Database Management System
Prof. Partha Pratim Das
Department of Computer Science & Engineering
Indian Institute of Technology, Kharagpur

Lecture — 37
Recovery/2

Welcome to module 37 of Database Management Systems. We have been discussing
about Database Recovery. This is the second and concluding part of the Database

Recovery.

(Refer Slide Time: 00:25)

PFD

Module Recap
Failure Classification

Storage Structure

Recovery and Atomicity

Log-Based Recovery

EWAYAM: NFTEL-MOC MOGTs Isstructor: Prof. PP Das. IIT Kharagear. Jan-Apr. 2018

‘FRLT 4D A BD

Duiabise Sysiem Concepls - § Edition n Silberschatz, Kerth and Sudarshan

We have earlier discussed about failure classification, storage structures and significantly

the log based recovery mechanism.

(Refer Slide Time: 00:34)

;
E:

Module Objectives

!;l

® Tofocus on concurrent transactions and understand the recovery algorithms
® Tounderstand operalion logging for recovery with early lock release

SWAYAM: NFTEL-MOC MOOTs Imstructon: Prof. PP Das, IIT Kharagpar. Jan-Apr, 2018

Daiabiase Sysiem Concepis - §° Edition n3 Cdilbersthaiz, Kerih and Sudarshan

In this, we will focus on concurrent transactions and understand the recovery algorithm
for them and we will understand the operation of logging for recovery with early lock
release. We will learn about another kind of logging mechanism; so, the recovery

algorithm.

(Refer Slide Time: 00:51)

i

Recovery Schemes

n Sofar:

We covered key concepls

We assumed senial execution of fransactions
5 Now:

We discuss concurrency control issues

We present the components of the basic recovery algorithm

SWAYAM: NFTEL-MOC MOGTs Instructor: Frof. P P Das. IIT Kharagear. Jan-Apr. 2018

ER BRI AN A R

Daiabirse Sysiem Concepds - § Edition s Cfilberschatz. Korth and Sudarshan

So, what we have seen so far are we have learned the basic concept of recovery and
logging and we have assumed the serial execution of transactions and now we discussed

the Concurrency Control issues. So, now, we will assume that there are multiple

transactions operating at the same time and the components that are required for the

recovery of those.

(Refer Slide Time: 01:10)

Concurrency Control and Recovery

ima,

® With concurrent fransactions, all transactions share a single disk buffer and a single log
A buffer block can have data items updated by one or more transactions

n We assume that if a transaction T, has modified an item, no other transaction can modify the
same item until T, has committed or aborted

That is, the updates of uncommitted transactions should not be visible to other transactions

Otherwise how dowe perform undo if T, updates A, then T, updates A and commits,
and finally T; has to abort?

Can be ensured by obtaining exclusive locks on updated items and holding the locks till end
of transaction (strict two-phase locking)

§ Log records of difierent fransactions may be interspersed in the log

SWAYAM: NPTEL-MOC MOOTs Instructor: Prof. P P Das. IIT Kharagear. Jan-Apr. 2018

e E-R s B N

Dutabixse System Concepts - 6* Edition n Silbérschats, Korth shd Sudarihan

So, with Concurrent Transaction, all transactions share we already know that every
transaction is a private work area that assumption stays, but we talked about a system

buffer area.

So, that system buffer area the that area would be common for all different transactions,
also the log area would be common for all transactions. So, now, the in the buffer area
the, data rights are or reads or writes are done for different transactions and in the log the
different logs of different transactions are fixed up. So, we make one assumption that if a
transaction has modified an item, then no other transaction can modify that same item

unless that transaction is committed or aborted.

So, which means that kind of when the transaction modifies the item it holds a lock and
that lock is held till the end of the transaction and this is a [mean if we if we think back
in terms of our locking protocol, this is a strict locking protocol that we are talking of.
This is important for recovery because if we did not have this, then it is possible that
multiple updates to the same rate item are done by multiple transactions. So, if we have
to undo that then we will not know we were which one it to be undone with. So, that is
the basic problem. So, we will assume an exclusive lock in this case and log records will

be written interspersed as we have already saw.

(Refer Slide Time: 02:43)

-y

SWAYAM: NFTEL-MOC MOGTs Iestructor: Frof. PP Das. IIT Kharagear. Jan-Apr. 2018

(2 o St

Example of Data Access with Concurrent transactions

#/ bufler Y
Buffer Block A __ input(A) | A
=
Buffer Block B —— Y |— | Ne
output(B)
read(X)/ |
write(Y)
mé WCR
yd | 5
| /
+work area wprk@rea
of Ty ofTy)
memary disk

So, in terms of our storage

a disk, here is a buffer, the buffer is common and the private work area. So, now, in
addition to T 1, we have another transaction T 2 with it is own buffer area, but so, the x
has been written in T 1, has been read in T 1 as x 1, x has also been read in T 2 as x 2 and

each are concurrently making changes in that private work area, but they are using the

same system buffer area fo

access mechanism, the same eh earlier diagram, this is here is

r the for writing the output back to the disk or reading directly

from the disk. So, this is a model that we will go with.

