
Database Management System
Prof. Partha Pratim Das

Department of Computer Science & Engineering
Indian Institute of Technology, Kharagpur

Lecture - 39
Query Processing and Optimization/2: Optimization

Welcome to module 39 of database management systems, we have been discussing about

query processing and optimization, in the last module.

(Refer Slide Time: 00:25)

We talked about the basic issues of query processing, what is the overview and the

measures of query cost that would be used in terms of disk seek time and disk access

time the read write time and we agreed we assume that we will ignore the CPU and other

time for the time being. And then we took a look into how the certain SQL queries like

the selection, the sorting which is required for other operations, different join operations

and other aggregation and those kind of operations can be processed in a structured way.

(Refer Slide Time: 01:10)

In view of this in this module we would like to understand the basic issues of optimizing

queries. So, that the same query as we have seen little bit can be performed executed in

multiple ways and we would like to choose the one which is the least cost possibly

estimated cost should be the least.

So, we would need to understand 2 aspects, one is given a query how do I generate

alternate queries that is in terms of the relational expression how a particular expression

can be transformed into equivalent expressions and then we choose from these

equivalence expressions for optimization. So, these are the 2 topics to discuss.

(Refer Slide Time: 01:57)

So, to introduce on the query optimization let us take a simple example. So, I am

referring to the university database that we have discussed earlier, it has 3 relations as

listed above and using that we want to do the perform the query where we join instructor

teaches and course these 3 relations and do a selection on that based on department

name. So, this will give us naturally the instructors who are in teaching some course in

the instructor is in music department and is teaching some course there and we want the

name and title of these. So, we want the name of the instruction instructor and the title of

the course that the person is teaching.

So, if we write the query in equivalent relational form this is what we will get to see and

this is basically is a first join happening here then the next join happening, find next the

selection and finally, the projection happening here which will give us the result of this

query. Now what we observe is it is possible that if you look at carefully the department

name should be music.

So, if we look into these relations then we can easily figure out that instructor has the

department name attribute. So, in this after this joint if a tuple has to qualify through this

selection then the instructors in the instructor relation the department name of that join

people must be music otherwise it will not get selected.

So, what if instead of doing the join and then doing the selection as we are doing here if

we first do a selection on the instructor relation itself and then join it with the join of

teachers and courses and finally, do the projection we should actually get the same result.

So, these are what is it is a simple example of what are equivalent relational expressions

that we can make use of in terms of our query processing.

(Refer Slide Time: 04:20)

So, what given that this is another example we were showing. So, here the query is to

find the teacher and instructor and the course name for back the instructor is from

department of the music and the course he taught is in the year 2009. So, we want these

and corresponding to the equivalent at SQL if we write the relational expression then the

in relational algebra this is what it looks like. So, what we can eventually observe from

this that again as we observed last time department name is an is an instructor.

So, if we are doing a final selection based on department name is equal to is music then it

is possible that I can first filter the instructor relation with the department name being

music that should not affect the result. At the same time the other select condition we

have is year is 2000, which happens only in the teacher’s relation.

So, instead of actually filtering it after the join I can filter the teachers relation with year

being 2009 and then use these 2 in terms of the join and finally, join that with the course

and finally, do the projection. So, here what we show that along with this tree the parse

tree of the query in relational algebra we are also trying to put some annotations to say

how this particular query will be processed.

So, if we want to find out the tuples where the year is 2009 and there is no specific index

on that or anything to for doing this selection as we have seen earlier the best way would

be to use a linear scan. Whereas, if I am trying to do a selection with department name is

equal to is music there will be a could be an index one the secondary index based on the

department name. So, I will be able to use that index to find this.

So, these when we are doing this putting and that here we will use this index, here we

will use linear scan these are what is called annotations which tell the query processing

engine that how the query should actually be executed. Then they will be pipelined in the

sense that this will be put one after the other actually these 2 can happen in parallel and

then we will use a merge join to join these 2 then this merge that is joined result would

be joined with course based on now the course is already indexed in course id and this

joined relation of instructor and teachers will have id and course id on which they will

have index.

So, we can use a hash join on that we did not discuss about merge join, hash join as

processing steps in detail, but right now just assume that these are different ways of

doing join which can make things efficient and these are the annotations which are

generated in the process. And such a query tree such a query parse tree with the

annotation is called an execution plan so, that or the evaluation plan which the query

processing engine would be able to use to actually execute and find the results.

(Refer Slide Time: 07:58)

So, this is the basic approach so, for optimization what we need to do we need to find out

that particular evaluation plan, that particular order of we the evaluation and the use of

algorithms, the use of indexes which will make the query possibly most efficient. And

that cost difference could be really really huge in a real database it could vary between

seconds in one way of doing the query or in terms of number of days if we do it in a non

optimal way in a non optimized way.

