.

So, there are whole lot of opportunities for you all if you if you prepare a little hard, then

you will I mean job will run after, you will not have to run after the job.

(Refer Slide Time: 35:56)

So, with that I conclude this course a couple of final words the hygiene words. Read the

DBMS textbook thoroughly and solve exercises. There is no shortcut to that, there is no

other way to master the horse other than this you must practice query coding as much as

you can, practice database design from specification. We are releasing a tutorial on this

where for a hospital management system we are showing from the specification how you

can do the initial schema and the refinements and finally, how can you implement it

using my SQL.

So, do similar practices very heavily. Keep in mind the database the knowledge of

database system alone will not be good enough to get a good job, get a good placement.

So, develop good knowledge in programming data structure, algorithms and discrete

structures; these are the minimum required around the database systems which will really

make you powerful and if you need we are there to help you.

As long as the course is on, the forum would be on. You can post in the forum beyond

that also if you need help, please ask for it mail us and wish you all the very best with

your course in your examination and the future course of your profession in life, all the

very best.