(Refer Slide Time: 03:30)

EWAYAM: NFTEL-MOC MOGTs Isstructor: Prof. P P Das. IIT Kharagear. Jan-Apr. 2018

Duiaburse Sysiem Concepls - § Edition

Recovery Algorithm

® Logging (during normal operation):
<T start> at transaction start
<T; X, V, V= for each update, and
<T, commit= at transaction end

.‘. "

PPV el fe

ni Cfilberschatz, Korih and Sudarshan

So, what is the recovery algorithm, first is logging and the logging structure remains
same; the start transaction log, the update transaction log and the commit transaction log

as before.

(Refer Slide Time: 03:43)

Recovery Algorithm (Contd.)

o,

® Transaction rollback (during normal operation)
Let T, be the transaction to be rolled back
Scan log backwards from the end, and for each log record of T, of the form <7, X, V; V>
perform the undo by writing Vo X,
wite a log record <T;, X, V>
such log records are called compensation log records
Once the record <T; start= is found stop the scan and write the log record <T, abort>

EWAYAM: NFTEL-MOC MOGTs Instructor: Prof. PP Das. IIT Kharagear. Jan-Apr. 2018

BN B R A B |

Daiabise Sysiem Concepls - § Edition .4 Egilberschatz, Korih and Sudarshan

When you have to do a transaction rollback during normal operation; so, for that
transaction T i to be rolled back, what we will need to do it is a rollback. So, undo has to
happen. So, scan will scan the log backwards from the end and for each log record
update log record, we will restore the original value for which was written over and we
will write a compensation log record as before and going backwards in this way when we
come across the start log record, then we will stop that scan and write a abort log record

in that place.

So, it is exactly same to what we did.

(Refer Slide Time: 04:21)

g Recovery Algorithm (Cont.)

» Recovery from failure: Two phases
Redo phase: replay updates of all transactions, whether they committed, aborted, or are
incomplete
Undo phase: undo all incomplete transactions

Requirement:
+ Transactions of type T1 need
RO FECOVery

il ——s i + Transactions of type T2 or T4
E , need to be redone
L ' + Transactions of type T3 or T5
i i need to be undone and
Tat ! : restarted

h Strategy:
Ts'—i + lgnore T1
¥ + RedoT2, T3, Téand TS

' ' + UndoT3and TS
Last Checkpoint System Failure

B B A B

i e e S KR |

i EWAYAM: NFTEL-MOC MOGTs Irstructor: Prof. PP Das. IIT Kharagear. Jan-Apr. 2018
1

So, now let us look into the actual Recovery Algorithm. So, the transaction rollback has
no difference. So, in the Recovery Algorithm, what we do we have a recovery phase and
where we replay updates of all transactions. So, we make sure that all transactions
whatever they did they those are done again. So, after the failure we recover from the
failure. So, we up do all that again whether they are committed, whether they are
aborted, whether they are incomplete in every case and then we keep track of what are
the transactions which did not complete and for them we do an undo phase. So, here I am

showing another example here.

So, this is the last checkpoint where eh all updates I mean freezing the updates,
everything was output to the disk the log as well as the data item updates were put to the
disk and the set of transactions that are live during that time well execution in that time
were recorded. So, if we look at that set L in this case, then it will be T 2, T 3 these two

transactions.

So, we can we have already seen that our strategy would be that we will ignore T 1
because it had completed before the last checkpoint. T 2 and T 3 were ongoing and then
T 4 has started after checkpoint and committed before that, T 5 started after checkpoint,
but was also active was also in execution when system failed. So, our strategy would be,

that we will assume as if this, this whole thing as is redone.

(Refer Slide Time: 06:06)

L..I Recovery Algorithm (Cont.)
S,

% » Recovery from failure: Two phases

3 Redo phase: replay updates of all transactions, whether they committed, aborted, or are

“i incomplate

H Undo phase: undo all incomplete transactions

% Requirement:

b + Transactions of type T1 need
a] : 10 FECOVEry

; T — E : + Transactions of type T2 or T4
I 1 4 i need to be redone

§ T; — ! + Transactions of type T3 or T5
H 1 L + need ta be undone and

H Tyt Z ; = o restarted

b Ti T [

; —

r] Wt Strategy:

3 T_: '—‘—'. + lgnore T1

E ; ! + RedoT2 T3, Tdand TS~

H : : + UndoT3and T5

E Last Checkpaint System Failure

H P T e gEs AP, TD
R0 wfr. o ¢t e

So, T2, T3, T4, TS5 all these log records exist. So, we will follow through them and
redo all of them. If we redo all of them then naturally we come across T 3 and T 5 which
cannot proceed further because the system had could not proceed further because. So, we

do not know in terms of the log what would have happened to them because the system

had failed.

