
Database Management System
Prof. Partha Pratim Das

Department of Computer Science & Engineering
Indian Institute of Technology, Kharagpur

Lecture - 30
Indexing and Hashing/5 : Index Design

Welcome to module 30 of Database Management Systems. We have been discussing

about indexing and hashing and this is a concluding module on that.

(Refer Slide Time: 00:27)

We have in the last module discussed about different hashing techniques static and

dynamic and compare that in introduce bitmap indices.

(Refer Slide Time: 00:35)

Now, in this module we would specifically look into the use cases, we will check as to

how indexes can be created in SQL first. Because we will have to use it you have already

known the theory of various different indices and so, on so, how do you actually tell the

system to index.

And the second is the important thing as to when should you index and on what. So, we

talked about a few guidelines for indexing.

(Refer Slide Time: 01:05)

So, that is that is what we want to learn.

(Refer Slide Time: 01:09)

So, index can be defined in SQL in very similar syntax as you create a table. So, you say

create index put a name for that index and then you say on which relation are you

indexing and put the list of attributes on which you are indexing. So, if branch can

relation can be indexed on branch name and I may call that b index.

Now, there is a way to also express create unique index if you say create unique index

and it will expect that the search key is a candidate key because I mean in the sense it all

values of that will have to be distinct unique. Now, this used to be very common to do

this kind of indexing earlier, but now it is more preferred that you can use unique

integrity constraint in terms of the create table which we have already discussed. And

that will ensure that you have that kind of a condition satisfied and you may not create

unique index for that.

If you do not want an indexes actually do drop index and put the index name. So, most

database system allow specification of the type of indexing and clustering that you want

to do. So, you can create an index for a cluster also and you can create index for

composite index for multiple columns.

(Refer Slide Time: 02:32)

So, let us run through quickly couple of examples create an index for a single column to

speed up queries the test that column. So, we are saying employee emp tab is a is a

relation which has an attribute e name the employee name and we want to create an

index on that if we do that then any search that is based on the employee name will

become really fast.

Now, while you create the index you could also use optionally various other factors

which relate to particularly the storage setting you can set what is you know what is the

storage you want to keep for the index how you would like to increase increment that

and so, on what is the table space. And very most interestingly you could say that

compute statistics now this is something which is optional, but is very useful. For

example, if you are not sure as to how your data is getting distributed in different

relations and how really they are queried you would not know whether an index is good

or it is inappropriate.

So, it is good to actually compute that statistics in terms of the index that you want to

know that by doing this index what kind of accesses have happened? So, compute

statistics will tell the database system to keep on computing this which you can

subsequently refer to. You can create index on two columns also; so, here we are

showing one where emp tab is indexed on employee name eme name and employee

number together. So, you saying that you create an index on both of these and compute

the statistics at the same time.

Now, other ways there are index that can be created on functions. So, suppose if there is

a query which going to sort based on the uppercase writing of the e name. So, if I just

index the e name then that itself would not speed up the operation because while you

want to sort then the e name will have to be changed into the upper case by upper and

that is every time will have to do that for every record and then actually apply the sorting

comparisons.

So, that will become a slow process, but you can do a function based indexing where you

can specify as you can as you can see here the function based indexing where you say

that you index based on upper e name. So, what will happen your actual values are in

impossibly lower case or mixed case, but your index emp upper e name will get created

on the in the order of the upper case of e name and will be very useful in terms of the

sorting later on.

(Refer Slide Time: 05:36)

Now, you can like the normal index you can also create the bitmap index. So, you just

say create bitmap index on the name and rest of the structure is similar. So, if there is a

student relation which has these fields I can we can create an index on gender; we can

create another index on semester these are very typical candidate for bitmap index

because gender can take 2 values here male and female semester can take 4 values 1, 2,

3, 4.

