
Database Management System
Prof. Partha Pratim Das

Department of Computer Science & Engineering
Indian Institute of Technology, Kharagpur

Lecture – 32
Transactions/2: Serializability

Welcome to module 32 of Database Management Systems, from the last module we are

discussing about transactions and transaction management.

(Refer Slide Time: 00:27)

And we have technical look into the basic concept of a transaction the transaction state

and the issues.

(Refer Slide Time: 00:35)

In concurrent execution and in this module, we will look try to understand, what are the

very specific issues that happen when 2 or more transactions work concurrently we have

seen that now it is possible that they execute in a schedule, which would not let us

preserve the acid properties.

So, we want to introduce the very basic concept of making sure that such concurrent

execution schedules are acceptable, and those are the notions of serializability. And we

will analyze different conditions called conflicts that need to be honored to attend the

serializability of the schedules.

(Refer Slide Time: 01:17)

So, serializability is the main topic to discuss.

(Refer Slide Time: 01:21)

So, to understand serializability we make a basic assumption, we make an assumption

that every transaction by itself preserves the database consistency. That is, it starts in a

consistent state of the database. And through the execution of it is instructions in the

order given it leaves the database in a consistent state, that is satisfied in each and every

transaction. So, we can conclude that, if we see really execute a set of instruction set of

transactions, then the consistency of the database will always be preserved.

Now, the problem happens, and as we have seen in the last module, that problems

happen when possibly concurrent transactions happen. And we may execute may be

executing the instruction in an order which leads to the violation of acid properties, the

consistency in particular. So, we say that a concurrent schedule is serializable, if there is

a there is some serial schedule, you say what is the serial schedule serial schedule is

where the transactions are executed one after the other.

So, if you have 2 transactions in the concurrent system, then if I do T 1 then I do T 2 it is

a serial schedule. If I do T 2 and then I do T 1 it is a serial schedule as well. So, if I have

a concurrent schedule, like few refer back to the last module schedule 3; where the

instructions of T 1 and T 2 are interleaved, then it is it will have to be equivalent to a

serial schedule either T 1 after T 2 or T 2 after T 1. Different forms of schedule

equivalence is used one is called conflict serializability, and the other is called view

serializability. In the present module we will first discuss conflict serializability.

(Refer Slide Time: 03:19)

Now, we make now a transaction may have all varied kinds of instructions, but we make

an assumption that we will ignore anything other than any instruction other than the read

and write instruction. Because other operations like we saw an operation where an

account is debited by 50 or account is credited. So, you subtract 50 you add 50 you

multiply by point one or things like that are all operations that happen in the local buffer

in the memory, and never temporary in nature and mostly they do not affect the state of

the database, because you have read the data do the changes write it back. So, it is a read

and write that actually are important for that maintaining the consistency after database.

So, that simplifies our process of analysis to a good extent.

So, this is so, we assume that between every read and write or read and read write and

write and so on, the database the transactions may be doing arbitrary computations,

which are all in the local buffer and do not affect the state. So, we can make this

assumption that our shift schedules consists only of read and writing.

(Refer Slide Time: 04:31)

Now, we say that suppose I i and I j, 2 instructions for belonging to transaction T i and

transaction T j. So, there are 2 transactions T i and T j, T i has an instruction I i T j has an

instruction I j and we say that I and I j this instruction will conflict, if and only if there is

some item Q, that is some data entity Q; which both I i and I j are trying to access. And at

least one of these instructions try to write.

So, these 2 instructions from true transactions are trying to manipulate the same data

item, and at least one of them is trying to write. If that happens then we say that I i and I j

these 2 instructions are conflicting. So, you can naturally enumerate the 4 possibilities, if

both of them are reading their own conflict. If it is read write, write read, write All of

them are cases of conflict.

So, naturally intuitively, you can figure out that since the write changes are value that if

there is a conflict between these 2 instructions then there must be a fixed temporal order

between them. So, if I i and I j are consecutive in a schedule and they do not conflict.

Then we can interchange the temporal order of I i and I j, that will also not make a

difference, because they do not conflict. But if they conflict I cannot make the change in

their ordering.

(Refer Slide Time: 06:18)

So, that gives rise to the notion of conflict serializability. So, we say if a schedule S can

be transformed into another schedule S primed by a series of swaps of non-conflicting

instructions, then S and S prime that conflict equivalent. So, what are you saying? That

we have 2 one schedule S, and we will swap non-conflicting instruction, possibly since

non-conflicting instructions that occur side by side. And if by doing this, if I can create

the schedule S primed, then I will say S and S prime that conflict equivalent. But if S and

S prime are such that, I cannot transform S into S prime by just swapping non-conflicting

instructions, then they are not conflict equivalent.