So, after having done this then, we do an undo phase where we undo this, but naturally
the effect of these will remain. Now you can question that this could have been done in a
more smart way, do we really need to redo everything and then undo some parts of that,
that is a override in terms of that which is true, but this just makes the whole algorithm

simple and over it actually is not very hard.

(Refer Slide Time: 06:55)

- Recovery Algorithm (Cont.)

® Redo phase:
Find last <checkpoint L> record, and set undo-list to L
Scan forward from above <checkpoint L> record
Whenever a record <T, X, V,, V> is found, redo it by writing V, to X,
Whenever a log record <T, start> is found, add T, to undo-list
Whenever a log record <7, commit> or <T, abort> is found, remove T, from undo-list

EWAYAM: NFTEL-MOC MOGTs Instructor: Prof. PP Das. IIT Kharagear. Jan-Apr. 2018

ER B RN A SR o

Duiabase System Concepts - §* Edition nar Cfilberschatz, Korih and Sudarshan

So, we are doing the redo phase, even the redo phase you will find the check point and
you will scan forward from the checkpoint record and as you scan forward from the
checkpoint record; if you have an update, you will simply redo which means V 2, will
again be written to X j and when you find a start transaction, then you do not know. Just
look at this point carefully; if you find a start transaction for example, when you are
working on this, suppose you come across a start transaction here, you will come across

the start transaction transactions start here.

(Refer Slide Time: 07:31)

Ny

Recovery Algorithm (Cont.)

» Recovery from failure: Two phases

Redo phase: replay updates of all transactions, whether they committed, aborted, or are
incomplate

Undo phase: undo all incomplete transactions

Requirement:

+ Transactions of type T1 need
RO rEcovery

+ Transactions of type T2 or T4
need to be redone

+ Transactions of type T3 or T5
need to be undone and
restarted

Strategy:

+ lgnore T1

+ RedoT2 T3, T4dandT5
+ UndoT3and TS

Last C-heckpqini System Failure

EWAYAM: NFTEL-MOC MOGTs Instrucior: Frof. PP Das. IIT Kharagear. Jan-Apr. 2018

Teq4usdte . L, UD

il — L

;

So, whenever you get that, then you put this into the undo list. Initially your undo list is
L because they were going on. So, you do not know that they could finish all that still
need to be undone and when you come across a new start, you add that to the undo list
and then the rest of it is simple. So, you keep on going this way, if you find that the
commit has happened or abort has happened, you remove that from the undo list, but if
you do not find that then that stays in the undo list. So, you know if you, if you proceed
from in this direction in the redo phase, you know and that way when you have scanned
the whole log, you know what are the transactions which still need to be undone. So, that

is a simple strategy that is followed.

(Refer Slide Time: 08:26)

Recovery Algorithm (Cont.)

§ Redo phase:
Find last <checkpoint L= record, and set undo-list to L
Scan forward from above <checkpoint L= record
Whenever a record <T, X, V. V,>is found, redo it by writing V; to X,
Whenever a log record <T; start= is found, add T; to undo-list
Whenever a log record <T, commit= or <T, abort> is found, remove T, from undo-list

‘PPl eeusfe L UD

i ' s SR |

i SWAYAM: NFTEL-MOC MOOTs Instructor: Prof. P P Das. IIT Kharagear. Jan-Apr, 2018
w

So, ma whenever you have a log record start, then you put it to the undo list and
whenever you get a log record which is committed abort which says that before the
system failure the transaction actually had either committed that it finished everything or
you had to roll back, then you remove that from the undo list. So, what will be left out, at

the end will be the undo list of transactions that need to be undone subsequently.

(Refer Slide Time: 08:53)

Recovery Algorithm (Cont.)

