Database Management System
Prof. Partha Pratim Das
Department of Computer Science & Engineering
Indian Institute of Technology, Kharagpur

Lecture - 38
Query Processing and Optimization/1: Processing

Welcome to module 38 of database management systems, in this module and the next we
will talk about query processing and optimization of that in the current module we will

talk about query processing.

(Refer Slide Time: 00:29)

FFD

Module Recap

Failure Classification
Storage Structure
Recovery and Afomicity
Log-Based Recovery

EWAYAM: NFTEL-MOC MOGTs Instructor: Praf. PP Das. IIT Kharagear. Jan-Apr. 2018 i !

N B RS N BN

Duiaburse Sysiem Coneepls - § Edition na Silbersthatz, Kerth and Sudarshan

So, in the last module we had done talked about database recovery.

(Refer Slide Time: 00:36)

':!
E:

Module Objectives

i

8 To understand the overall fiow for Query Processing
n To define the Measures of Query Cost

® Tounderstand the algorithms for processing Selection Operations, Serting, Join Operations,
and a few Other Operations

WAYAM: NFTEL-MOC MOOCs Instructoe: Prof. P P Das. IT Kharageur. Jan-Apr. 7018

@ ' : n’ m l m“
Daiabise Sysiem Concepds - § Edition 1l Cfilberschatz. Korih and Sudarshan

And now we will try to understand the overall flow of processing queries. So, if I fire a

query like select from where how will that actually access the database files the b trees
and indexes and so, on and compute the result is what we would like to discuss. And a
query can be processed in multiple ways giving rise to different kinds of costs in terms of
the time required for processing that query. So, we will define certain measures of query
cost and then we will take a quick look into a set of sample algorithms for processing
simple selection operation, sorting, joint operation and few of the other operations like

aggregation.

(Refer Slide Time: 01:26)

“ FFD
-

i,

Module Outline

m Overview of Query Processing
® Measures of Query Cost

® Selection Operation

m Sorting

m Join Operation

® Other Operations

WAYAM: NFTEL-MOC MOOCs Instruetse: Prof. P P Das. IT Kharageur. Jan-Apr. 7018

@ ': B’ml mn
Daiabase System Concegts - 5 Edaia 4 Efilberschatz, Korih and Sudarshan

So, first let us so, these are the topics to talk about and first we will take a look at the

overall query processing algorithm.

(Refer Slide Time: 01:35)

=

Basic Steps in Query Processing

1. Parsing and translation
2. Optimization
3. Evaluation

-~ parser and ~_ relational-algebra

query

L - .
~__translator _~ expression
et - .
~ 1
< optimizer =«
query Pt e . =
* te——<_evaluation engine ~+—{ex
output ™ . giné_-<—execution plan

C 3 P
[¥

data stalistics
[- BB A SR N

LT Silbéeschalz, Karth knd Sudarshan |

SWAYAM: NPTEL-MOC MOOTs Instructor: Prof. P P Das. IIT Kharagear. Jan-Apr. 2018

£
E
i
g
¥
-1

So, this is the flow so, this is a way the a query will get processed. So, here what you
have is this is where the input query comes in naturally it is written in terms of a in terms

of SQL which is kind of a programming language.

So, you need a parser and translator. So, the it is parse translated and it is translated into a
relational algebra expression as we have shown at the very beginning discussed at the
very beginning that SQL is basically derived or developed based on relational algebra.
So, corresponding to every SQL query there is a one or more relational algebra
expression. So, you express in terms of that, then you optimize you try to see how the
relational algebra expression can be made efficient and to optimize this we might use

some information about the statistics.

Statistics in terms of we might use the information past history information of say what
is the what are the attributes on which more often the where conditions are port we might
want to use statistics like how many tuples actually exist in the relation right now and so,
on. And based on that we will decide on an execution plan, execution plan is how we
actually want to what are the actions that we actually want to do in terms of accessing the

different indexes and the different b plus tree nodes to evaluate the query and that is the

job of the evaluation engine is you can see that it will access the data for that and finally,

out of that the query output will be generated.

So, in this module and the next we will take a quick look into so, it is glimpses of these
steps one by one and try to understand how query processing and optimization can

happen.

(Refer Slide Time: 03:40)

= Basic Steps in Query Processing (Cont.)

B Parsing and translation
» translate the query into its internal form
» This is then translated into relational algebra
+ Parser checks syntax, verifies relations
® Evaluation

» The query-execution engine takes a query-evaluation plan, executes that plan,
and returns the answers to the query

SWAYAM: NPTEL-MOC MOOTs lnstructsr: Prof. P P Das. IIT Kharagear. Jan-Apr. 7018

nr ESilbérachatr, Korth shd Sudarshan

So, beyond a parsing and translation there is evaluation as we have talked of.

g
8

(Refer Slide Time: 03:48)

g Basic Steps in Query Processing : Optlmlzatlon

¥ A relational algebra expression may r‘fve many equwalenl exp}eSsmns N

* Eg., Oy m?som(l Isaiinstructor]) is equivalent to

[saian/O satarye75000(instructor))

e 1
8 Each refational algebra operation can be evaluated using one of seve:ai dlﬂe:mt
algorithms

» Correspondingly, a relational-algebra expression can be evaluated in many ways

® Annotated expression specifying detailed evaluation strategy is called an evaluation-
plan.

» E.g., can use an index on salary to find instructors with salary < 75000,
» or can perform complete relation scan and discard instructors with salary = 75000

SWAYAM: NPTEL-MOC MOOTs lnstructor: Prof. P P Das. IIT Kharagear. Jan-Apr, 2018

Now, if we take in terms of say a query a where select from where clause has been
translated. So, for example, if this is we can we can simply write out say if we have
select and what are we selecting here? We are selecting salary and where are we selecting
it from? The from is instructor and under what conditions are we doing that? Where,

where is salary is less than 75000.

