Database Management System
Prof. Partha Pratim Das
Department of Computer Science & Engineering
Indian Institute of Technology, Kharagpur

Lecture — 32
Transactions/2: Serializability

Welcome to module 32 of Database Management Systems, from the last module we are

discussing about transactions and transaction management.

(Refer Slide Time: 00:27)

FFD

Module Recap

B Transaction Concept
§ Transaction State
u Concurrent Executions

Ten Lot s reoete wevsee ren r x o mernsew e ren e OB l

Databiase Syatem Concepts - 6 Edition n: Silbérachatr, Korth shd Sudarshan

And we have technical look into the basic concept of a transaction the transaction state

and the issues.

(Refer Slide Time: 00:35)

'l
-
&

Module Objectives

i,

E_ § To understand the issues that arise when two or more fransactions work concurrenily

§ ® Tointroduce the notions of Serializability that ensure schedules for transactions that may run in

2a concurrent fashion but still guarantee and serial behavior

H ® To analyze the conditions, called conflicts, that need to be honored 1o attain Serializable

g schedules

E

i

&

19

H

1Y

§

i

é

8

3

p

E

§

H

H ‘P e 4Rl te S BD
Database System Concepts - §* Edition ny C8ilberschatz, Korth and Sudarshan

In concurrent execution and in this module, we will look try to understand, what are the
very specific issues that happen when 2 or more transactions work concurrently we have
seen that now it is possible that they execute in a schedule, which would not let us

preserve the acid properties.

So, we want to introduce the very basic concept of making sure that such concurrent
execution schedules are acceptable, and those are the notions of serializability. And we
will analyze different conditions called conflicts that need to be honored to attend the

serializability of the schedules.

(Refer Slide Time: 01:17)

=
&

Module Outline

i,

m Serializability
n Conflict Serializability

SWAYAM: NFTEL-NOC MOOTS Iratructorn: Prof. P P Das, IT Kharagpar. Jan-Apr, 7013

B e R e)

Duiabase Sysiem Concepts - §* Edition 4 Ofilberschatr, Korih and Sudarshan
So, serializability is the main topic to discuss.

(Refer Slide Time: 01:21)

Serializability

=

m Basic Assumption - Each transaction preserves database consistency
® Thus, serial execution of a set of transactions preserves database consistency

® A (possibly concurrent) schedule is serializable if it is equivalent to a serial schedule. Different
forms of schedule equivalence give rise to the notions of:

1. conflict serializability
2. view serializability

SWAYAM: NFTEL-NOC MOCTS Irstructon: Prof. P P Das, IIT Kharagpar. Jan-Apr, 2018

BE B-EN R I A RO]

Databiase Syatem Concepts - 6 Edition ns CSilbérachatr, Korth shd Sudarshan

So, to understand serializability we make a basic assumption, we make an assumption
that every transaction by itself preserves the database consistency. That is, it starts in a
consistent state of the database. And through the execution of it is instructions in the
order given it leaves the database in a consistent state, that is satisfied in each and every
transaction. So, we can conclude that, if we see really execute a set of instruction set of

transactions, then the consistency of the database will always be preserved.

Now, the problem happens, and as we have seen in the last module, that problems
happen when possibly concurrent transactions happen. And we may execute may be
executing the instruction in an order which leads to the violation of acid properties, the
consistency in particular. So, we say that a concurrent schedule is serializable, if there is
a there is some serial schedule, you say what is the serial schedule serial schedule is

where the transactions are executed one after the other.

So, if you have 2 transactions in the concurrent system, then if Ido T 1 then I do T 2 it is
a serial schedule. If I do T 2 and then I do T 1 it is a serial schedule as well. So, if I have
a concurrent schedule, like few refer back to the last module schedule 3; where the
instructions of T 1 and T 2 are interleaved, then it is it will have to be equivalent to a
serial schedule either T 1 after T 2 or T 2 after T 1. Different forms of schedule
equivalence is used one is called conflict serializability, and the other is called view

serializability. In the present module we will first discuss conflict serializability.

(Refer Slide Time: 03:19)

L=y

Simplified view of transactions

m We ignore operations other than read and write instructions

Other operations happen in memory (are temporary in nature) and (mostly) do not affect the
slate of the database

This is a simplifying assumption for analysis

m We assume that fransactions may perform arbitrary computations on data in local buffers in
between reads and wites

m Qursimplified schedules consist of only read and write instructions

SWAYAM: NFTEL-MOC MOCTS Irstructon Prof. P P Das, IIT Kharagpar. Jan-Apr, 2018

BN BN R I A RO]

Databiase Syatem Concepts - 6 Edition nr CSilbérachatr, Korth shd Sudarshan

Now, we make now a transaction may have all varied kinds of instructions, but we make
an assumption that we will ignore anything other than any instruction other than the read
and write instruction. Because other operations like we saw an operation where an
account is debited by 50 or account is credited. So, you subtract 50 you add 50 you
multiply by point one or things like that are all operations that happen in the local buffer

in the memory, and never temporary in nature and mostly they do not affect the state of

the database, because you have read the data do the changes write it back. So, it is a read
and write that actually are important for that maintaining the consistency after database.