S

® Undo phase:
Scan log backwards from end

Whenever a log record <7, X, V,, V.= is found where T, is in unde-list perform same
actions as for transaction rollback:

Perform undo by writing V; to X,
Write a log record <T;, X, V>
Whenever a log record <T, start>is found where T;is in undo-list,
Write a log record <T, abort>
Remove T, from undo-list
Stop when undo-list is empty
That is,<T, start> has been found for every fransaction in undo-list
® After undo phase completes, normal transaction processing can commence

EWAYAM: NFTEL-MOC MOGTs Instructor: Prol. P P Das. IIT Kharageur. Jan-Apr. 2018

‘rRR e 4B A BD

Daiabase System Concepts - §* Edition 143 Billserschaiz. Korth and Sudarshan

In the undo phase, in the undo phase, you go backwards because it is undo. So, what you
will do is a very similar. So, if you have an update record, then you undo in the ma
transaction which is in undo list then you do exactly in terms of transaction rollback that
you write the old value and write a redo only log record. Now when you find going
backwards, when you find ti start; so you know that this is a starting point of the
transaction and the transaction is in undo list. So, it came across because it could not be it
was on the undo list. So, which means that it could not be completed and therefore, you
have found the start. So, this is where your undo operation is over. So, you write a abort
log record and once you have written that, then you are done with the transaction. So,
you remove that from the undo list and in this way, you will continue till your undo list is

becomes empty.

Once it becomes empty, so, then you have found that T i start for all transactions in the
undo list and there is nothing more to do. So, after undo phase completes normal
transaction processing can comment. So, your failure recovery from the failure is already

taken care of.

(Refer Slide Time: 10:14)

L_!. l Example of Recovery

8 Al

H N e

i Beginning of log |'A 51?: :’gr:f;:ds

|

‘2’ okdr - <Tostar> trar:sactmﬂs in

¥ <T; B, 2000, 2050=

i ~, A\ undolist

H <7, start> - (T, rollback x r

: <chackpoint{T, T} | | (during normal Redo Fﬂ“ \

E <T,, G, 700, 600= operation)

8 2T, commi> . W}'”S

s <Tostant> 4 e —

H End of log <Ty A, 500, 400> i T rolloack

: ! complele

§ at crash!, T 8,205 v

2

H s Tpavory “‘f T. s incomplete]

‘E Log records / - - dtcrash Unda Itat '.F(1 Undo Pass
g added during < ‘T A0y — g =
y recavery [<Tyaborts e lr rolled back
b } - Ln undo pass

K \ 7 newer - .
H

P

z

i PP TegEL ST
Ol wfe . af} 7 i T [

So, here are certain examples which you could check out, here are a start. So, this is the
how that this is the order in which the transactions are going and this is the crash point,
these is where it failed and mind you. So, this is where and this is where our checkpoint
is. So, at checkpoint you can see that T 0 and T 1 are; what are your candidates? So,
when you start in the redo phase, you start from this point because before that everything
has been done. You naturally, you come across this. So, you redo this which means you
again actually change C from it is old value 700 to 600 and then T 1 commits. As T 1

commits, you know that this transaction is done with.

So, you remove that. So, your undo list undo list at the beginning is T 0, T 1, but going in
the forward direction when you come across T 1 commit, you naturally that from your
undo list, then you come across T 2 start. So, you know that another transaction is
starting now. So, it may be you do not know whether it come could complete or you
could not. So, you add that to the undo list then give effect to this update, then if for T 0
we have you have a rollback record that is because T 0 actually you can see that T 0 has
aborted. So, the change that T 0 had done earlier this had to be rolled back, this rollback
1s a normal transaction rollback, this is not because of the failure. So, this mm rollback

had happened and this is where the rollback is complete.

So, T2 e, T 01is also completed. So, T 0 after this is taken care of, then in the redo phase

T 0 is also complete and this in where you reach the crash point. So, your undo list is left

with only T 2. So, now, when you have done this, so when you have taken done the redo
here that T 2 which is ongoing is there, then you write this log record. So, this these log
records are written during recovery not during the original transaction and T 2 had to

abort because of the system failure.

So, T 0 support was due to the transaction rollback, but T 2 s abort is because of the
system failure. So, T 2 is rolled back in the can be rolled back in the undo phase. So,
once this has been done, then you do the undo phase starting with T 2 and then you go
backwards as you go backwards here. So, you will undo this, this is what you write you
come across T 2 and naturally you have rollback. So, you write T 2 abort. This is how the
actual rollback can happen and you can see that now the with this redo undo phase you
can always bring back the database to a consistent state and these transactions are
executing concurrently and therefore, your log record is a intermix of the log record of
different transactions. Now the last that ma we would like to talk about is Recovery with

Early Lock Release.