The second definition to keep in mind is a schedule S is conflict serializable, if it is

conflict equivalent to a serial schedule, what is the serial schedule? Just to remind you

serial schedule is one where the transactions are happened one after the other in a serial

manner. So, all instructions of one transaction complete, then all instructions of the

second transaction complete, then all instructions of the third transaction complete and so

on. So, if a schedule is conflict serializable; that is, if in a schedule. I can swap non-

conflicting instructions. And make it into a serial schedule, and then I will say that the

given schedule is a conflict serializable schedule ok.

(Refer Slide Time: 08:00)

So now let us it is time for a number of examples to understand this better. So, we had

seen schedule 3, will have to refer to the earlier module 4 schedule 3. Sir, no not I am

sorry this is just abstracted form of that; not the actual one because in the in the earlier

schedule 3 we had shown all the complete other computations also, but the read writes

are the same.

Now, that this schedule 3 can be converted to so, this is where you have schedule 3, and

you can easily see that the part of transaction T 1 then a part of transaction T 2. So,

schedule 3 is not a serial schedule, but if you can swap non conflicting instructions, then

you are able to convert this into this schedule which if we are calling a schedule 6.

Where all instructions of T 1 is followed by all instructions of T 2 which is a serial

schedule.

So, since this can be done, we will say it is conflict serializable schedule 3 is conflict

serializable and just to see how that happens. So, you start here let me erase this marks

and start here. So, here if I look into these 2 instructions, which are the consecutive

instructions in schedule 3 I can swap them; that is, I can do read B first and then do read

A, I can swap read B and write A read B, and write A can be swapped.

Once I have done that, then I can swap read B with read A. It has become before right I

can swap it with, because read B and write A, or write B read B and read A these do not

conflict their non-conflicting instruction. Why read B an righty and non-conflicting,

because they are not reading and writing to the same data item. Why read B and read A

are non-conflicting, they are accessing the same data item, but both of them are read

there is no right. So, I can swap so, this is the second one I can. So, once I do that read B

will come here and write A read A write A will come down.

Then again, I can see that write B can be swapped with write A. Both are rights, but

referring to different data items. Similarly, write B then can be swapped with read A,

because they are again referring to different data items. So, I can do this and then these

will also come up. So, I will eventually after these 4 swaps, this whole schedule 3 will

transform into this serial 6, and we get a serial schedule.

So, we will say that schedule 3 is conflict serializable. That is the basic concept that we

are trying to establish here.

(Refer Slide Time: 11:02)

Just as very simple example suppose you had 2 transactions T 3 and T 4, and you have

this situation. Now is it conflict serializable it is not. Because to make it conflict

serializable. I need to either swap right Q of T 3 with right Q of T 4 which is not possible

because these are conflicting instructions, they both access the same data item Q and

they both are right.

The other option is I could swap read Q in T 3 and write Q in T 4, that they are also

conflicting because they access the same data item and one of them is right. So, I cannot

do either of this swaps which mean, that I cannot find a conflict equivalent schedule for

this schedule; either to T 3 T 4 or to T 4 T 3. It is not this schedule is not conflict

equivalent to either one of them.

So, this schedule is not conflict serializable, this is the core concept. So, if you if you go

through different examples and try to understand this at the very beginning, then in terms

of the transaction management the whole study of transaction management you will have

very easy progress.

(Refer Slide Time: 12:37)

So, let us let me show you number of other bad schedules, and let me a little bit more

complex examples.

So, consider 2 transactions transaction 1 here. Update an account, where the account id is

31414 a specific account and balance is debited by 100. So, it is debiting 100 from the

balance. Where in the transaction 2, you update accounts where balance is changed to

balance times 1.005 which means that we are giving a point 5 percent interest, and here

there is no where clause. So, transaction 2 actually changes does this balance change in

all the accounts, whereas, transaction 1 makes this debit in only one account.

Let see what will happen in terms of them. So, let us first try to write out transaction 1

and transaction 2, the first in the read write Abstracted form. So, transaction 1 it is

working only on one account let us call it account A. So, what does it do? It has to set the

balance to debit 100. So, it has to read so, this is r 1 by r 1 A, we mean that it is read the

subscript here refers to the transaction number.