So, if you had a query like this then you know then it will be it will get translated to
some kind of a relational algebra expression like this where you do a selection on the
salary and then you do you do a projection on the salary and you do a selection based on
that condition. Now, it is also clear to say that this particular relational algebra
expression can be equivalently written by swapping that these 2 conditions, that is we
can first do a selection and then do the projection they are actually equivalent and that

could be multiple equivalents.

So, we know that given a query there could be multiple relational algebra expressions
and then the relational algebra expression the operations can be evaluated also in one of

the by using one or more different algorithms.

So, basically what you have you have different options given a SQL query, you have
different possible relational algebra expressions that are equivalent given every relational
algebra expressions you have different strategies different algorithms to actually execute
and evaluate that. And we would like to based on these we would like to annotate the
expression we would like to mark out as to whether from the above to say whether we
first project on salary and then do the selection or we first do the selection on salary less

than 75000 and then project.

And with that annotation we will build up a total evaluation strategy which is known as
the evaluation plan and for example, here we can have different strategies like we can
use an index on salary and if you use that that will be it will be pretty efficient to find
tuples which satisfy salary less than 75000 or we can scan the whole relation and discard
all those instructors for which salary is greater than equal to 75000. So, there could be
different ways in which we can do this evaluation and that is what optimally has to be

decided in every case.

(Refer Slide Time: 06:50)

Basic Steps: Optimization (Cont.)

=

B Query Optimization: Amongst all equivalent evaluation plans choose the one with
lowest cost

Cost is estimaled using statistical information from the database catalog
e.g. number of tuples in each relation, size of tuples, etc.
® In this module we study
How to measure query costs
Algorithms for evaluating relational algebra operations

How to combine algorithms for individual operations in order to evaluate a
complete expression

B |n the next module

We study how to optimize queries, that is, how to find an evaluation plan with
lowest eslimated cost

EWAYAM: NFTEL-MOC MOGTs Instructor: Frof. PP Das. IIT Kharagear. Jan-Apr. 2018

‘PR QN s A e D

Daiabiuse Sysiem Concepls - § Edition ni CBiltrschatz, Kerh and Sudarshan

So, in terms of query optimization out of all these equivalent evaluation plans we try to

choose the one that gives some minimum cost the lowest cost evaluation.

So, the cost will have to be estimated based on certain statistical information from the
database catalog for example, number of tuples in the relation, the size of the tuples, the
attributes on which frequently condition are tested and so, on. So, this is what we would
in totality try to understand out of that in this module we will first define what is the
measures of cost and look at the algorithms for evaluating some of the relational algebra
operations and then you can combine them to do bigger operations and in the next

module we will talk about optimization.

So, first let us see how we define the cost because if we want to say that we can do it you
say in 2-3 different ways, evaluate the same query in 2-3 different ways then we must
assess as to what is the best way of doing it the best way is whatever gives us the least

cost.

(Refer Slide Time: 08:02)

. Measures of Query Cost
B Costis generally measured as total elapsed time for answering query
Many factors contribute to time cost
disk accesses, CPU, or even network communication
B Typically disk access is the predominant cost, and is also relatively easy to estimate
B Measured by taking into account
Number of seeks * average-seek-cost
Number of blocks read * average-block-read-cost
Number of blocks written * average-block-write-cost
Cost to write 2 block is greater than cost o read a block
data is read back after being written to ensure that the write was successful

EWAYAM: NFTEL-MOC MOGTs Isstruetor: Prof. P P Das. IIT Kharageer. Jan-Apr. 2018

R R R T - N R

Duiabuse Sysiem Concepls - § Edition ni Silberschatz, Kerth and Sudarshan

So, measures of cost will be in absolute terms it is in terms of the elapsed time how much
time does it take and there could be many factors which ma dictate that because in terms
of evaluating this we will have to access the disk. So, access time of the disk will be
involved, the computing time in CPU may be involved even some network

communication may get involved.

So, out of these if we assume that there is no network communication cost just for
simplicity that is everything is connected to a very you know high speed network then
between the disk cost and the accesses and the CPU processing cost the disk access is a
predominant cost. Because and it is relatively easy to estimate that because as we have
looked at the storage structure we know that it is a typically a magnetic disk which where
the head has to move to the correct cylinder to find the block where the records can be

located. So, there is this process is called the seek.

So, we will need to find out how many estimate how many seek operations we need and
multiply that by the average cost of seeking a block. Similarly, while we are reading that
we need to estimate how many blocks to read and average cost to read a block, number
of blocks to write average cost to write the block, cost to write the block is usually
greater than the cost to read actually often when we write a write some data after writing

we also usually read it back to make sure that the right was successful.

(Refer Slide Time: 09:53)

i,

Measures of Query Cost (Cont.)

B For simplicity we just use the number of block transfers from disk and the number
of seeks as the cost measures

{; = time to transfer one block
t —time for one seek
Cost for b block transfers plus S seeks
bty + 87t
® We ignore CPU costs for simplicity
Real systems do take CPU cost into account
® We do not include cost to writing output to disk in our cost formulae

EWAYAM: NFTEL-MOC MOGTs lestructor: Frof. PP Das. IIT Kharagear. Jan-Apr. 2018

Bl Cfilberschatr, Korih and Sudarshan

So, these are the typical cost factors that will dominate. So, if we say that if we just count

g
E

the number of block transfers and the number of seeks and if the time to transfer one
block is t T and time for seek is one seek is t S, then the cost of transferring b blocks

doing and doing S seek will be given by this expression you can easily understand that.