(Refer Slide Time: 13:55)

=

Recovery with Early Lock Release

§ Support for high-concurrency locking techniques, such as those used for B*-tree concurrency
control, which release locks early

Supports “logical undo”

B Recovery based on “repealing history”, whereby recovery executes exactly the same actions as
normal processing

SWAYAM: NPTEL-MOC MOOTs Instructor: Prof. P P Das. IIT Kharagear. Jan-Apr. 2018

‘PR AR A ED

Dutabixse System Concepts - 6* Edition n.1% C8ilbérachats, Korth shd Sudarshan

What this means is well, so far we have talked about recovery which is only in terms of
data update, single data updates. So, I mean if I want to recover I can just you know
write back the old data, but this is not true in case of many other situations for example,
if you are inserting a record in a B-tree, then it is not enough only to undo that because

you cannot undo and get back the same.

As you can understand that if you make inserts or deletes in the B-tree, if you are made
an insert then the structure of the B-tree itself has changed and after that several other
inserts, deletes may have happened. So, if you now want to just go back and undo this
particular insert in terms of values, it is not possible to do that. So, when you want to do

that, so you cannot do really kind of repeating the history kind of strategy.

(Refer Slide Time: 14:53)

' Logical Undo Logging
m Operations like B*-tree insertions and deletions release locks early

They cannot be undone by restoring old values (physical undo), since once a lock is
released, other transactions may have updated the B'-tree

Instead, insertions (resp. deletions) are undone by executing a deletion (resp. insertion)
operation (known as logical undo)

® Forsuch operations, undo log records should contain the undo operation to be executed
Such logging is called logical undo logging, in contrast to physical undo logging
Operations are called logical operations
Other examples:
delete of tuple, to undo insert of tuple
allows early lock release on space allocation information
subtract amount depasited, to undo deposit
allows early lock release on bank balance

SWAYAM: NPTEL-MOC MOOTs Instructer: Prof. P P Das. IIT Kharagear. Jan-Apr. 2018

‘PP e eHs e L ED

Dutabixse System Concepts - 6* Edition nir C8ilberachats, Korth shd Sudaishan

So, what you have to do is do some kind of an undo which is logical. So, so far the undo
was physical that, you wrote this, you change this value by this value. So, your undo is a
physical. So, you restore the original value and your undo is done here. It is logical that
is for the operation that you have performed, you try to find out a matching operation
which creates the similar effect as of undo. So, if you have inserted, then you your undo
is a corresponding delete of that record. If you have incremented by 10 then you can say
that your corresponding undo is a decrement by 10. So, that is what is known as the
logical undo and it is logical undo is a very good option in case of delete of, insert delete

of people.

So, if you have deleted a people undo to insert, if you have subtracted then undo to undo

deposit to go forward and so on.

(Refer Slide Time: 15:55)

i

Physical Redo

® Redo information is logged physically (that is, new value for each write) even for operations
with logical undo

Logical redo is very complicated since database state on disk may not be “operation
consistent” when recovery starts

Physical redo logging does not conflict with early lock release

SWAYAM: NFTEL-MOC MOGTs Isstructor: Prof. P P Das. IIT Kharagear. Jan-Apr. 2018

‘rRET 4RSS A ED

Daiabase System Concepts - §* Edition .14 Cfilberschatz, Korih and Sudarshan

So, a redo information is logged physically, so new values for each right even for
operations which are logically, which has logical undo. So, you do not do a logical redo I
mean, [will not go into the details of why this is not done, but it simply makes things
very complicated. So, physical redo is always physical and you can show that physical
redo does not prohibit this kind of operations that we are trying to do, but the logical

redo is not used. We will only use logical undo operation.

(Refer Slide Time: 16:40)

Operation Logging

® Operation logging is done as follows:

When operation starts, log <7, O, operation-begin=. Here 0, is a unique identifier of the
operation instance

While operation is execuling, normal log records with physical redo and physical undo
information are logged

When operation completes, <T, O, operation-end, U= is logged, where U contains
information needed to perform a logical undo information

Example: insert of (key, record-id) pair (K5, RID7) into index 19
<T1, 01, operation-begin>
<T1, X, 10, K5> » Physical redo of steps in insert

<T1,Y,45,RID7> |
<T1, 01, operation-end, (delete 19, K5, RIDT)=

SWAYAM: NFTEL-MOC MOOTs Instructer: Prof. P P Das. IIT Kharagear. Jan-Apr, 2018 {!
‘ i

PP RSt L ED

Databirsé System Concepts - 6 Edition n CSilberachatr, Korth shd Sudarshan

So, how do you log for such a logical undo operation, what you do is instead of now. So,
now, it is an operation it may not be an a single value update. So, it is not captured in
terms of one you know log record, but it could be a number of log records which have
actually done 3, 4 different changes to make that operation happen and you want to
actually define an undo for that operation. So, when you start this. So, you start with a
log which says that what is the transaction and what is the operation. So, you put an

identifier to the operation and then you write operation begin.