So, that simplifies our process of analysis to a good extent.

So, this is so, we assume that between every read and write or read and read write and
write and so on, the database the transactions may be doing arbitrary computations,
which are all in the local buffer and do not affect the state. So, we can make this

assumption that our shift schedules consists only of read and writing.

(Refer Slide Time: 04:31)

Conflicting Instructions

—

Let/and |, be two Instructions of transactions T, and T respectively. Instructions | and |, conflict
if and only if there exists some item Q accessed by both / and [, and at least one of these
instructions wrote Q '

1.1,= read(Q), = read(Q). /and] don't conflict

2.f,=read(Q), | =write(Q). They conflict

3.1,=write(Q), |, =read(Q). They conflict

4.1, = write(Q), |, = write(Q). They conflict

Intuitively, a conflict between [and I forces a (logical) temporal order between them

Iff;and /, are consecutive in a schedule and they do not conflict, their results would remain the
same even if they had been interchanged in the schedule

SWAYAM: NFTEL-NOC MOOTS Iratructon Prof. P P Das, IT Kharagpar. Jan-Apr, 2008

‘FPT e UL e L ED

Daiabiase Sysiem Concepis - §* Edition i Ofilberschatz, Korth and Sudarshan

Now, we say that suppose I 1 and I j, 2 instructions for belonging to transaction T 1 and
transaction T j. So, there are 2 transactions T iand T j, T i has an instruction [1 T j has an
instruction I j and we say that I and I j this instruction will conflict, if and only if there is
some item Q, that is some data entity Q; which both Ii and I j are trying to access. And at

least one of these instructions try to write.

So, these 2 instructions from true transactions are trying to manipulate the same data
item, and at least one of them is trying to write. If that happens then we say that [i and I j
these 2 instructions are conflicting. So, you can naturally enumerate the 4 possibilities, if
both of them are reading their own conflict. If it is read write, write read, write All of

them are cases of conflict.

So, naturally intuitively, you can figure out that since the write changes are value that if
there is a conflict between these 2 instructions then there must be a fixed temporal order
between them. So, if I i and I j are consecutive in a schedule and they do not conflict.
Then we can interchange the temporal order of I 1 and I j, that will also not make a
difference, because they do not conflict. But if they conflict I cannot make the change in

their ordering.

(Refer Slide Time: 06:18)

Conflict Serializability

=

¥ |faschedule S can be transformed into a schedule S’ by a series of swaps of non-conflicting
instructions, we say that 5 and S are conflict equivalent

¥ We say that a schedule § is conflict serializable if it is conflict equivalent to a serial schedule

SWAYAM: NFTEL-MOC MOCTS Instructon Prof. P P Das, IT Kharagpar. Jan-Apr, 2008

BN B-EN R I A RS]

Dutabase System Concepts - 8 Edition 1w Silbérachatr, Korth shd Sudarshan

So, that gives rise to the notion of conflict serializability. So, we say if a schedule S can
be transformed into another schedule S primed by a series of swaps of non-conflicting
instructions, then S and S prime that conflict equivalent. So, what are you saying? That
we have 2 one schedule S, and we will swap non-conflicting instruction, possibly since
non-conflicting instructions that occur side by side. And if by doing this, if I can create
the schedule S primed, then I will say S and S prime that conflict equivalent. But if S and
S prime are such that, I cannot transform S into S prime by just swapping non-conflicting

instructions, then they are not conflict equivalent.

The second definition to keep in mind is a schedule S is conflict serializable, if it is
conflict equivalent to a serial schedule, what is the serial schedule? Just to remind you
serial schedule is one where the transactions are happened one after the other in a serial
manner. So, all instructions of one transaction complete, then all instructions of the

second transaction complete, then all instructions of the third transaction complete and so

on. So, if a schedule is conflict serializable; that is, if in a schedule. I can swap non-
conflicting instructions. And make it into a serial schedule, and then I will say that the

given schedule is a conflict serializable schedule ok.

(Refer Slide Time: 08:00)

FFD

Conflict Serializability (Cont.)