So, every block transfer is t T and the b blocks being transferred. So, this is the transfer
cost and if there are S number of seeks and every seek time is t S, then this is the seeking
cost and adding them together we get the total cost of seek and transfer. For simplicity
we will ignore the CPU cost and we will also for now not consider the cost of finally,
writing the result back to the disk we will simply check as to what will it take to actually

compute the result.

(Refer Slide Time: 10:54)

Lo

Measures of Query Cost (Cont.)

B Several algorithms can reduce disk 10 by using extra buffer space

Amount of real memary available to buffer depends an other concurrent queries
and OS processes, known only during execution

We often use worst case estimates, assuming only the minimum amount of
memory needed for the operation is available

B Required data may be buffer resident already, avoiding disk 1/0
But hard to take into account for cost estimation

EWAYAM: NFTEL-MOC MOGTs Iestructon: Prof. P P Das. IIT Kharagear. Jan-Apr. 2018

PP QNI A ED
Duiabirse System Concepls - 6 Editio 1.1 CBilberschatz, Korih and Sudarshan |

So, there are also it has to be noted that there are also several algorithms to reduce the
disk I/O we can do that by using extra buffer space for example, one block has been read
in and we are just using one record of that if in the next operation we have to use some
record which is already existing in that block and if that block is maintained in that

buffer then we do not need to go back to the disk and actually read the block once again.

So, the more of the buffer space that we can provide naturally the performance would
become better, but certainly; that means, that the memory required for keeping the buffer
would be higher and it is also often difficult to decide as to I mean estimate a query as to

if I am looking for a particular block whether it is already there in the buffer.

So, that the I/O can be avoided or it needs to be actually read back from the disk, but
these are some of the you know cost measures that are used in a more sophisticated cost
function, but we will simply use the seek and read cost from the disk in terms of blocks
to estimate our cost of the different operation. So, let us look at sample algorithms for
different basic SQL operation. So, the first and most common SQL operation is selection

as you all know.

(Refer Slide Time: 12:29)

g Selection Operation

B File scan

B Algorithm A1 (linear search). Scan each file block and test all records to see whether
they satisfy the selection condition

Cost estimate = b, block transfers + 1 seek

b, denotes riimber of blocks containing records from relationr | ’
If selection is on a key atfribute, can stop on finding record '
cost = (b, /2) block transfers + 1 seek
Linear search can be applied regardless of
selection condition or
ordering of records in the file, or
availability of indices

B Note: binary search generally does not make sense since data is not stored
ively
twhen there is an index available,

nary search requires more seeks than index search
L L

So, the selection for selection we discuss in multiple algorithms for different situations

| SWAYAM: NPTEL-MOC MOGCs lnstructor: Prof. PP Das. IIT Kharagear. Jan-Apr. 2018

the first algorithm is here we are calling it as algorithm Al is a linear search. So, what we
do we just need to do some selection. So, we scan the say we are looking for a result of
couple of records and or a single record then we just scan the file from one end to the

other we look for all the records and check whether they satisfy the selection condition.

So, the cost for that would be b r block transfers if there are if b r is a number of blocks
containing records from relation r then b r blocks have to be read and one seek has to
happen. Now, if the selection is on a key attribute and we can stop find on finding the
record and on the average we can expect that we will be able to find it by having read
half of the record. So, b r by 2 block transfers plus 1 seek so, if I if I write it in the

notation that we had used earlier this b 1 by 2 into the transfer cost plus one seek cost.

So, this should give us the cost of the finding out the particular record from any file if we
are doing a linear search if we are doing a linear scan. So, the advantage of this is it can
be applied irrespective of the condition, ordering of the records whether or not the index

is available and so, on.

So, this could be the fallback in any case when we want to do that and just you may note
that in memory when we search we say that we will keep the data sorted and binary
search is efficient, but that is not the case for us here because as you know the data is not

stored sequentially it is in terms of a tree structure. So, when the index is available we

will do the index based search otherwise we will have to do some kind of a linear scan

alone. So, this was the first algorithm that we can think of.

(Refer Slide Time: 14:44)

g Selections Using Indices

B |ndex scan - search algorithms that use an index
selection condition must be on search-key of index
h; = height of B+ Tree

m A2 (primary index, equality on key). Retrieve a single record that satisfies the
corresponding equality condition

Cost=(h+1)* (t;+1g)
m A3 (primary index, equality on nonkey) Retrieve multiple records
Records will be on consecutive blocks
Let b = number of blocks containing matching records
Cost=h*(t;+) +is+i*b

o | SWAYAM: NFTEL-MOC MOOCs lestructor: Prof. P P Das. IIT Kharagear. Jan-Apr. 2018

- OOz

Now, if now let us assume that it is the situation is such that we have some index on the b

tree b plus tree that we are using to going to do the selection on and let us assume that h |
is the height of that b plus tree. So, the second algorithm is good if we are using a
primary index and we are looking for equality on a key that whether it matches certain
key. So, what will have to do we know that in b plus t if the if the height is h I then we
will be able to find the leaf node surely by h I number of block transfers because we will

be a h I is the height of the tree.

So, this is a number of nodes the number of blocks that we will need to read. So, if each
one of that will take a transfer time plus a seek time because they are not consecutively
located. So, everything they will have to be will need to seek them. So, that will be h I
times t T plus t S and we will need one additional block transfer to actually get the data

get the record read it. So, that will give us cost that we have shown here.