So, r 1 stands for r stands for read, 1 stands for transaction 1. So, it is read by transaction

1. And what are we reading? We are reading the account balance A, let us arbitrarily we

are calling it A. And then what we will have to do? After having debited that locally we

will have to write it back so that the change has happened. So, r 1 A followed by w 1 A is

transaction 1 which is being shown on the left. So, I have shown you from the actual sql

statement, how can you make an abstraction of the read write that we use in terms of

reasoning about the serializability.

In contrast, if you look at transaction 2, naturally transaction 2 does not have a where

clause. So, it performs this balance update on each of the accounts. So, it will also

perform this balance update on the account A or account balance a rather, that we

assumed in the transaction 1. So, we model that by saying that naturally for changing the

balance from balance times 1.005, we need to read A if the read is done in transaction 2.

So, that is r 2 A and write it back. So, that is w 2 A and then I assume that B is some

other account. There may be one more account there may be 100 thousand more account,

but so far as serializability are concerned, these are all other different accounts from A.

So, we symbolically just consider one; that is, some other account B other than the

balance a and naturally to do the change here or do the update here will have to read B r

to be and w to B. So, these are the 2 transactions in the simplified form that we have to

analyze.

Now, let us consider A so, we have between transaction 1 and transaction 2 we have 6

instructions. So, we produce a schedule 6, where these 6 instructions are interleaved. And

we satisfy the basic constraint that the instructions of every transaction occur in the same

order in which they existed. So, r 1 precedes w 1 r 1 precedes w 1 in this schedule. R 2 A

precedes w 2 A, w 2 A precedes r 2 B, r 2 B precedes w 2 B and so on. So, their original

ordering is maintained, but we have an interleaved schedule called S. And then on the on

the write if you if you look at here on the write this is schedule S.

So, in the write we are saying, that let us say that a starts with 200 dollar, and B at the

beginning is 100 dollar. So, what will happen you will read? You will read here this is the

first thing r 1 A. So, 200 is read then r 2 A. So, what happens if r 2 A is read Again 200 is

read. And then you do w 1 A. So, what is w 1 A? W 1 A is the right of the transaction 1.

So, transaction 1 writes after debiting this balance this is the intermediate computation.

So, when transaction 1 writes, it writes based on the value that it had read in r 1 A; which

was 200 then 100 debited. So, it writes back 100. Then the next is w 2 A. So, w what will

w 2 A do w 2 A will write back the write back w 2 A is here, will write back the result of

the computation in transaction 2 based on what it read in the r 2 A. R 2 A had written had

read 200, we hear and therefore, if you multiply 200 by this factor it becomes 201. So, w

2 A will write 201.

So, naturally E as w 2 A has changed the value of a after w 1 A naturally the final value

of a will be 201. Then you have r to be w to be which reads 100 makes this balance

change by 1.005, it becomes 100.5. So, this is what we will have when actually this

schedule completes. So, if I mean just this look at what has happened, it has I have

debited 100 dollar from account A which was transaction 1, bar and here I had started

with 200 dollar. But at the end what I have according to the schedule is account A has a

balance which is 201 dollar. Whereas, it should have had a balance which should have

been 100 dollar, the balance in account B is fine. But it shows that 101 dollar more in

account A.

So, naturally the bank is going to get bankrupt very soon if such scheduled are allowed.

So, this schedule is an incorrect inconsistent schedule, it is a bad schedule, let us take

other examples.

(Refer Slide Time: 19:18)

Now let us ask what is the ideal schedule, what is ideally what should happen. Ideally

naturally we can have we will have serial schedules, there are 2 transactions. So, there

are 2 possible serial schedules that can happen that is first T 1 happens, then hole of T 2

happens. I am sorry, first T 1 and then hole of T 2. Or first hole of T 2 and then T 1. And

if you go through the steps, assuming that a initially is 200 dollar and B is 100 dollar,

these are the possible results that you see naturally. As I had mentioned earlier also, the

different ordering different schedule might give you different results, but both of them

are correct, because any one of them will happen, but both are consistent. Either debit

has first happened, then the interest rate or interest rate it has first happened and then the

debit.

So, either of these schedules are acceptable, but what we got as a schedule S in the last

case are not acceptable. So, we will call it you will serializable, if it has the same effect,

as some of the one of the 2 schedules that we have here. Then we will say that is it this is

serializable schedule. So, again we create another example schedule T here. So, what we

do? We take the schedule S which we saw was bad, and we interchange, these 2 we do w

2 for a first and w 1 A next.