—
m Schedule 3 can be transfarmed into Schedule 6 - a serial schedule where T, follows T, by a series of swaps
aof non-conflicting instructions.

Swap T1.read(B) and T2 write(A)
Swap T1.read(B) and T2 read(A) These swaps do not conflict as they work with
Swap T1.write(B) and T2 write(A) different items (A or B) in different transactions.
Swap T1.write(B) and T2 read(A)

® Therefore, Schedule 3 is conflict serializable:

I T Ty I T, i
|

M.d A) :SETT l‘ read (A)

write (A) Tiesdd)) write (A)

read (4) read(A) read (5)

wrile (4) read(B) g

write() Write (B)
read (B) : wiite{B) m.d (A)
write (B) read(B) write (A)

read (B) virite(B) n\.!.d (8)
write (B) write (B)

]

Schedule 3, Schedule 5 W

(1 T un S SR]

SWAYAM: NFTEL-NOC MOOTS Irstructon: Prof. P P Das, IT Kharagpar. Jan-Apr, 20018

So now let us it is time for a number of examples to understand this better. So, we had
seen schedule 3, will have to refer to the earlier module 4 schedule 3. Sir, no not I am
sorry this is just abstracted form of that; not the actual one because in the in the earlier
schedule 3 we had shown all the complete other computations also, but the read writes

are the same.

Now, that this schedule 3 can be converted to so, this is where you have schedule 3, and
you can easily see that the part of transaction T 1 then a part of transaction T 2. So,
schedule 3 is not a serial schedule, but if you can swap non conflicting instructions, then
you are able to convert this into this schedule which if we are calling a schedule 6.
Where all instructions of T 1 is followed by all instructions of T 2 which is a serial

schedule.

So, since this can be done, we will say it is conflict serializable schedule 3 is conflict
serializable and just to see how that happens. So, you start here let me erase this marks
and start here. So, here if I look into these 2 instructions, which are the consecutive
instructions in schedule 3 I can swap them; that is, I can do read B first and then do read

A, I can swap read B and write A read B, and write A can be swapped.

Once I have done that, then I can swap read B with read A. It has become before right I
can swap it with, because read B and write A, or write B read B and read A these do not
conflict their non-conflicting instruction. Why read B an righty and non-conflicting,
because they are not reading and writing to the same data item. Why read B and read A
are non-conflicting, they are accessing the same data item, but both of them are read
there is no right. So, I can swap so, this is the second one I can. So, once I do that read B

will come here and write A read A write A will come down.

Then again, I can see that write B can be swapped with write A. Both are rights, but
referring to different data items. Similarly, write B then can be swapped with read A,
because they are again referring to different data items. So, I can do this and then these
will also come up. So, I will eventually after these 4 swaps, this whole schedule 3 will

transform into this serial 6, and we get a serial schedule.

So, we will say that schedule 3 is conflict serializable. That is the basic concept that we

are trying to establish here.

(Refer Slide Time: 11:02)

Conflict Serializability (Cont.)

m Example of & schedule that is not conflict serializable:

I, | T,

read (Q)
write ()

write ({J)

® We are unable to swap instructions in the above schedule to obtain either the serial schedule
<Ty, T4, or the serial schedule < T, T, >

e e merent revr e ot vt rrmw e ce DD !

BR BSOS R I A RS]

Databisse Syatem Concepts - 6 Edition nu2 Silbérachatr, Korth shd Sudarshan

Just as very simple example suppose you had 2 transactions T 3 and T 4, and you have
this situation. Now is it conflict serializable it is not. Because to make it conflict
serializable. I need to either swap right Q of T 3 with right Q of T 4 which is not possible
because these are conflicting instructions, they both access the same data item Q and

they both are right.

The other option is I could swap read Q in T 3 and write Q in T 4, that they are also
conflicting because they access the same data item and one of them is right. So, I cannot
do either of this swaps which mean, that I cannot find a conflict equivalent schedule for
this schedule; either to T 3 T 4 or to T 4 T 3. It is not this schedule is not conflict

equivalent to either one of them.

So, this schedule is not conflict serializable, this is the core concept. So, if you if you go
through different examples and try to understand this at the very beginning, then in terms
of the transaction management the whole study of transaction management you will have

Very easy progress.