So, you know this is where operation has started, then all the things that are happening
for this operation while the operation is executing then you write normal log records with
physical redo physical information. All these logs are written and when this operation
ends mind you, this is a particular operation you are talking of. So, not the whole
transaction whole transaction will continue when that particular operation ends, then you
write an operation in record and along with that you write, what is a logical, what is a

logical undo information you put that in.

So, let us have a look at the example. So, suppose your operation is insert of a key record
pair, so, let us say this is the key record pair and into index I 9. So, this operation starts
here and then there are several steps to be done; for example, you will have to say if X is
on the key value which had 10 and is becoming K 5, you will have a physical update
undo record of this. If Y is the record id which is RID 7, then it y changes from 45 to. So,
these are all physical redo steps in insert. So, these are the different instructions in terms
of this broad operation and when you are done with all that then your operation ends and
you write this undo information. So, insert of, so you had insert of this record with index

9.

So, now you do write your what will be the undo, to delete that from index I 9, to delete
this key record ID pair. So, this is a whole locking that we do. So, you can make use of

this undo operation in terms of your recovery process.

(Refer Slide Time: 19:22)

i

Operation Logging (Cont.)

8 |fcrashirollback oceurs before operation completes:

the operation-end Iog record is not found, and

the physical undo information is used to undo operation
8 |f crashirollback oceurs after the operation completes:

the operation-end log record is found, and in this case

logical undo is performed using U, the physical undo information for the operation is
ignored

§ Redo of operation (after crash) still uses physical redo information

SWAYAM: NFTEL-MOC MOGTs Instructor: Prof. P P Das. IIT Kharagear. Jan-Apr. 2018

Daiabise Sysiem Concepds - § Edition nn Cfilberschatz. Korth and Sudarshan

So, if the crash or rollback occurs before the operation completes, then operation and log
record is not found you will not find it. So, you do not know what is the undo operation.
So, in that case the physical undo information is will be used to undo, but if we have a
crash on rollback that happens after an operation completes, then the operation end log
will be available and in this case we will use the undo operation that is given in the
operation end log record and do a logical undo. And we will ignore all the physical undo
information that the operation that that we will find in the log records. Redo of course

will still use the physical redo information which is there.

(Refer Slide Time: 20:10)

l !
!

Transaction Rollback with Logical Undo
Rollback of transaction T, scan the log backwards
1. Ifalog record <T, X, V,, V,= is found, perform the undo and log <T, X, V>

i

2 Ifa<T, O, operation-end, U= record is found
Rollback the operaticn logically using the unde information U
»Updates performed during roll back are logged just like during normal operation execution

+ Atthe end of the operation rollback, instead of logging an operation-end record, generate
arecord <7, O, operation-abort>

Skip all preceding log records for T, until the record <T, O, operation-begin= is found
3. Ifa redo-only record is found ignere it
. Ifa <T, O, operation-abort> record is found:
skip all preceding log records for T, until the record <7, O, operation-begin> is found
5. Stop the scan when the record <7, start> is found
6. Adda<T, abort> record to the log
Note: N
m Cases 3 and 4 above can occur only if the database crashes while & fransaction is being rolled back

® Skipping of log records as in case 4 is important to prevent mw

Daiabase System Concepts - §* Edition nH Cfilberschatz. Korih and Sudarshan

EWAYAM: NFTEL-MOC MOGTs Instructor: Frof. PP Das. IIT Kharageur. Jan-Apr. 2018
.

So, if we look into the actual if we if we look into the transaction rollback with logical
undo. So, if I have an update record which is naturally physical, and then we can perform
the undo which is as we did last time the creating a redo only record. If I find an
operation end record, then to rollback we will pick up the logical undo information from
you and we will perform that operation. At the end of that we will certainly write the

operation abort record to show to mark that this operation has been aborted.

So, if we have a redo only record, then we will ignore it and if we find an operation
abort, then we will skip all the records that were found till the beginning. Naturally, you
can you can you can understand that 3 and 4 will not happen in a normal course of
transaction, it will happen only when the failures have happened during recovery and at
the end we will add T i abort record to the log. So, the critical thing to remember in this
that whenever we are doing operation hmm unlogging, we are doing undoing based on
the operation logging then since once we get the operation ends since we know what the
undo information is, we have to make sure that through the undo process we actually
ignore the physical undo records that exist in the log and just go with the operation case.

So, this these are the notes I just mentioned it ok.