So, typical steps in this kind of query based optimization would be to first generate the

candidates I am sorry first generate the candidates that is generate the equivalent

expressions that is given a query I have one relational expression and we would like to

generate equivalent expression using a set of equivalence rules we will see what these

equivalence rules are.

So, that this equivalent queries expressions can any one of them can be actually executed

and we then annotate them to with the result the resultant expression we annotate to get

different query plans evaluation plans. And then we put the cost estimates based on the

cost structure that say we had used in the other in the earlier module and from these

alternate evaluation plans we will choose the one that will have the least estimated cost.

So, the cost can be based on as we had seen earlier it could be based on number of tuples,

number of distinct values frequently used attributes and so, on and we will use statistics

for also intermediate results that if there are intermediate results to be stored we will

make estimates of what would be the size of that result because it needs to fit into

memory for optimal execution, the cost formula for different algorithms will also be used

through statistics.

So, based on all these estimation which will have an estimated cost and based on that we

will choose the particular evaluation plan which looks to be the best and that is the crux

of the query optimization strategy. So, as we have seen the first step is to be able to

generate alternate expressions equivalent expressions through transformations. So, we

look through the relational algebra operators again.

(Refer Slide Time: 10:27)

And check what are what is meant by equivalence of 2 relational expressions. So, 2

relational expressions are equivalent if they generate the same set of tuples for any

instance of the database, it is not enough to just show that for one instance it gives the

same result.

So, 2 expressions are equivalent for in if I take any legal instance of the database then it

must be equivalent and in this process we can note that the order of tuples are really

relevant that we have told repeatedly and also we would make sure that the results are

same provided the database provided the relation satisfy all the integrity constraints. If

they violate integrity constraints then it is a problem of the user then we the database

really does not care if the 2 expressions will give equivalent or equal results. We also

note that in SQL input output could be multisets so, the same thing has to be satisfied in

terms of multisets. So, based on this we define an equivalence a set of equivalence rule

that say that 2 expressions are equivalent so, you can use that rule to transform one

expression by the other and vice versa.

(Refer Slide Time: 11:47)

So, let us take a look into this expression so, most of these expressions are relatively easy

to understand. They can be formally proved using the corresponding set theoretic

condition of the relational expressions. So, for every relational expression we had a set

theoretic condition that we had studied so, using those you can prove that we will not do

the proof of these equivalence relations here, but it you should be able to do that very

easily.

So, he said if we have a conjunctive selection of a relation based on 2 conditions theta 1

and theta 2, then we should be able to apply the selection first based on theta 2 and then

based on theta 1 or actually vice versa because conjunction is commutative so, the

selection operation is also commutative. So, this gives us 2 transformation rules and we

might want to use any so, these all will give equivalent form.

So, applying these 2 rules we get 3 relational expressions which are all equivalent this,

this and this are all equivalent, but if you actually think in terms of processing the query

and the cost involved you will be able to figure out that naturally the cost of doing this

may be relatively more involved because you have the relation and then on the whole

relation you are applying the conditions, but here if you do for example, if you first do

say first apply theta 2 certainly by that selection the relation would become much

smaller. So, applying theta 1 on that would be easier or vice versa depending on

whichever is a smaller set there could be other for example, if you have a sequence of

projections then naturally in that sequence the last projection that you have done is what

is retained.

So, if we have a sequence of projections that is simply doing the last projection all other

projections can actually be ignored. The selection can be combined with Cartesian

product and theta join also that is taking a Cartesian product and then doing a selection is

equivalent to doing a theta join this of course, is almost the definition. And if I have a

join by theta join by theta 2 and then do a selection with theta 1 it is equivalent to doing a

theta join with theta 1 conjunction theta 2.

So, these are all equivalent forms so, these are equivalent in the sense that left hand side

and right hand side are interchangeable. So, it does not mean that the left hand side

implies the right hand side or vice versa it means that either of them implies the other,

they are really equivalent in that sense.

(Refer Slide Time: 14:33)

Then theta join operation are natural or natural join operations are commutative, we can

change interchange their relations.

So, this might impact for example, you have seen the algorithms of nested join and block

join block nested join algorithms; obviously, depending on the size of the relations the

cost of doing theta 1 E1 theta join E 2 or E1 natural join E2 and E2 natural join E1 may

be different and we would choose the one which has a lesser cost.

Next set of transformation rules tell us that the join operation is associative which is

obvious theta joins are associative in the in this specific manner also, that is if I do a

theta join with condition theta 1 and then I do a theta join with condition theta 2 and

theta 3 then we may be able to take out the condition theta 3 outside provided theta 2 the

condition theta 2 uses only the attributes of theta E1 and E2 so, it should be possible to

do that. Look here that on the left hand side that restriction is not there on the condition

theta 2 it could also use attributes of E1, but if it does not then it is possible to simplify it

in this manner and these are the equivalent rules that we have.