(Refer Slide Time: 12:37)

FPD

Example: Bad Schedule
u Consider fwo fransactions:
Transaction 1 Transaction 2
UPDATE accounts UPDATE accounts
SET balance = balance - 100 SET balance = balance * 1.005
WHERE acct_id = 31414 4 B

(initial:) 200.00 100.00
ri(A):
P'![-"”‘

B |n terms of read / write we can wrile these as:

Transaction 1: r,(A), wy(A) I/ Ais the balance for acct_id = 31414
Transaction 2: r,(A), w(A), r:(B), w;(B) / B is balance of other accounts
8 Consider schedule S: wild): 100.00
Schedule 5 ry(A), r,(A), wy(A), wo{A), r,(B), w.(B) wy(d): 20100
Suppose: A starts with $§200, and account B starts with $100 T
adule S is very bad! (At least, it's bad if you're the bank!) We rAB)

$100 from account A, but somehow the database has wy(B): 100.50
that our account now holds $201!)

Schedule 5
Source: hittpifwww.church, comics/Jd0ieading'seriall A RSN AT B N

SWAYAM: NFTEL-MOC MOCTS Irstructon: Prof. P P Das, IIT Kharagpar. Jan-Apr, 2018

Databiase Syatem Concepts - 6 Edition 1213 CSilbérachatr, Korth shd Sudarshan

So, let us let me show you number of other bad schedules, and let me a little bit more

complex examples.

So, consider 2 transactions transaction 1 here. Update an account, where the account id is
31414 a specific account and balance is debited by 100. So, it is debiting 100 from the
balance. Where in the transaction 2, you update accounts where balance is changed to
balance times 1.005 which means that we are giving a point 5 percent interest, and here
there is no where clause. So, transaction 2 actually changes does this balance change in

all the accounts, whereas, transaction 1 makes this debit in only one account.

Let see what will happen in terms of them. So, let us first try to write out transaction 1
and transaction 2, the first in the read write Abstracted form. So, transaction 1 it is
working only on one account let us call it account A. So, what does it do? It has to set the
balance to debit 100. So, it has to read so, thisis r 1 by r 1 A, we mean that it is read the

subscript here refers to the transaction number.

So, r 1 stands for r stands for read, 1 stands for transaction 1. So, it is read by transaction
1. And what are we reading? We are reading the account balance A, let us arbitrarily we
are calling it A. And then what we will have to do? After having debited that locally we
will have to write it back so that the change has happened. So, r 1 A followed by w 1 A is
transaction 1 which is being shown on the left. So, I have shown you from the actual sql
statement, how can you make an abstraction of the read write that we use in terms of

reasoning about the serializability.

In contrast, if you look at transaction 2, naturally transaction 2 does not have a where
clause. So, it performs this balance update on each of the accounts. So, it will also
perform this balance update on the account A or account balance a rather, that we
assumed in the transaction 1. So, we model that by saying that naturally for changing the
balance from balance times 1.005, we need to read A if the read is done in transaction 2.
So, that is r 2 A and write it back. So, that is w 2 A and then I assume that B is some
other account. There may be one more account there may be 100 thousand more account,
but so far as serializability are concerned, these are all other different accounts from A.
So, we symbolically just consider one; that is, some other account B other than the
balance a and naturally to do the change here or do the update here will have to read B r
to be and w to B. So, these are the 2 transactions in the simplified form that we have to

analyze.

Now, let us consider A so, we have between transaction 1 and transaction 2 we have 6
instructions. So, we produce a schedule 6, where these 6 instructions are interleaved. And
we satisfy the basic constraint that the instructions of every transaction occur in the same
order in which they existed. So, r 1 precedes w 1 r 1 precedes w 1 in this schedule. R 2 A
precedes w 2 A, w 2 A precedes r 2 B, r 2 B precedes w 2 B and so on. So, their original
ordering is maintained, but we have an interleaved schedule called S. And then on the on

the write if you if you look at here on the write this is schedule S.

So, in the write we are saying, that let us say that a starts with 200 dollar, and B at the
beginning is 100 dollar. So, what will happen you will read? You will read here this is the
first thing r 1 A. So, 200 is read then r 2 A. So, what happens if r 2 A is read Again 200 is
read. And then you do w 1 A. So, what is w 1 A? W 1 A is the right of the transaction 1.

So, transaction 1 writes after debiting this balance this is the intermediate computation.

So, when transaction 1 writes, it writes based on the value that it had read in r 1 A; which
was 200 then 100 debited. So, it writes back 100. Then the next is w 2 A. So, w what will
w 2 A do w 2 A will write back the write back w 2 A is here, will write back the result of
the computation in transaction 2 based on what it read in the r 2 A. R 2 A had written had
read 200, we hear and therefore, if you multiply 200 by this factor it becomes 201. So, w
2 A will write 201.