In a variant of this algorithm A3 we may be using a primary index, but we are looking
for equality on a non key. So, if you are looking for equality on a non key since is a non
key then certainly in the result we may have multiple records, but the records will be on

consecutive blocks because we are using a primary index.

So, if b is the number of blocks containing matching records then we will need to have
say this is a cost to find out the first one and then they from consecutively they are on.
We will need to locate the next record and the b blocks for transferring all the matching
records this is the kind of cost that will need to go through natural you can see that in
these cases all these cost expressions are better than what we were getting in terms of

doing a linear search.

(Refer Slide Time: 17:08)

=,

Selections Using Indices

m A4 (secondary index, equality on nonkey).
Retrieve a single record if the search-key is a candidate key
Cost = (hi+1)* (t; +15)
Retrieve mulliple records if search-key is not a candidate key
each of n matching records may be on a different block
Cost= (h+n) *(tr +13)
Can be very expensive!

SWAYAM: NPTEL-MOC MOOTs Instructor: Prof. P P Das. IIT Kharagear. Jan-Apr. 2018

Datahisie System Concepts - 6 E9 817 Silbeeschatr, Korh snd Sudarshan |

If we look into a few of the other situations for example let us say instead of primary
index if [have a secondary index and you are looking for a equality or non key then you
can retrieve a single record if the search key is candidate key. If it is a candidate key then
we know that even though it is not a primary key, but certainly 2 tuples can never match
on them and still exist. So, it is a candidate key we will need to have we will get only a
single record and therefore, this is a cost expression that you will get, but if it is not a

candidate key then there could be multiple records that will have to be finally, retrieved.

So, if there are n records then first you will need h I to locate the first record and times of
course, h I times the transfer plus seek cost and if there are n records then you will need
to every time each one of them because they are on secondary index and non key. So,
you have to retrieve them one by one and every time you will need a search you will
need seek and transfer time and this can as you can understand could be quite expensive

if n turns out to be large which will often be the case.

(Refer Slide Time: 18:18)

—— Selections Involving Comparisons

® Canimplement selections of the form o,/ (r) o 6. \{r) by using
a linear file scan,
or by using indices in the following ways:

® A5 (primary index, comparison). (Relation is sorted on A)

For a; .\{r) use index to find first tuple = v and scan relation sequentially from
there

Cost =h| '“'Ir"‘ rs) +b'f;
For a,.,(r) just scan relation sequentially till first tuple > v; do not use index
Cost =fs +h .f'lr

EWAYAM: NFTEL-MOC MOGTs Instructor: Frof. PP Das. IIT Kharageer. Jan-Apr. 2018

‘PP QN ste i ED
Daiatirse System Conceps - 65 Edition 1.1k EBilberschatz, Korih and Sudarshan |

We can implement different this is a very common selection condition where we have
these kind of conditions that we are selecting on less than equal to or greater than equal

to kind of condition.

So, we can implement this using a linear file scan or by using indices in a certain way
using indices we will certainly have a better performance. So, if we have a if we have a
primary index and we are using comparison then what we will we can certainly decide is
we need to find out the first tuple which matches this condition that is a is greater than
equal to v and then once we have found that in a primary index the following ones will

all be ordered in that manner. So, I can scan sequentially from there and get them.

So, finding the first one will give me finding the first one will give will take this cost
because I am doing a search on the primary index and then if there are b blocks
containing the result records then this is the cost that will need. Whereas, we can do
something different also we can just start sequentially based on the primary index from
the beginning and check for the till we get a tuple which is greater than v and then we do
not use the index we can simply we know because these are all ordered in terms of the
primary index. So, that will be the search result that can be easily produced. So, here we

are using a linear scan and that itself will give a good result.

(Refer Slide Time: 20:03)

- Selections Involving Comparisons

§ Canimplement selections of the form ./ (r) or 5, {r) by using
alinear file scan,
or by using indices in the following ways:

® AB (secondary index, comparison),

» For ay ..{r) use index to find first index entry = v and scan index sequentially
from there, to find pointers to records

Cost=(h;+n) " (t; +15)

For a,.,(r) just scan leaf pages of index finding pointers to records, till first entry
L

In either case, retrieve records that are pointed to
requires an I/O for each record
Linear file scan may be cheaper

WAYAM: NFTEL-MOC MOOCs Instructoe: Prof. P P Das. IT Kharageur. Jan-Apr. 7018

k) 'l n’ “ll mn
Daiabase System Concepts - 5 Edia 1.1 Cfilberschaiz, Korth and Sudarshan

But if we are doing a similar operation based on a on a secondary index we are doing

composition on a secondary index then we will again use the index to find the first index

entry greater than equal to the key value and then scan the index sequentially.

So, we will get a cost which is similar to what we saw earlier and in the other condition
we can just scan the leaf pages of index finding the pointers to record still the first entry
so, we are doing more a sequential one. So, in either case retrieving records that are
pointed to requires I/O for each record because they are on a secondary index. So, they
are not necessarily consecutive and residing on the on the same block. So, they may be
all distributed across different blocks and in such cases it may turn out that actually is

doing a simple linear scan may turn out to be cheaper.