Now, you see very interesting things will happen. So now, you focus on this part, on the

left part of schedule T where we are assuming that A and B both have 100 dollar to start

with. And then go through these steps r 1 is in transaction 1 r 2 is in transaction 2, then w

2 happens so, the interest is credit 100.5. And then what has happened? W 2 after that w

1 A so, whatever was written here is debited and written back. So, whatever was read

there is 100 dollar. So, you debit 100 dollar it becomes 0.

So, a has become 0, and then you have the B which goes on correctly. So, things look

like that it appears that we are we are perfectly ok. So, by the first example the outcome

is same as a serial schedule one. And so, we might just think that things have been good,

but this is just incidental based on the particular values. Now let us consider another

execution by the same schedule which makes use of this value 200 and 100.

Now, as it with 200 and 100 and we do w 2 followed by w 1. So, when r 2 A is followed

by w 2 r 2 A 100 read 200 and that 10 1.005 or that kind of interest is given then it

becomes 201. And then r 1 then you have w 1. Now what does w 1 A changes? R 1 had

read 200, and from that you have subtracted 100. So now, you have as w 1 A, you have

100 input. And from this you have B certainly does not change.

So, if you look into that, now you can see that he has a value which is 100; which

certainly if you if you look back. So, 200 and 100 are the values that we had assumed

here, and you can see that in neither of the schedule a can have a value, which is 100

dollar as we have found here. It can either be 100.50 or it can be 101, but you have got a

value 100. So, even though with some data, a schedule might look like serializable, but it

actually is not and it needs to be properly established that serial is serializable.

(Refer Slide Time: 24:00)

So, neither S naught T are serializable, yet another schedule U this again. So, you can see

that transaction 1 is happening instruction of transaction 1 is happening somewhere in

the middle. With transaction 2 and this is what you get. So, if you if you look back as to

earlier case. You will find that this is same as scheduled 201. So, this is same as

scheduled 2.

So, again my the data it looks like that this is correct, but we have to actually establish

that this is correct. So, we can establish say that by proving that schedule 2 is, I am sorry,

schedule 2 is conflict serialize, schedule U is conflict serializable to schedule 2. How we

do that? We keep on swapping the non-conflicting instructions. This is one we start with,

and we swap w 1 with r 2 B this is possible they are referring to 2 different data items.

Then we swap w 1 with w 2 again different data items. Then we swap r 1 with r 2 again

different data items and also, they are both of them are read. And finally, we swap r 1

with w 2 r 1 A with w 2 B and we get this, and now you can see that this is transaction 2

followed by transaction 1 which is scheduled 2. Which is indeed a serial schedule and we

have been able to transform schedule U into a conflict equivalent schedule 2 which is

serial.

So, we will say that while our earlier attempts on schedule S and schedule T were not

serializable schedule U is serializable.

(Refer Slide Time: 26:09)

So, naturally all serializable schedules are they conflict serializable. No, for example,

here I have given. So, here what we are trying to highlight is a schedule may be

serializable, but it may not be conflict serializable. So, conflict serializability is a

stronger notion. So, here I have given a small example which I leave to you to go

through in detail and understand where it is not possible to show that it is conflict

serializable in the sense you cannot there are 3 transactions here w 1 w 2 and w 3. And

you cannot swap non-conflicting instructions in this schedule and convert it into a serial

schedule.

So, serial schedule here will mean, T 1, T 2, T 3, T 1, T 3, T 2, T 2, T 1, T 3 like that. Any

of the 6 possibilities, you cannot convert this in a conflict equivalent manner to any of

those 6 serial schedules. But this actually is a serial schedule, because very interestingly

even though there are multiple rights, but in between there are no reads. So, you can you

can easily reason, that the values have actually not changed ok. So, this is on the basic

notion of serializability.

(Refer Slide Time: 27:36)

Now, the question naturally is how do I detect, if a schedule is serializable. So, the

process is to construct a what is called a precedence graph. So, if I have a set of

transactions, then I construct a graph is a directed graph where the vertices are the

transactions their names. And we will draw an art from T I to T j, that is my graph means

there will be an edge is a directed edge. If these 2 transactions T i and T j are conflicting.

So, if T i T j conflict there will edge between that. And the edge will be from T i to T j, if

T i access the data item which conflict with T j. So, if T i is a head is earlier, then we will

draw the art from T i to T j, otherwise it will be from T j to Ti. And we may also annotate

label the arc by the item on which item that is being accessed.