So, naturally E as w 2 A has changed the value of a after w 1 A naturally the final value
of a will be 201. Then you have r to be w to be which reads 100 makes this balance
change by 1.005, it becomes 100.5. So, this is what we will have when actually this
schedule completes. So, if I mean just this look at what has happened, it has I have
debited 100 dollar from account A which was transaction 1, bar and here I had started
with 200 dollar. But at the end what I have according to the schedule is account A has a
balance which is 201 dollar. Whereas, it should have had a balance which should have
been 100 dollar, the balance in account B is fine. But it shows that 101 dollar more in

account A.

So, naturally the bank is going to get bankrupt very soon if such scheduled are allowed.
So, this schedule is an incorrect inconsistent schedule, it is a bad schedule, let us take

other examples.

(Refer Slide Time: 19:18)

- Example: Bad Schedule
e

E_ B |deal schedule is serial: (A = $200, B = $100)

% Serial schedule 1 r(A), wylA), r;(A), wolA), r(B), wolB) I A= 100.50, B = 100.50

; Serial schedule 2 A}, wolA), r(B), wi(B), r,(A), w,(A) /¥ A=101.00, B = 100.50

3 § We call a schedule serializable if it has the same effect) . o

i as some serial schedule regardless of the specific A 15 5100 initially A 15 5200 initially

E informatian in the database 4 B A B

H B As an example, consider Schedule T, which has (init Oy

: swapped ihathitd and fourth opsralions rom S: m/|1l|a|) 100.00 100.00 tuu:ml.) 200.00 100,00

B Schedule §: r,{A), r(A), wi(A), wy(A), r:(B), wi(B) i) M)

§ Schedule T: r,(4), 5(A), wiA), w,(A), r,(B), wy(B) rld): ryld):

i B By first example, the oulcome is the same as Serial wy4): 100,50 wild): 201.00

s schedule 1. But that's just a peculiarity of the data, as) e

g revealed by the second example, where the final valie "1l4): 0.00 wyld): 100.00

g of A can't be the consequence of either of the possible i BY: (B):

L serial schedules. B . - :

¥ S nor T are seralizable, y(B) 100,50 wB): 100.50

z

i Schedule T

g Saurce: hitp: s church comics/340imeading/serial EE E R R E-TASE R .
Dutabase System Concepts - §* Edition 1 C8ilberschatz, Korth and Sudarshan

Now let us ask what is the ideal schedule, what is ideally what should happen. Ideally
naturally we can have we will have serial schedules, there are 2 transactions. So, there
are 2 possible serial schedules that can happen that is first T 1 happens, then hole of T 2
happens. I am sorry, first T 1 and then hole of T 2. Or first hole of T 2 and then T 1. And
if you go through the steps, assuming that a initially is 200 dollar and B is 100 dollar,
these are the possible results that you see naturally. As I had mentioned earlier also, the
different ordering different schedule might give you different results, but both of them
are correct, because any one of them will happen, but both are consistent. Either debit

has first happened, then the interest rate or interest rate it has first happened and then the

debit.

So, either of these schedules are acceptable, but what we got as a schedule S in the last
case are not acceptable. So, we will call it you will serializable, if it has the same effect,
as some of the one of the 2 schedules that we have here. Then we will say that is it this is
serializable schedule. So, again we create another example schedule T here. So, what we
do? We take the schedule S which we saw was bad, and we interchange, these 2 we do w

2 for a first and w 1 A next.

Now, you see very interesting things will happen. So now, you focus on this part, on the
left part of schedule T where we are assuming that A and B both have 100 dollar to start

with. And then go through these steps r 1 is in transaction 1 r 2 is in transaction 2, then w

2 happens so, the interest is credit 100.5. And then what has happened? W 2 after that w
1 A so, whatever was written here is debited and written back. So, whatever was read

there is 100 dollar. So, you debit 100 dollar it becomes 0.

So, a has become 0, and then you have the B which goes on correctly. So, things look
like that it appears that we are we are perfectly ok. So, by the first example the outcome
is same as a serial schedule one. And so, we might just think that things have been good,
but this is just incidental based on the particular values. Now let us consider another

execution by the same schedule which makes use of this value 200 and 100.

Now, as it with 200 and 100 and we do w 2 followed by w 1. So, when r 2 A is followed
by w 2 r 2 A 100 read 200 and that 10 1.005 or that kind of interest is given then it
becomes 201. And then r 1 then you have w 1. Now what does w 1 A changes? R 1 had
read 200, and from that you have subtracted 100. So now, you have as w 1 A, you have

100 input. And from this you have B certainly does not change.

So, if you look into that, now you can see that he has a value which is 100; which
certainly if you if you look back. So, 200 and 100 are the values that we had assumed
here, and you can see that in neither of the schedule a can have a value, which is 100
dollar as we have found here. It can either be 100.50 or it can be 101, but you have got a
value 100. So, even though with some data, a schedule might look like serializable, but it

actually is not and it needs to be properly established that serial is serializable.