So, the bitmap are shown here and then if I want to do a select where the gender is F and

semester is 4; then it is basically ending the bitmap of F which is 0 1 1 and the bitmap of

semester 4 which is 0 0 1. So, if we if we add these two we will find that we have the

result which is 0 0 0 1. So, which tells me that student id the fourth record of the student

ID 103 is a result.

So, this is how bitmap indexing can be used in SQL.

(Refer Slide Time: 06:50)

And actually this the whole thing can be used subsequently in multiple key access for

example, if you are doing a query where it is you have department name is finance and

salary is 8000, then there could be several strategies for processing this query using the

index values for example, if you have single index on single attributes. So, use you can

use the index on department name to find instructors which have department and finance.

And then test if the salaries 80000 or you can use index on salary to find instructors with

salary 80000 and then test if department name is financed.

Or you can use department name index to find pointers to all records that part in to

finance department. Index on salary to find all records that part in to 80000 salary and

then take intersection of the both sets to get the final result.

(Refer Slide Time: 08:04)

So, multiple key access could be achieved in terms of various single indexing single

attribute indexing also; When we are doing composite search keys then naturally if there

are 2 then the indexing means that you will have to define a combined lexical order. So,

department name salary means that either department it is it is ordered to indexes are

ordered in terms of just the department name.

Or if the department name is same then they are ordered in terms of salary this ordering

in which you write the attributes in the multi composite search key is very important

because you can see that for the two if the department name is same then the salary will

be compared, but not the other way around.

(Refer Slide Time: 08:50)

So, when you have index on multiple attributes say again going back to that same

example of department naming finance and salary being 80000. So, using separate index

is less efficient though we saw how that can be done, but we can also efficiently handle if

we have this indexing on department name and salary. Then we can also easily handle

queries like department name is finance and salary is less than 100; it is not because as

you can easily figure out because if I can find the equality then I also know what is less.

But note that we cannot efficiently handle if I say that where department name is less

than finance and balance I am sorry this should be salary is 80000. The reason is that the

ordering of the attributes in this composite key is department name salary. So, if there is

if department name is less than is there is no way to check for the equality of salary, but

if the department name equals then there is a possibility of checking on the salary. So,

because of this ordering this will may fetch many records that satisfy the first one, but

not the second condition.

(Refer Slide Time: 10:16)

Now, you should also remember that you need a special privilege to create an index

because this is partly in the domain of the administrators job. So, you need the specific

privileges access rights to be able to do that. So, to create a new index either you have to

own or own that that those set of tables on which you are creating the index and or have

the index objective privilege for those tables or the schema that contains the index might

also have a quota.

So, that you can because creating the index means you are will be using the temporary

tablespace on a on a regular basis. And, but with this you will not be able to create index

in some other user schema for that you need a global right which is the create any index

kind of system privilege. So, also check if you are not being able to create an index

check what is your privilege that exists function based indexes require other privileges;

please check on that.

(Refer Slide Time: 11:28)

Now, let us. So, we have seen how to create index how to use that in terms of the SQL

application SQL query system.

(Refer Slide Time: 11:43)

Now, we will quickly take a look into why how should we index and where. So, if you

recall in the modules 16 to 20 in the week four we have studied various issues of a

proper design of relational database system, we focused on normalization of tables that

can reduce redundancy and minimize anomaly how can we easily adhere to various

constraints how to improve the efficiency of access and update a better normalized

design often gives better performance.

For example, we optimizing the minimizing the requirement for computing join and all

those. So, those advantages we have saw, but the actual performance of a database

system is significantly impacted by the way the physical data is organized and managed

which does not come across in terms of the logical design that we have seen. So, these

are what are being achieved in terms of indexing and hashing. So, this is where we we

need to understand the actual boundary to the physical organization and that is what we

have been trying to do.