(Refer Slide Time: 20:59)

Implementation of Complex Selections

B Conjunction: GyiA g, . . oll)
B A7 (conjunctive selection using one index)

Select a combination of 0, and algorithms A1 through A6 that results in the least
cost for ay, (r)

Test other conditions on tuple after fetching it into memory buffer
B AB (conjunctive selection using composite index)

Use appropriate composite (multiple-key) index if available
® A9 (conjunctive selection by intersection of identifiers)

Requires indices with record pointers

Use corresponding index for each condition, and take intersection of all the
obtained sets of record pointers

Then fetch records from file
If some conditions do not have appropriate indices, apply test in memo

EWAYAM: NFTEL-MOC MOGTs Isstruetor: Prof. P P Das. IIT Kharagear. Jan-Apr. 2018 i l l

Daiabase System Concepts - §* Edition 1n CBilberschatz, Korih and Sudarshan |

Often we have select conditions which are conjunction. So, it could be conjunctive select
and may be using only one index in that case it depends on if there are n conditions then
we will need to depending on the combination of this condition theta n and the
algorithms that we have seen here we can evaluate as to which strategy will give that

least cost for this condition.

So, we will do the access based on that and then once we have accessed that tuple then
we will try out the other conditions on the tuples that have been fetched into the memory
buffer. You can also do conjunctive selection using composite index we can there are
depending on the attributes involved in theta 1, theta 2, theta n we may have a multi key
index and that decision of course, as to whether I have a multi key index or what is that

multi key index is of course, dependent on the earlier statistics.

But if we have some multi key index which are appropriate composite index then we can
use that and more directly get the result which will be more efficient. Or we can do
conjunctive selection by intersection of identifiers which require indices with record
pointers and will use corresponding index for each condition and then fetch the records

which is simple to understand.

(Refer Slide Time: 22:29)

Algorithms for Complex Selections

® Disjunctionio;V g3 V. . . o (F).
8 A10 (disjunctive selection by union of identifiers)
Applicable if all conditions have available indices

Otherwise use linear scan

Use corresponding index for each condition, and take union of all the obtained sets
of record pointers

Then fetch records from file
® Negation: o (r)
Use linear scan on file
If very few records satisfy -0, and an index is applicable to 0
Find satisfying records using index and fetch from file

EWAYAM: NFTEL-MOC MOGTs Instructor: Frof. PP Das. IIT Kharagear. Jan-Apr. 2018 l !

‘BRR e AN A

Daiabise Sysiem Concepds - § Edition BH E8ilberschatz, Korih and Sudarshan |

Disjunction this that was conjunction if we want to do disjunction then if we have all
conditions all of these conditions have index on them if it is available index then we can
do something better. Otherwise if we do not have that then it is better to do a linear scan
because the conditions all triples which satisfies theta 1 will be there in the result, those

which satisfy theta 2 may or may not satisfy the others will also be there and so, on.

So, what we can do is if we have index on each one of these based on each one of these
conditions then they can use corresponding index for each condition get the results and
take their union and then fetch these records. So, these are some of the so, I 1 just gave
you a quick outline in terms of some of the different algorithms that selection could use.
Negation of a condition could also be done, but it usually requires a linear scan on the
file that is there is not much optimization that you can think of here. The next operation
which is often required may not be explicitly, but in terms of doing other operations is

sorting.

(Refer Slide Time: 23:47)

Sorting

-,

® We may build an index on the relation, and then use the index to read the relation in
sorted order

May lead to one disk block access for each tuple
B For relations that fit in memory, techniques like quicksort can be used
B For relations that do not fit in memory, external sort-merge is a good choice

EWAYAM: NFTEL-MOC MOGTs Iestructor: Prof. PP Das. IIT Kharagewr. Jan-Apr. 2018

‘PRI ANt W
Daiabase System Concepts - 5= Edia By CSilberschatr, Korth and Sudarshan \

So, if we may build an index on the relation then we can use that index to read the
relation in sorted order, this is what we have already discussed that b plus tree in the in
order traversal will always give you the sorted order. So, that may lead to one disk access
for each tuple at times. Now that if the relation can totally if all the records can totally fit
into the memory then we can use some in memory algorithm like quicksort, but often

that will not be the case relations are much bigger.

So, what will have to do is will have to take recourse to external sort and merge strategy

which is a very old strategy, but very effective.

(Refer Slide Time: 24:30)

!— ’ Example: External Sorting Using Sort-Merge
. QN] ——
%. eft) M | [
i 210y lel | erE) (2
o Iy —— \ b|14
i 4 (b4 (T2 A e
H c|B =1/ e[| | \ c|3B
: = i - DANTIE
=- . e |16 g2 [
i elie)) =/ ==\ jd|a
E rli6]) g7 o, [1S |
I da)l HEy BE | | [els
H sl RAIRE | (ewiEE
] m|3 el SR r | 24

O)| EE) B
i p[2) —— W3 [l
: al7)([y pm2 p| 2

p—t—t |/ 3 —

§ alld|) |d| 7+ i—'_ |16
3 — el r(l6)/ s
E " initial | i sorted
H relation,~rups 7 runs - output
% create merge| Y /merge
NG w@r. o rim- wa [————TT)

So, just to illustrate that suppose sorry so, suppose these are this is the initial relation so,
what we do certainly we cannot read that whole relation in terms of memory into a
memory. So, what we do we take different parts and say we are taking in groups of 3 just
for illustration and make them and sort them in memory. So, take them so, take that

money records which you can fit into the memory and sort them.

So, once you have sorted them then you can these are 2 sorted sub lists of the original set
of records. So, now, you can merge them according to the merge strategy so, this is the
sample merge saw strategy and again you write this back you do the similar things again
here write them back. So, now, you have 2 bigger short sorted lists so, so these are called
runs. So, the first step creates the runs and now after you have done merging once you
get longer runs then again you merge them into a bigger run and depending on the on the
actual size of the file and the size of the memory that directly fits in you might be doing

multiple such runs till you get to the sorted output.