(Refer Slide Time: 24:00)

FFD

Example: Good Schedule

.

® What's a non-serial example of a serializable schedule?
We could credit interest to A first, then withdraw the money, then credit interest to B:
Schedule U: rs(A), welA), r;(A), wylA), r:(B), wa(B) I A =101, B = 100.50
B Schedule U is conflict serializable to Schedule 2:
Schedule U: (A}, WolA), 7,(A), wi{A), r2(B), ws(B)
swap wi(A) and (B rfA), Wy(A), 1i(A), r(B), wi(A), wi(B)
swap w,(A) and w,(B): r,(A), wy(A), r,(A), r,(B), w,(B), wy(A)
swap r(A)and £(B). r(A), wi(A), £(B), r(A), wi(B), wi(A)
swap r;(4) and wy(B): r,(A), wy(A), 1,(B), walB), ry(A), w,(A): Schedule 2

EWAYAM: NFTEL-NOC MOOTS Irstructon: Prof. P P Das, IT Kharagpar. Jan-Apr, 7008

Saurce: hitp: s church comics/340imeading/serial ‘PR L gH st LU

(1 e TR us

So, neither S naught T are serializable, yet another schedule U this again. So, you can see
that transaction 1 is happening instruction of transaction 1 is happening somewhere in
the middle. With transaction 2 and this is what you get. So, if you if you look back as to
earlier case. You will find that this is same as scheduled 201. So, this is same as

scheduled 2.

So, again my the data it looks like that this is correct, but we have to actually establish
that this is correct. So, we can establish say that by proving that schedule 2 is, I am sorry,
schedule 2 is conflict serialize, schedule U is conflict serializable to schedule 2. How we
do that? We keep on swapping the non-conflicting instructions. This is one we start with,
and we swap w 1 with r 2 B this is possible they are referring to 2 different data items.
Then we swap w 1 with w 2 again different data items. Then we swap r 1 with r 2 again
different data items and also, they are both of them are read. And finally, we swap r 1
with w 2 r 1 A with w 2 B and we get this, and now you can see that this is transaction 2
followed by transaction 1 which is scheduled 2. Which is indeed a serial schedule and we
have been able to transform schedule U into a conflict equivalent schedule 2 which is

serial.

So, we will say that while our earlier attempts on schedule S and schedule T were not

serializable schedule U is serializable.

(Refer Slide Time: 26:09)

Serializability

B Are all serializable schedules conflict-serializable? No

n Consider the following schedule for a set of three iransactions.
wi(A), wolA), wiAB), wi(B), wy(B)

8 We can perform no swaps to this:
The first two operations are both on A and at least one is a write;
The second and third operations are by the same transaction;
The third and fourth are both on B at least one is a write; and
So are the fourth and fifth

So this schedule is not conflict-equivalent to anything - and certainly not any serial
schedules.
B However, since nobody ever reads the values written by the w,(A), wy(B), and w;(B) operations,
the schedule has the same cutcome as the senal schedule:

W(A), wy(B), wylA), w,(B), wy(B)

e e e !

Source: hitg:www church com/cs/340heading/seriall R EES R S S N

Databiase Syatem Concepts - 6 Edition 1 Silbérachatr, Korth shd Sudarshan

So, naturally all serializable schedules are they conflict serializable. No, for example,
here I have given. So, here what we are trying to highlight is a schedule may be
serializable, but it may not be conflict serializable. So, conflict serializability is a
stronger notion. So, here I have given a small example which I leave to you to go
through in detail and understand where it is not possible to show that it is conflict
serializable in the sense you cannot there are 3 transactions here w 1 w 2 and w 3. And
you cannot swap non-conflicting instructions in this schedule and convert it into a serial

schedule.

So, serial schedule here will mean, T1, T2, T3, T1,T3,T2, T2, T1,T 3 like that. Any
of the 6 possibilities, you cannot convert this in a conflict equivalent manner to any of
those 6 serial schedules. But this actually is a serial schedule, because very interestingly
even though there are multiple rights, but in between there are no reads. So, you can you
can easily reason, that the values have actually not changed ok. So, this is on the basic

notion of serializability.