So, if you think back while you are normalizing at the design level. So, those are the

startup time activities; so, usually we will design and normalize and you know make the

create table and do all that at the beginning of a database system. And it is really it will

really be changed later because it will have severe implications, but the performance

behavior will continue to evolve will continue to change because the design does not tell

you exactly what the statistics of that data would be what the behavior of the data would

be. So, it will evolve as data base is used over time.

Hence you will need to continuously collect statistics about the data of various tables to

learn of the patterns as to which table is getting heavier which where what are the

attributes on which more accesses are happening, where what kind of queries you are

getting and you have to adjust the indexes on the tables to optimize the performance.

So, that is the whole requirement all about unfortunately unlike the functional

dependency or multivalued dependency theories that we studied in the design space;

there is no sound theory that determines optimal performance. So, all that have is more

and expertise that you develop through experience. So, what I will take you through are a

set of few common guidelines about how to keep your database agile while you are you

go through the life cycle of different data coming in and going out.

(Refer Slide Time: 14:23)

So, the first rule I say rule 0 is the indexes lead to access update tradeoff we have already

seen this at every query results in a search in the underlying physical data structure as we

have understood. Having specific index on search certainly can improve performance,

but as we have already noted every update with the be it insert, delete or update of values

will result in update of the index files.

So, it is an overhead or penalty for quicker access that we are paying. So, having

unnecessary indexes can cause significant degradation of performance. Index files will

also occupy significant space on your disk and it may actually cause to slow down your

behavior due to memory limitation during index computation. So, rule 0 indexes lead to

this trade off always be watchful about that use judgment to index.

(Refer Slide Time: 15:26)

Rule 1 index the correct tables decide which tables are best candidates for index to

creating an index if you frequently want to retrieve say less than 15 percent of the rows

in a large table. Now first 15 percent is a ballpark number this can vary greatly according

to the relative speed of the table scan ah.

Fast of the table scan you can use a lower percentage of cut off more cluster the row data

you can use a higher percentage for cut up. Index tables index columns used for joining

multiple tables if you have situations or multiple tables are used in joins on a on a

moderately regular basis then the columns are used in the join in these tables; these

tables should be indexed based on those.

The primary and unique keys automatically have indexes, but you might want to you

have an index on the foreign key. So, consider that small tables do not require index if a

query is requiring unnecessarily long time or unexpectedly long time; it is time to check

if the table has become really big compared to small and it might be term to index that.

(Refer Slide Time: 16:45)

So, rule 1 index the correct tables and certainly related to that is index the correct

columns. The columns with some of the characteristics I have just noted down are good

candidates for indexing values are relatively unique in the column, then indexing will

give you a good benefit. There is a wide range of values where you can your regular

indexes will work well.

There is a small range of values where bitmap indexes will give you good results. So, use

those in column contains many nulls, but queries often select all rows having a value. So,

there are column have lot of null values, but whenever you do a query then you actually

take out rows which have values. So, in those cases you can you can actually if you

involve certain I mean if you write the SQL query by keeping the condition in a way. So,

that the index can be used that is for example, you could put a condition such that only

non null values will be matched.

Compared to that if you have just taken (Refer Time: 17:54) at non null check your first

query would run faster; if you have an index on the COL X because the query would be

able to work on that index. So, these are things that you should do in terms of the

column. And if a column has the kind of characteristic that there are many nulls in the

column and you typically do not search non null values; then it is good it it is better not

to index those columns long and long row columns cannot be indexed anyway. So, this

remember the rule 2 index the correct columns.

(Refer Slide Time: 18:29)

Then the rule 3 limit the number of indexes for each table the more the index more over

it we have already seen this as a part of rule 2 rule 0 as well. When rows are inserted or

deleted indexes of a table must be updated when columns are updated all the indexes on

the column must be updated. So, there is a lot of cost; so, half as limited number of

indices as will start with purposed.

So, you must regularly weigh the benefit of having the indexed for queries against the

performance overhead of the updates. For example, if a table is primarily read only you

might use more indexes because the overhead will be less, but if a table is heavily

updated you might use fewer number of indices.