(Refer Slide Time: 22:15)

Transaction Rollback with Logical Undo

¢ I T, aborts before J

T—

operation O, ends, undo of

B Transaction rollback during normal update to C wil be physical
operation 7 . -
/S ~
Beginning of log / ~T T,has completed operation O, ')
<T,start> on C, releases lower-lavel
<T,, B, 2000, 2050> lock; physical undo cannol be
<. Oy op:urmior]-bcgin:/,x" done anymare, logical undo
<T, C, 700, 600> PN will add 100 to C S
<T, O, operation-end, (C, +100)> * ——————
<T slart> [T, can update C since T, has

<T, 0, operation-begin> _—_released lower-level lock on G)

[T 1 <T,C.600,400> —

! 7, releases lower-lavel iu(.k_ B
[tacicieg <T,, 0, operation-and, (C, +200)> ..__—_r }

EWAYAM: NFTEL-MOC MOGTs Instruector: Prof. P P Das. IIT Kharagear. Jan-Apr. 2018

{toabot 1= = on G el
<T,, €, 400, 500> [Logical undo of O, adds 100]
- o —— ta G I
<T,, O, operation-abort> e —— -
<7, B, 2000= 1 O,undocompiele |
T, abort> _—
=T, commits

B e A
Duiabase Sysiem Concepts - §* Edition nn Silberschatz, Kerth and Sudarshan

So, this is an example which you will have to spend some time and understand with care.
So, you can see that a transaction T 0 has started, this is where it has done a physical

update, is a physical undo record and then it does an operation. Of course, it is a simple

operation which changes the value of ¢ from 700 to 600. So, naturally, so it has

decremented by 100. So, your undo operation here is incrementing by 100.

So, if T 0 aborts here, if T 0 aborts somewhere here you know before your operation end
has happened then naturally the undo will have to be based on this physical undo
structure. So, you will have to replace 600 by 700, but if it happens after this, then this is
the case if it is completed the operation and then the failure happens, then you will do the
logical undo that is whatever the value of C is you will just logically add 100 to that. But
that means, that when you go backwards from here to find the begin, you will actually
have to ignore this physical undo record because you have already given effect to that in

terms of the operation undo that you are doing.

So, this is the basic difference. Here are different subsequent examples on that and you
can you can see that well here after the operation end has happened, then possibly it has
released the T 0 has released a lock on C 1. So, T 1 has again taken the log. T 1 has again
done the updates. So, then it releases that and T 0 at this point might decide to abort; if T
0 aborts, then this logical undo of O 1 this operation will add, it had to add 100. So, it
adds now this C had become 400, now it is adding 100 back. So, C becomes 500 and
then the operation is finished. So, you write operation abort and O 1 undo of O 1 gets
completed, but you still have after going backwards in this, you still have this record

which was directly updated.

So, these are the undo transactions, undo lock record for that where B is being restored
from 2050 to 2000 and you record the transaction abort for T 0, T 1 eventually has
committed here. So, this is how the transaction rollback will happen when logical undo is

also used and this is a very powerful way to take care of that.

(Refer Slide Time: 25:13)

L..I Failure Recovery with Logical Undo
' Y
Beginning of log Stmfg 12‘:;["15
<T;start> transactions in
<T, B, 2000, 2050= __ undolist y,
<T, commits ~
<7, slart>

<T,, B, 2050, 2100>

<T,, Q,, operation-begins

<checkpoin (T Redo Pass
<T,,C, 700, 4005 !

T, 0,, oparation-end (C, +300)3

<Tyslan> . -

[Enaal <T..0, opération-begin=

log at

i EWAYAM: NFTEL-MOC MOGTs Instructor: Prof. P P Das. IIT Kharagear. Jan-Apr. 2018
1

“H<T, C, 400, 300»
{ | Fu | o ' i
cushl 77 — Unda list: T,/ T,| Undo Pass
A — -
; tT blor1 ———_ Update of C was part of Oy, undond
Records <1 A0y, physically during recovery since
added | | <TG d00.70000 L O ddnotcomplete)
iy Y| =T, 0, operation-abort> ————"— N
recovery ‘T:mfﬂw [Logical undo of 0, adds 30010 C
Sy —— .
ut . rP e gEs A L ED
Al * - R e sl BN

This is similarly another illustration for doing the failure recovery for with logical undo.
So, here is the undo is a re redo phase that you are seeing here, this is where the end of
log at the crash these are redo phase because these are check point where T 1 was there.
So, at the end of redo T 1 if you if you. So, you are starting to redo from here. So, you
have done operation end. T 1 has not finished T 2 has started. So, you have added T 2 to
the undo list and when the crash has happened both of them are on the undo list. So, they
have to go through that undo pass. So, we undo T 2, C, 400. So, this is what this is this is

how you will go.