(Refer Slide Time: 27:36)

Precedence Graph

=

Consider some schedule of a set of fransactions T, T, ..., T,
Precedence graph

A direct graph where the verfices are the transactions (names)

We draw an arc from Tito T, if the two transactions conflict, and T, accessed the data item on
which the conflict arose earlier

We may label the arc by the item that was accessed
Example

.
ONO
ST o

SWAYAM: NFTEL-MOC MOCTS Instrucion Prof. P P Das, IT Kharagpar. Jan-Apr, 7008

ER BN R I A RO]

Dutabase System Concepts - 8 Edition na CSilbérachatr, Korth shd Sudarshan

Now, the question naturally is how do I detect, if a schedule is serializable. So, the
process is to construct a what is called a precedence graph. So, if I have a set of
transactions, then I construct a graph is a directed graph where the vertices are the
transactions their names. And we will draw an art from T I to T j, that is my graph means

there will be an edge is a directed edge. If these 2 transactions T i and T j are conflicting.

So, if T1 T j conflict there will edge between that. And the edge will be from T ito T j, if
T i access the data item which conflict with T j. So, if T i is a head is earlier, then we will
draw the art from T ito T j, otherwise it will be from T j to Ti. And we may also annotate

label the arc by the item on which item that is being accessed.

(Refer Slide Time: 28:47)

Testing for Conflict Serializability

Re=—

8 A schedule is conflict serializable if and only if its precedence graph is acyclic

B Cycle-detection algorithms exist which take order i? time, where i is the .
number of vertices in the graph P 4

(Better algorithrs take orcer n + & where @ is the number of edges)

8 |f precedence graph is acyclic, the serializability order can be obtained by a 5
topological sorting of the graph

That is, a linear order consistent with the partial order of the graph

For example, a serializability crder for the schedule (a) would be one of
either (b) or (c)

EWAYAM: NFTEL-NOC MOOTS Irstructorn: Prof. P P Das, IT Kharagpar. Jan-Apr, 7013

Daiabiase Sysiem Conceps - 6= Edition ik C8iltrschaiz, Kerth and Sudarshan

So, this could be A so, possible what is called the precedence graph. So, it is a schedule
is conflict serializable, if and only if it is precedence graph is acyclic. Naturally, if there
is a cycle then; that means, that any of the like we have here, if there if it is a cyclic like
this then it is possible that I can actually do a topological ordering of these nodes, and we
can find a serial schedule. But if it has a cycle then naturally, I 1 cannot put any of the
transactions on the cycle at the beginning and put the others on the later part things will;

obviously, always conflict.

So, we can easily these are details of the algorithms, cycle detection can be done very
easily. Either in n square time in a simple manner or when n plus E time where E is a
number of edges. So, the precedence if the precedence graph is acyclic the serializability
order will be obtained by simple topological sorting. I am not discussing what these
algorithms are I would expect that you know if you do not please look up in algorithms

book.

(Refer Slide Time: 30:07)

PRD

Testing for Conflict Serializability

S

® Build a directed graph, with a vertex for each transaction.

§ Go through each operation of the schedule
If the operation is of the form w(X), find each subsequent operation in the schedule also
operating on the same data element X by a different transaction: that is, anything of the
form r(X) or w(X). For each such subsequent operation, add a directed edge in the graph
from Tito T,
If the operation is of the form r(X), find each subsequent write to the same data element X by
a different transaction: that is, anything of the form w,(X). For each such subsequent write,
add a directed edge in the graph from Tto T,

® The schedule is conflict-serializable if and only if the resulling directed graph is acyclic.

n Moreover, we can perform a topological sort on the graph to discover the serial schedule to
which the schedule is conflict-equivalent.

SWAYAM: NFTEL-MOC MOOTS Irstructorn: Prof. P P Das, IT Kharsgear. Jan-Apr, 7018

‘FPT e st ED

Daiabiase Sysiem Conceps - §* Edition 1218 CBilberschatz, Kerih and Sudarshan

So, to test for conflict serializability; the steps will be built the directed graph. Then go
through each operation of shall, you look at each operation read or write. If the operation
is a write, then find so, if it is wi X, then find what is happening with data this data

element X in different transactions that exists later on that instructions exist later on.

If there is some 1j X or some wj X, either in this was in transaction I/, in transaction some
transaction j if there is a read X or if there is a right of X, then there will be a directed
graph age from T i to T j. This is what I said earlier. On the other case if your operation is
of the from r I j if it is a read operation then all that you need to look for is only a right
on this X on the different transaction. And then you will have a naturally if you if your
current operation is read and you do not find a write there may be other reads on X then

you do not add any conflict edge.

So, on this graph the schedule is conflict serializable if it is acyclic, and we will do

topological sort to get that as I have.