(Refer Slide Time: 25:52)

i

External Sort-Merge

Let M denate memory size (in pages)
1. Create sorted runs. Let/be O initially

Repeatedly do the following fill the end of the relation:
{a) Read M blocks of relation into memory
{b) Sort the in-memory blocks
(c) Write sorted data to run R;; increment .
Let the final value of ibe N

2. Merge the runs (next slide).....

WAYAM: NFTEL-MOC MOOCs Instruetse: Prof. P P Das. IT Kharagear. Jan-Apr. 7018

@ ' : nlm l m“
Daiabase System Concepts - §* Edilion 15 8ilberschaiz, Kerih and Sudarshan

So, that is a very external sort merge is a very effective strategy that the databases will

always use and the efficiency of that or the cost of that depends on the size of the
memory in terms of pages as to what can fit a complete one run data. So, this is whatever

I have described is simply given here in steps of algorithm.

(Refer Slide Time: 26:16)

g External Sort-Merge (Cont.)

2. Merge the runs (N-way merge). We assume (for now) that N < M

Use N blocks of memory to buffer input runs, and 1 block to buffer output. Read
the first block of each run into its buffer page

repeat
Select the first record (in sort order) among all buffer pages
Write the record to the output buffer. If the output buffer is full write it to disk.

Delete the record from its input buffer page
If the buffer page becomes empty then
read the next block (if any) of the run into the buffer

until all input buffer pages are empty:

EWAYAM: NFTEL-MOC MOOTs Instructor: Frof. P P Das. IIT Kharagear. Jan-Apr. 2018

EPZEQEs At D
Daiabase System Concepts - §* Edition BE Cilberschatz, Korth and Sudarshan

So, that is a sort that is that here is a merge so, you can go through that and convince

yourself that this is what algorithm is actually doing.

(Refer Slide Time: 26:24)

External Sort-Merge (Cont.)

i

B If N = M, several merge passes are required
In each pass, contiguous groups of M - 1 runs are merged.

A pass reduces the number of runs by a factor of M -1, and
creates runs longer by the same factor
» E.g. IfM=11, and there are 90 runs, one pass reduces
the number of runs to 8, each 10 times the size of the
initial runs

Repeated passes are performed till all runs have been
merged into one

EWAYAM: NFTEL-MOC MOGTs Instructor: Prof. PP Das. IIT Kharagear. Jan-Apr. 2018

EPZEQEste . D

Duiabise Sysiem Concepls - § Edition nn Cfilberschatz, Korih and Sudarshan

And there are 2 cases you have to consider whether your data fits into the memory
otherwise if your it does not fit into the memory then multiple passes are required and
these are the steps of the algorithm that will be followed. Now next to sorting certainly
we have often talked about that join is a very required operation in relational database in

terms of SQL.

(Refer Slide Time: 26:56)

i

Join Operation

B Several different algorithms to implement joins
Nested-loop join
Block nested-loop join
Indexed nested-loop join
Merge-join
Hash-join
B Choice based on cost estimate
B Examples use the following information
Number of records of student: 5000 fakes: 10,000
Number of blocks of sfudent: 100 fakes: 400

WAYAM: NPTEL-MOC MOOCS lestructor: Prof. PP Das. IIT Kharagear. Jan-Apr. 3018

¥
L]
Databisia Systerm Concepts - 6 b 183 CBilbérschats, Kisrth snd Sudarshan

So, let us see what will it take to do a join so, first we talk about so, the join could be

done in several ways nested loop join, block nested loop join, indexed nested loop join,

merge join, hash join. So, these are different strategies of doing join we will just illustrate

the algorithms for the first 3 strategies.

(Refer Slide Time: 27:15)

=

Nested-Loop Join

B Tocompute the thetajoin ~ rM,s
for each tuple t.in r do begin
for each tuple !, in s do begin
test pair (f,f;) to see if they satisfy the join condition 0
if they do, add t, t; to the result.

end
end

1 is called the outer relation and s the inner relation of the join
B Requires no indices and can be used with any kind of join condition
B Expensive since it examines every pair of luples in the two relations

SWAYAM: NPFTEL-MOC MOOTs Instructor: Prof. P P Das. IIT Kharagear. Jan-Apr. 2018

[-SRI RN
Dutabise System Concepts - b £ 1M EBilberschatz, Korth snd Sudaishan |

So, nested loop join what we are trying to do is very simple we have 2 relations we have
2 relations here r and s and we have a condition theta and we are doing a theta join. So,
what needs to be done in terms of theta join in the relational algebra what do we do we
do a Cartesian product and then in the Cartesian product we check out this theta

condition.

So, the basic Cartesian product is all records of r will have to be matched will have to be
connected to all record of s. So, that naturally can be done using a nested for loop so, for
each tuple in our you try out each tuple n s take the t r, t s pair and if they satisfy the
condition theta then they go to the output otherwise you leave that otherwise you discard
that and here we say r is the outer relation and this s is the inner relation. So, naturally
since you have to examine every pair this could be quite expensive to perform and the

cost may be quite high.

(Refer Slide Time: 28:19)

Nested-Loop Join (Cont.)

S

In the worst case, if there is enough memary anly to hold one block of each relation, the estimated cost is
n.+ by +b, block transfers, plus
ntbh, seks

If the smaller relation fits entirely in memary, use that as the inner relation.