(Refer Slide Time: 16:01)

So, often we will draw the rules in this form so, just to explain you one so, this shows the

associativity of join.

So, here what you are saying is first you do E1, E2 and with the result you join E3, here

you are saying first you do E2, E3 and then you join with E1. So, this is basically

associativity this basically is commutativity of theta join. So, we will often draw them in

such forms of parse trees and show the equivalence that becomes easy to understand for

example, in this case you are doing a join and then doing the selection and here you are

doing it select early you are doing a select early on this relation E1 of course, you will be

able to do this provided theta contents only attribute from E1, if theta contains attributes

from both E1 and E2 this transformation will not be applicable this transformation will

not be possible.

(Refer Slide Time: 17:00)

So, these are some more of the transformation rules the selection operation distributes

over theta join operation. So, I can you can I can see here that there is a theta join and

then I am doing a selection. So, I can first do the selection and then do the theta join of

course, for the selection it must involve only the attributes of E1, otherwise this will not

be valid.

And similarly, another distribution rule is shown here where you are doing a selection on

conjunction on theta 1, theta 2 on a theta join by theta then you should be able to actually

distribute based on the condition theta 1 and theta 2, if theta 1 involves only the attributes

of E1 and theta 2 involves only the attributes of E2. These are these are pretty

straightforward rules if you think about the corresponding set theoretic reason.

(Refer Slide Time: 17:58)

So, the other rules are will be in terms of projection so, you can have if you have union

projection like this then you would be able to break it down over to do separate

projections and their theta join and in case you have a theta join of E1, E2 based on theta

and if L1 and L2 are the attributes of these 2 relations.

So, if L3 be the attributes of E1 that are involved in the join condition theta and L4 are

water. So, you have the join condition theta. So, what you are saying that the attributes

L3 of you are not involved here and attributes L4 of E2 are involved here, but they are

not so, in terms of L1 union L2 so, then this kind of I should be able to distribute the

projection in steps and make the results smaller.

(Refer Slide Time: 19:04)

So, this is another possible transformation that now finally, the set theoretic operations

have their normal set rules so, union and intersection are commutative, naturally set

difference is not commutative, union intersection are associative as well. The selection

operation distributes over union, intersection and set difference and the projection also

distributes over union. So, you can see the exceptions here you can reason that out.

(Refer Slide Time: 19:35)

So, we have in short we have presented a set of different transformation rules by each

which you can make equivalent expressions and between 2 equivalent expressions or

more equivalent expressions our objective will always be to choose the one whose

evaluation plan will have a lesser cost. So, as an exercise I have left that you can create

equivalence rules that involve group by or aggregation operations or different kinds of

outer join, left outer join, right outer join and so, on so, please work those out.

(Refer Slide Time: 20:05)

Let us move on to a couple of examples so, here is a query here the relations from the

university database, here is a query find the names of all instructors in the music

department along with the titles of the course they teach. So, a while ago we saw this so,

this is what the query is in the relational algebra form and if you use the transformation

rule of select early the rule 7a, whose transformation I have just shown here then you

should be able to hear what you are doing is you are first doing a join of teaches and the

projection of course. And then joining instructor with that and finally, doing the

selection, but you should you would be able to do this select early because it involves the

attribute department name which is the attribute of instructor alone here.

So, you should be able to first do this selection, mind you here courses also show that

there is an attribute department name, but actually the courses is being used after

projection. So, after projection in the projected relation there is no department name. So,

department name is involved only the instructor.

So, I can first I can take this do early, I can do this selection early and take this out and

then do the final join operation. So, in that process possibly the this will reduce the size

of the relation to be joined significantly because you do not naturally expect to be to

have too many instructors in the music department. So, the instructor relation after the

selection would become much smaller.

(Refer Slide Time: 21:52)

So, this is one example, this is another example query we are taking find the names of all

instructors in the music department, we have taught a course in 2009 along with the titles

of the course they taught. So, here is a the corresponding here is the corresponding

relational query which you can convince yourself is indeed the same.

And then we can transform using the rule 6a which I have shown here which is basically

the associativity of joint because there are 2 join relations and we are using the

associativity of join to first join the here then second and third relations are joined first

and then the first relation is joined with that. Here we are using associativity of joining

the first and second and then using the third, now if you join first and second and then it

is possible that the department name actually the department name is an instructor and

the other condition is here which is in the teaches.

So, this department name is in the instruction here is in the teaches. So, I should be able

to do select early, I should be able to select on the instructor based only on the

department name being music and also select early on the teachers by using a year as

2009 and then do their joint.