(Refer Slide Time: 31:28)

PPD

I

Testing for Conflict Serializability

Consicer the following schedule:

wylA), il A), wy(B), wiC), n{C), 1y B), wolD), wlE), ri{D), wilE)
W sfart with an empty graph with five vertices labeled T, T, Ty, Ty, Ty
'We go through each operalion in the schedule:

w;(A): A is subsequently read by T, so addedge T, = T;

ryfA): no subsequent writes to A, 50 no new edges @

w;(B): B is subsequently read by T, so addedge T, — T, 1

wy(C}: C is subsequently read by T, so add edge T, — T, @ “ @
r3{C). no subsequent writes 1o C, 50 no new edges

riB): no subsequent wiles 1o B, 50 no néw edges

w,(D): C i subsequently read by T;, soaddedge Ty — T,

wy(E): E is subsequently written by T;, so addedge T, — T;

el D). N subsequent writes 10 D, 50 o new edges

w;(E): no subsequent operations on E, 0 no new edges

We end up with precedence graph

This graph has no cycles, o the oniginal schedule mist be senalizable. Mofeover, since one way 1o topologically son the
graph is Ty-Ty-T,~T:-Tg, one serial schedule that is conflict-equivalent is

wy(C), WlA), wi(B), ry(B), WylE), rlA), 1{C), wl D), r{ D), wilE)

SWAYAM: NFTEL-NOC MOOTS Iratructorn: Prof. P P Das, IT Kharagpar. Jan-Apr, 7013

b2t am/ e B

Daiabiase Sysiem Concepis - §* Edition nn CBilberschaiz, Korth and Sudarshan

So, here what I have done is | have actually taken a little bigger example, where you can
see that at the beginning here. I have given a schedule which has 5 transactions. And it
has A B C D E, 5 different data elements, and variety of read write happening on them.
So, based on that, you start with an empty graph having so, your graph will have 5 notes
because these are the transactions. And then you go through the schedule, you start with
the very first one w 1 A. So, a is the data item you are looking at and then you see who is

doing it. So, you see that well a is read by a is here read by T 2.

So, there is a conflict. So, you will add an edge T 1 T 2 so, this edge gets added. Then is
to have r 2 A, and you find look for A, A, A, A, A, A there is no A so, there is no
subsequent right. So, there is no new edge then you have w 1 B, w 1 B and if you look
for you have r 4 B; so r 4 that this transaction 4 is reading it later on. So, w 1 A B
subsequently read 5 T 4 so, there is a conflict. So, you add the edge T 1, T4, T 1, T 4.
You proceed in this way, you can work it out in full. And when you come to the end you
have constructed this particular graph which is the precedence graph. And you can very
easily see that this precedence graph is acyclic there is no cycle here. And therefore, the
original schedule is serializable. And what is that what is the order in which you find out

what is the corresponding serial schedule for that you do a topological sort.

So, by topological sort which will mean this have no predecessor. So, any one of them

can be the first node other one can be the next node. So, it couldbe T3 T1or T1 T 3.

So, letussay T3 T 1 then T 3 T 1 has happened. So, I can put any one of T 2 or T 4 after
that. Here I put T 4 then T 2. So, up to this and then finally, T 5. So, this is one possible
serial schedule to which this given schedule is conflict serializable. And so, the actual
serial schedule. So, if you if you do this schedule, you will get a result which is a result
of this serial schedule whichis T3, T1, T4, T 2, T 5. It is also actually this channel is
conflict serializable to several other trade rules because you can do this topological
sorting in various different manners, you could have started with T 1 and then do T 3 and
then do the rest. You could have done T 3, T 1, and then instead of doing T 4, T 2, you
coulddo T2, T4.

So, you will get a number of, but having one equivalent serial schedule. One conflict
equivalent serial schedule is enough to prove the serializability of a schedule. Now so,
based on that you say that this particular schedule is conflict serializable, and it will be
safe to execute the interleaved instructions of the 5 different transactions in this manner

in the schedule, and we will always have a consistent result.

(Refer Slide Time: 35:18)

Module Summary

=

® Understood the issues that arise when two or more transactions work concurrently
® Leamt the forms of serializability in terms of conflict and view serializability

B Acyclic precedence graph can ensure conflict serializability

wetee: Prof PP Das, IT Kharagpar. Jan-apr, 2008

SWAYAM: NPTEL-MOC MOCTS It

BR NSRRI A RO]

Databiase Syatem Concepts - 6 Edition n» Silbérachatr, Korth shd Sudarshan ‘

So, here in this module, you have understood the issues that arise in terms of
concurrency when 2 or more transactions work concurrently. And very specifically we
have learnt about different forms of serializability. In this module we have talked of

conflict serializability, view serializability we will take up later on. And we have seen an

algorithm, simple algorithm, based on the a cyclic precedence graph, which will allow

you to ensure that a given schedule is conflict serializable or not.