(Refer Slide Time: 19:14)

Rule 4 choose the order of columns in the composite index. So, you have already seen

couple of slides back I talk to you to the impact of what is the impact of ordering in other

columns in terms of composite index. So, the order of columns in the create index

statement can affect performance. So, the column that you expected to be used most

often put that as the first index.

Because it is also possible that you are actually not doing a query which takes the whole

of the composite search key, but a part of it, but if you have a composite search key

index you will still benefit if the query is using the attributes from the first part of the

index. So, here I am showing some example say there is a vendors part table and let us

say there are 5 vendors and let us say. So, there is vendor id part number and unit cost

forget about unit cost for this consideration.

So, it is primarily part number and vendor id. So, let us say there are 5 vendors and each

vendor has about 1000 parts. So, and let us say that it is queried like this that the part

number in such and such and vendor id is such and such you get you select all all that

matches.

Now, if you create a composite index then it should be on part number vendor id not the

other way around. Because if you if you do that then queries where only part number is

used will also run faster, but the vendor id here is not a very good candidate for indexing

as a as a first attribute because it has only five possible values very small number of

value. So, indexing really does not help here it cannot discriminate after indexing there

will be lot of clusters still found.

(Refer Slide Time: 21:17)

Rule number 5 gather statistics to make index usage more accurate that is a that is a very

very important factor the database can use indexes more effectively if the statistical

information is available. So, gather statistics learn from that we have already discussed

how to gather statistics from the create index statement.

And then there are functions these are function names in oracle in your system you might

want to check up what these functions are called. So, by that you can find out statistics

about the tables and the schema that you have and use that information to subsequently

optimize the index.

(Refer Slide Time: 21:58)

The last rule 6 is drop index that are no longer required. So, if an index might be dropped

because for several reasons for example, it is it simply does not speed up the queries. So,

table might have become too small there will be many rows in the table, but very few

index increase right we have seen these are not the ideal.

So, it may not have been the case earlier and now it may be the case. So, in that case that

index should be drop because it is not helping you the queries in your application do not

use the index the query you have certain indexes and the queries are done on other

attributes or other composite attributes. So, it is not the indexes of no value and;

obviously, index must be dropped before being rebuilt if you are rebuilding if you are

creating new index in a new way then. So, make a judgment and drop indexes which are

no longer required as an when you observe that in drop indexes and improve the

performance.

When you drop an index all extents of the indexes segment are return to the tablespace.

So, this is basically the space management and SQL command for this you already know

now please keep in mind that if you drop a table then all associated indexes are

automatically dropped because; obviously, if the data is not there then how about their

index. So, to drop an index you need the drop any index system privilege we talked

about privileges earlier too.

(Refer Slide Time: 23:26)

So, this summarizes our discussions on indexing and hashing. So, here in this particular

module you have learned to create index in SQL and introduce few rules for good index.

Overall in this week in all the 5 modules we have learnt about how to speed up query

processing, how to speed up the execution of access insert delete queries in your

database through the lifetime. And we have looked at various different indexing schemes,

we have looked at hashing and made comparisons.

So, one take back that you can certainly have is the most important indexing scheme or

indexing structure is the B plus tree which can be used for data files as well as for index

files and several like SQL server uses the B plus tree only. Now, hashing options we have

looked at and we have seen that it has a varied acceptability it is a powerful technique,

but not all systems use that equally strongly.

And we have then made understood that indexing a database or tables on different

attributes is a very delicate responsibility which has to be done with a lot of judgment.

And for that statistics must be rightly collected and good judgment in terms of the

distribution of the data, access of the data nature of queries all these need to be

considered carefully so, that you can really get good performance from the design that

you have.

So, on top of the knowledge of good design that you acquired through the all the theory

of normalization and you know redundancy removal; your good judgment in terms of

good appropriate index design will take you a long way in terms of making a very good

database system engineer.