So, naturally each one of these will become much smaller corresponding to the whole

instructor or teaches relation therefore, their join will also be smaller. So, which means

eventually this part this part of the query will become much smaller in size in the result

and the consequent second join would be much smaller to perform. So, this will naturally

give it whereas, if we had done all of these join earlier we would have used the whole of

the teaches and the instructor relations and that would have been quite a lot of tuples

would have been there.

(Refer Slide Time: 23:57)

So, these are different example so, this is a the same example being shown in terms of

the 3 parts tree structure so, we can convince yourself by using the transformation rules

that they are actually equivalent.

(Refer Slide Time: 24:12)

And then certainly they give you a significant advantage and now this is an example

which show that you can push the projection.

So, here is what you wanted to do and while we compute this we will get a relation of

this form and we can push, we can use these rules rule 8a and 8b, this is rule 8a, this is

rule 8b by this we can push the projections inside and make the relations smaller because

now if you push the projection then you are actually cutting down on the on the number

of columns. So, your relation becomes smaller that will make the with the projection this

will reduce and when you project also there will be duplicates which will get removed

so, in every way your relation becomes smaller in size and your subsequent join

operations would be more efficient.

(Refer Slide Time: 25:02)

You can also the these are examples where you can take care of the fact that you can

reorder joining to get better result for example, the you can if I have to do join 3 relations

like this, I could do either this first or this first. Now if I do this first then this is a

temporary relation which I will need to maintain in memory and then join with r1. If I do

this first then this will be a temporary relation and then I will join it with r3. So, if this is

large enough then compared to this then I will be better off by doing this and will be able

to have a more optimized execution of the query. So, here is an example of that again 2

joints.

(Refer Slide Time: 25:46)

So, what we are trying to show is when we are having this instead of actually are actually

trying to compute this join first because we expect that this set to be much smaller, if this

set is much smaller then naturally this joint would be much smaller and it is more likely

to fit into the memory then if we had just done teaches and course id’s which I expected

to be large relations.

(Refer Slide Time: 26:20)

So, basically therefore, the strategy turns out that given a query you will have to generate

it whole lot of equivalent expressions. So, the number of equivalent expressions could be

really really large. So, we will have to systematically generate all these alternate

equivalent expressions and apply by applying these transformation rules that we have

just seen and we will have to continue till no new expression can be generated and then

we have to evaluate each one of them based on their evaluation plan.

So, this could be very expensive because the number of alternates could be really really

large. So, the optimize plan generation is also based on the transformation rules and we

may have only different special kits approaches to take care of the common optimization

plans that we might have.

(Refer Slide Time: 27:16)

Now, one way to do that is for example, if we are looking at say the join of 2 relations E1

and E2 here then; obviously, if we do certain transformations with this join that does not

change the way E1 and E2 are actually evaluated.

So, if that be the case then in terms of generating the alternate we do not really need to

keep or evaluate all of the expressions the whole of the expression in every alternate. We

could actually do something like sorry we could actually do something like we could

have a join and then instead of really replicating the whole of the evaluation of E1 and

evaluation of E2, we can simply make pointers to the same sub trees which are called

basically sub expression optimization.

If you have studied the expression optimization in compiler at any point of time you will

understand this very well, this is the same strategy which is used here. So, if you can

detect duplicate sub expressions then you can have only one copy and you can make the

things more efficient to run.

So, the general strategy for doing this is a dynamic programming we would not be able

to cover that in the current course, but just know that all these explosion of generating

alternate and choosing the best one is usually handled in terms of dynamic programming

which is a strategy to make sure that if we have solved a sub earlier then I do not need to

solve that sub problem again we can just reuse that same earlier result and go ahead with

that.

So, by this way we can common sub expressions we may only find the plan for a best

plan for a common sub expression only once and then use it subsequently again.

(Refer Slide Time: 29:24)

So, in this module covered starting from the notions of query processing in the earlier

module, we have discussed the basic issues of optimizing queries and we have shown

that using a set of simple transformational rules you can convert a relational expression

into a number of equivalent relational expressions. And then you can evaluate them

based on the estimated cost that the model that you are using and choose the best one and

dynamic programming is usually a good way of doing that.

So, in through the previous module and this one we have taken a very elementary look I

should say, but this will give you some idea of how actually an SQL query is transformed

into relational algebra parsed and translated into relational algebra and how equivalent

expressions for that relational algebra expression is generated and evaluated.

And finally, an evaluation plan is met where specific choice is made for the different

algorithms for doing different operations and that final plan which is which has the best

cost is passed on to the query processing engine to query evaluation engine. And that

then goes forward and does the b tree and disk operations in according to the plan and

produces the best result in possibly the best shot is possible time period.