Reduces cost to b, + b, block transfers and 2 seeks
Example of join of students and lakes:
Number of records of student. 5000 fakes: 10,000
Number of blocks of sfudenf. 100 fakes. 400
Assuming worst case memory availability cost estimate is
with sfudent as outer relation:
5000 « 400 + 100 = 2,000,100 block transfers,
5000 + 100 = 5100 seeks
with fakes as the outer relation
10000 + 100 + 400 = 1,000,400 block transfers and 10,400 seeks

If smaller relation (student) fits entirely in memory, the cost estimate will be 500 block transfers i

EWAYAM: NFTEL-MOC MOGTs Instructor: Praf. PP Das. IIT Kharagear. Jan-Apr. 2018

Block nested-loops algorithm (next slide) is preferable
R R RS R RN
Daiabase System Concepts - §* Edition M Cfilberschatz, Korih and Sudarshan |

So, if we look at what could be the possible cost. So, if n r is the number of records in
relation r and b r is the number of blocks in which they exist then for every record you
have to actually access all the blocks of the other every for every tuple of relation r you
have to actually access all the blocks of relation s. So, you get this and you have to

access all the blocks of relation r.

So, this is the kind of block transfer that you will get you will require and naturally you
will require so many seek because every time you have to find out you have to go and
seek for that. So, one optimization that is very common is what you can do is if the
smaller relation can entirely fit into the memory then you do not need to do this repeated

read for that both the relations.

So, if it fits into that then the cost will significantly reduce to b r plus b I block transfers
because you want the smaller one has already fit. So, you just need to access one relation
once you need to read the smaller relation and put it in the memory and then you just
need to read the other relation one after the other. So, b r blocks of that and so, you are

seeking only twice one for reading r, one for reading s there is a 2 seeks.

So, here I have just shown a simple example of computing the join of student and takes
let us say student has 5000 records and spread over 100 blocks takes relation has 10000
records spread over 400 blocks then if you apply the formula above you will find that if

student is the outer relation you have so, many block transfer and so, many seeks.

Whereas, if takes is the outer relation then you have so many block transfers and so

many seeks.

So, you can understand you can see here that if you make student as a outer relation then
you have much larger number of block transfers though you need to do less number of
seek, but taking, but using takes as a outer relation you have much less block transfers,
but more number of seek usually seek is less expensive than less costly than the block

transfer.

So, will possibly in with this kind of a statistics if it is available then we will possibly

take takes as outer relation and student as the inner one. You can refine this.

(Refer Slide Time: 31:07)

Block Nested-Loop Join

T

® Variant of nested-loop join in which every block of inner
relation is paired with every block of outer relation

for each block B, of r do begin
for each block B; of s do begin
for each tuple {,in B, do begin
for each tuple ; in B do begin
Check if (f.t,) satisfy the join condition
if they do, add #,+ {; o the result
end
end
end
end

SWAYAM: NPFTEL-MOC MOOTs Instructor: Prof. P P Das. IIT Kharagear. Jan-Apr. 2018

Dutabiss Systei Concepts - 6* Edition BnY C8ilberachats, Korth shd Sudashan

Strategy by doing a block nesting that is instead of taking every tuple of the relation you
can take every block of the relation. So, for every block of relation r you try to match
with you try to combine with every block of relation s and then within every block of
relation r the block b r you take tuple and within b s you take t S and then you do

whatever we are doing earlier, but naturally you get a much better performance.

(Refer Slide Time: 31:46)

g Block Nested-Loop Join (Cont.)

8 Worst case estimate: b, # b, + b, block transfers + 2 * b, seeks

Each block in the inner relation s is read once for each block
in the outer relation

8 Best case: b, + b, block transfers + 2 seeks,
1 Improvements to nested loop and block nested loop algorithms:

In block nested-loop, use M — 2 disk blocks as blocking unit
for outer relations, where M = memory size in blocks; use
remaining two blocks to buffer inner relation and output

» Cost= [b, /(M-2)]+ b, +b, block transfers +
2[b, /(M-2)] seeks

If equi-join attribute forms a key or inner relation, stop inner
loop on first match

Scan inner loop forward and backward alternately, to make
use of the blocks remaining in buffer (with LRU replacement)

4 « Use index on inner relation if available (next sli
o
Daiabase System Concepts - §* Edia Bn Cilberschaiz, Korth and Sudarshan

Because you are now optimizing based on the block reads only you are not reading every

WAYAM: NFTEL-MOC MOOCs Instructse: Prof. P P Das. IT Kharageur. Jan-Apr. 7018

tuple every time you need. So, I will not go through this you know simple algebra to
show that if you have a memory size of M M blocks that your cost will significantly
decrease and, but the larger the M your cost will come down by a factor of this M. So,

block nested loop join will usually be far more efficient than the simple nested loop join.

(Refer Slide Time: 32:14)

B Index lookups can replace file scans if
join is an equi-join or natural join and
'+ an index is available on the inner relation’s join attribute
+ Can construct an index just to compute a join.
B Foreach tuple t,in the outer relation r, use the index fo look up
tuples in s that satisfy the join condition with tuple £,
» Worst case: buffer has space for only one page of r, and, for each
tuple in r, we perform an index lookup on s
u Costofthe join: b, (t;+t)+n, ¢
» Where ¢ is the cost of traversing index and fetching all matching s
tuples for one tuple or r

» ccan be estimated as cost of a single selection on s using the join
condition.

If indices are available on join attributes of both rand s,
use the relation with fewer tuples as the outer relation.

.ﬂ!l Indexed Nested-Loop Join
i
é
:
é
{
i
|
i
;

BH CSilbérachatr, Korth shd Sudarshan

The third strategy which we will use very often is efficiently applicable if you are if your

join is an equijoin or a natural join as we have seen that we often need to do a natural

join. So, there are 2 attributes between these 2 relations on which during join the values
that they match are retained, the values that they do not match are not retained in the

natural join.