(Refer Slide Time: 28:47)

So, this could be A so, possible what is called the precedence graph. So, it is a schedule

is conflict serializable, if and only if it is precedence graph is acyclic. Naturally, if there

is a cycle then; that means, that any of the like we have here, if there if it is a cyclic like

this then it is possible that I can actually do a topological ordering of these nodes, and we

can find a serial schedule. But if it has a cycle then naturally, I i cannot put any of the

transactions on the cycle at the beginning and put the others on the later part things will;

obviously, always conflict.

So, we can easily these are details of the algorithms, cycle detection can be done very

easily. Either in n square time in a simple manner or when n plus E time where E is a

number of edges. So, the precedence if the precedence graph is acyclic the serializability

order will be obtained by simple topological sorting. I am not discussing what these

algorithms are I would expect that you know if you do not please look up in algorithms

book.

(Refer Slide Time: 30:07)

So, to test for conflict serializability; the steps will be built the directed graph. Then go

through each operation of shall, you look at each operation read or write. If the operation

is a write, then find so, if it is wi X, then find what is happening with data this data

element X in different transactions that exists later on that instructions exist later on.

If there is some rj X or some wj X, either in this was in transaction I/, in transaction some

transaction j if there is a read X or if there is a right of X, then there will be a directed

graph age from T i to T j. This is what I said earlier. On the other case if your operation is

of the from r I j if it is a read operation then all that you need to look for is only a right

on this X on the different transaction. And then you will have a naturally if you if your

current operation is read and you do not find a write there may be other reads on X then

you do not add any conflict edge.

So, on this graph the schedule is conflict serializable if it is acyclic, and we will do

topological sort to get that as I have.

(Refer Slide Time: 31:28)

So, here what I have done is I have actually taken a little bigger example, where you can

see that at the beginning here. I have given a schedule which has 5 transactions. And it

has A B C D E, 5 different data elements, and variety of read write happening on them.

So, based on that, you start with an empty graph having so, your graph will have 5 notes

because these are the transactions. And then you go through the schedule, you start with

the very first one w 1 A. So, a is the data item you are looking at and then you see who is

doing it. So, you see that well a is read by a is here read by T 2.

So, there is a conflict. So, you will add an edge T 1 T 2 so, this edge gets added. Then is

to have r 2 A, and you find look for A, A, A, A, A, A there is no A so, there is no

subsequent right. So, there is no new edge then you have w 1 B, w 1 B and if you look

for you have r 4 B; so r 4 that this transaction 4 is reading it later on. So, w 1 A B

subsequently read 5 T 4 so, there is a conflict. So, you add the edge T 1, T 4, T 1, T 4.

You proceed in this way, you can work it out in full. And when you come to the end you

have constructed this particular graph which is the precedence graph. And you can very

easily see that this precedence graph is acyclic there is no cycle here. And therefore, the

original schedule is serializable. And what is that what is the order in which you find out

what is the corresponding serial schedule for that you do a topological sort.

So, by topological sort which will mean this have no predecessor. So, any one of them

can be the first node other one can be the next node. So, it could be T 3 T 1 or T 1 T 3.

So, let us say T 3 T 1 then T 3 T 1 has happened. So, I can put any one of T 2 or T 4 after

that. Here I put T 4 then T 2. So, up to this and then finally, T 5. So, this is one possible

serial schedule to which this given schedule is conflict serializable. And so, the actual

serial schedule. So, if you if you do this schedule, you will get a result which is a result

of this serial schedule which is T 3, T 1, T 4, T 2, T 5. It is also actually this channel is

conflict serializable to several other trade rules because you can do this topological

sorting in various different manners, you could have started with T 1 and then do T 3 and

then do the rest. You could have done T 3, T 1, and then instead of doing T 4, T 2, you

could do T 2, T 4.

So, you will get a number of, but having one equivalent serial schedule. One conflict

equivalent serial schedule is enough to prove the serializability of a schedule. Now so,

based on that you say that this particular schedule is conflict serializable, and it will be

safe to execute the interleaved instructions of the 5 different transactions in this manner

in the schedule, and we will always have a consistent result.

(Refer Slide Time: 35:18)

So, here in this module, you have understood the issues that arise in terms of

concurrency when 2 or more transactions work concurrently. And very specifically we

have learnt about different forms of serializability. In this module we have talked of

conflict serializability, view serializability we will take up later on. And we have seen an

algorithm, simple algorithm, based on the a cyclic precedence graph, which will allow

you to ensure that a given schedule is conflict serializable or not.