So, this is the first thing you undo and then naturally you have come to the beginning of
T 2 start. So, you abort and you are going back again and you are trying to do this. Why
are you doing this because when you go back to undo from this point you come across
this operation end which tells you that the undo operation has to happen by incrementing
C by 300. So, C which had become 400 is now incremented by 300. You come to the
check point which is the end here in terms of the operation begin and naturally you
declare operation abort and going back further this is what you had when transaction T 1

had started.

So, you undo that. That is again a physical undo and finally, t one aborts. So, this is how
in both cases of transaction rollback as well as in terms of the failure the recovery can be

done with the logical undo process.

(Refer Slide Time: 27:10)

- Transaction Rollback: Another Example

m Example with a complete and an incomplete operation
<T1, start>
<T1, 01, operation-begin=

<T1, X, 10, K5=

<T1,Y, 45, RIDT>

<T1, 01, operation-end, (delete 19, K5, RIDT)>
<T1, 02, operation-begin>

<T1,2, 45, 70>
& T1 Rollback begins here

<T1,2 45> € redo-only log record during physical unda (of incomplete 02)
<T1,Y,..,.> & Nomal redo records for logical undo of O1

<T1, 01, operation-abort> ¢ What if crash oceurred immediately after this?

EWAYAM: NFTEL-MOC MOGTs Instructor: Prof. PP Das. IIT Kharagear. Jan-Apr. 2018

<T1, abort>

PPyl Ao B

Daiabase System Concepts - §* Ediion 1M Cfilberachatz, Korih and Sudarshan

Here I have given another example. I will not go through it step by step. So, at a arts that
you go through that following the same logic and convince yourself that you understand
that how this transaction rollbacks with physical undo as well as logical undo is taking

place.

(Refer Slide Time: 27:27)

!
\

Recovery Algorithm with Logical Undo

it

Basically same as earlier algorithm, except for changes described earlier for transaction
rollback

1. (Redo phase): Scan log forward from last < checkpoint L> record till end of log
Repeat history by physically redoing all updates of all transactions,
Create an undo-list during the scan as follows
undo-fist is set to L initially
Whenever <T, start> is found T, is added to undo-list
Whenever <T, commit> or <7, abort> is found, T, is deleted from undo-list

This brings database fo state as of crash, with committed as well as uncommitted transactions
having been redone

Mow undo-list contains transactions that are incomplete, that is, have neither committed nor
been fully rolled back

EWAYAM: NFTEL-MOC MOGTs Instructor: Frof. PP Das. IIT Kharagear. Jan-Apr. 2018

“rRET e 4HL A ED

Duiaburse Sysiem Concepds - § Edition ns 8ilberschaiz, Kerth and Sudarshan

So, ma with this Recovery Algorithm with logical undo will look very similar to what we

have already done with the physical undo redo and though that is what we have stated

here, there is no nothing significantly new. So, I expect that you should be able to go

through these steps.

(Refer Slide Time: 27:52)

Recovery with Logical Undo (Cont.)

I

Recovery from system crash (cont.)

2. (Undo phase): Scan log backwards, performing undo on log records of transactions found in
undo-list

Log records of ransactions being rolled back are processed as described earlier, as they
are found

+ Single shared scan for all transactions being undone
When <7, start=is found for a transaction T, in undo-fist, write a <T, abort= log record.
Stop scan when <T, start> records have been found for all T)in undo-list

§ This undoes the effects of incomplete transactions (those with neither commit nor abort log
records). Recovery is now complete

SWAYAM: NFTEL-MOC MOOTs Instructor: Prof. P P Das. IIT Kharagear. Jan-Apr. 2018

‘PPL e eHs e L ED

Databirse Syatem Concepts - 6 Edition s E8ilbérachatr, Korth shd Sudarshan

And those will be clear to you again we have a 2 phase recovery of redo phase and the
undo phase and we make use of the operation undo, logical undo as and when it is
possible and when that is and when we do that, we ignore all physical undo records and
when it is not possible, then we lose the physical undo records and that is how the

recovery can be achieved.

(Refer Slide Time: 28:19)

Module Summary

i

m Studies the recovery algorithms for concurrent transactions

® Recovery based on operation logging supplements log-based recovery

EWAYAM: NFTEL-MOC MOGTs Instructon: Praf. PP Das. IIT Kharagear. Jan-Apr. 2018

(B S B B A RSN

Daiabase System Concepts - §* Edition nx Efilberschaiz, Korih and Sudarshan

So, in this module we have expose ourselves with the Recovery Algorithms now for
concurrent transactions as well and we have shown that how recovery can be done using
operational logging, operations logging and making sure that really the database may not
need to hold on to a lock for a long time on the data item and delay other transactions,
but if it can define the undo operation on the on the data on the data item, then it can
release that log early and use that logging mechanism operation logging mechanism to

recover the data.