So, if we now assume that we have an index available on the inner relation then every
time we go with the outer relation will be able to access the inner relation very efficiently
because for each tuple in the outer relation the index to look up the tuples in nests will
satisfy the condition will be found very efficiently because they are index. So, they will

occur if through the index I can find them in terms of the consecutivity.

So, there the cost in that case will turn out to be very simply the cost of the b r which is
the outer relation the number of blocks in the outer relation the seek and transfer cost of
that and then the number of record times, the estimated cost of a single selection using
the join condition. So, we often use the nested loop join when we have to do equal join

or natural join.

(Refer Slide Time: 33:44)

Example of Nested-Loop Join Costs

T

Compute student x| lakes, with student as the outer relation.

Let takes have a primary B*-tree index on the attribute ID, which contains 20 entries in each
index node.

Since takes has 10,000 tuples, the height of the tree is 4, and one more access is needed to
find the actual data

student has 5000 tuples
Cost of block nested loops join
400100 + 100 = 40,100 block fransfers + 2 * 100 = 200 seeks
assuming worst case memary
may be significantly less with more memory
Cost of indexed nested loops join
100 + 5000 * 5= 25,100 block transfers and seeks
CPU cost likely to be less than that for block nested loops join

SWAYAM: NFTEL-MOC MOOTs Instructor: Prof. P P Das. IIT Kharagear. Jan-Apr. 2018
-

L RN B R

So, here is an example with the same students and takes example. So, it is shows that the
cost of block nested join if you work out for the block nested join then you have so,
many 40,100 block transfers and 200 seek. Whereas, if you do index to one on the
assuming that the smaller relation the inner relation has a index then you have 25,000
block transfer and seek. So, this will turn out to be a naturally more efficient way of

implementing the join.

So, these are there are several other strategies particularly hashing based strategies,
merging based strategies which we are not discussing here, but there are different

strategies through which you can do join in more and more efficient manner.

(Refer Slide Time: 34:36)

=

Other Operations

® Duplicate elimination
® Projection

¥ Aggregation

B Sel Operations

® Quter Join

EWAYAM: NFTEL-MOC MOGTs Instructor: Frof. PP Das. IT Kharagear. Jan-Apr. 2018

‘PR ANL LS D

Daiabase System Concepts - 5= Edia ny C8ilberschatr, Korih and Sudarshan |

Couple of other operations which are often required is duplicate elimination because if
they we know that there are duplicate records cannot be kept, duplicate in the sense the
records which match in the in the key field and the duplicate will often happen in terms
of the result, they will happen in terms of when we do projection, we will need to do

aggregation set operations outer join and so, on. So, the first 3 we will quickly out like.

(Refer Slide Time: 35:05)

Other Operations

® Duplicate elimination can be implemented via hashing or sorting

+ On sorting duplicates will come adjacent to each other, and all but one set of
duplicates can be deleted

Optimization: duplicates can be deleted during run generation as well as at
intermediate merge steps in external sort-merge

» Hashing is similar - duplicates will come into the same bucket
B Projection:
perform projection on each tuple
followed by duplicate elimination

WAYAM: NPTEL-MOC MOOCs Instructore: Prof. P P Das. IT Kharageur. Jan-Apr. 7018 | l!
i' I

@ ': nlm: mq
Duiabase System Coneepts - 6~ Ediie 1y 8ilbserschatz, Korth and Sudarshan

So, duplicate naturally can be very easily eliminated through sorting, they can be done

through hashing also because if we sort they will come on side by they will come
consecutively after the sort, if we hash then they will necessarily hash to the same value
which becomes easier to check whether they are identical or not. If whenever we are
doing projection we can project on each tuple and then you can perform a duplicate
elimination to actually get to the final result. Aggregation group that is whatever you do

group by kind of.

(Refer Slide Time: 35:37)

g Other Operations : Aggregation

B Aggregation can be implemented in a manner similar to duplicate elimination

Sorting or hashing can be used to bring tuples in the same group together, and
then the aggregate functions can be applied on each group

Optimization: combine tuples in the same group during run generation and
intermediate merges, by computing partial aggregate values

» For count, min, max, sum: keep aggregate values on tuples found so far in the
group

When combining partial aggregate for count, add up the aggregates

» For avg, keep sum and count, and divide sum by count at the end

EWAYAM: NFTEL-MOC MOGTs Irstruetor: Prof. PP Das. IIT Kharagear. Jan-Apr. 2018

1Y Cfilberschatz, Korih and Sudarshan

So, aggregation is certainly will be efficiently done if you have again done sorting
because if you are grouping by something then if you have sorted on that those elements
will come together and or if you are hashing then they will also come together. So, you

can easily do the computation on that.

And what you can do is instead of for example, you are doing a count or you are doing a
minimum, maximum, sum this kind of all of these are associative operations. So, you can
do it in parts that if you have done in this sorted order, in the hashed order if you have
done the sum of 10 records then you can actually do not need these 10 records when you
do the sum for the next 10 records and so, on. So, in this manner the aggregation can be
efficiently implemented. So, we can for average keep sum and count and divide the sum

by count at the end and so, on.

(Refer Slide Time: 36:39)

® Understood the overall flow for Query Processing and defined the Measures of Query Cost

® Studied the algorithms for processing Selection Operations, Sorting, Join Operations and a few
Other Operations

.._'I_ Module Summary
:
1
i
:
8
§
:
8
3
;
i

‘PR QN s A S, ED

14 Ailbeeschatz, Korth and Sudarshan |

So, we have in this module we have just given a very brief outline of what is what are the
steps involved in query processing and what are the measures that define a query cost
typically and we have been talked about some of the simple algorithms for selection,

sorting, join and aggregation operations.

In the next module we will talk about elementary optimization strategies for processing

of queries.

