Database Management System
Prof. Partha Pratim Das
Department of Computer Science & Engineering
Indian Institute of Technology, Kharagpur

Lecture - 29
Indexing and Hashing/4 : Hashing

Welcome to module 29 of Database Management Systems; we have been talking about

indexing and hashing and this is a fourth in the series.

(Refer Slide Time: 00:26)

PPD

Module Recap

T

B B*-Tree Index Files
B B-Tree Index Files

SWAYAM: NPFTEL-MOC MOOTs Instructor: Prof. P P Das. IIT Kharagear. Jan-Apr. 2018

In the previous 3 we have talked about different aspects of indexing and specifically in
the last module, we have introduced the most powerful data structure B plus tree for

index files.



(Refer Slide Time: 00:39)

Module Objectives

§ To explore various hashing schemes - Static and Dynamic Hashing
# Tocompare Ordered Indexing and Hashing
§ Tounderstand the Bitmap Indices

-MOC MOOTs Instruetoe: Prof. PP Das. IIT Kharageur. Jan-Apr. 2018 l!
F’ :

P Ee Il te

Dalabuie !ymmcn;em-ﬂmm al Bilberschatz, Kerth and Sudarshan

In this module, we will take a look into a explore into various hashing schemes for
achieving the similar targets we will look at static and dynamic hashing. And we will
then compare it between the ordered indexing that we have discussed already and

hashing and we will also understand about what are called bitmap indices.

(Refer Slide Time: 01:03)

- Module Outline

T

:
!
g
i
:
E
:
:

m Static Hashing

® Dynamic Hashing

® Compariscn of Ordered Indexing and Hashing
m Bitmap Indices

pRPe gl te.

Database !mcMn-&m a4 Bilberschaiz, Kerih and Sudarshan

So, these are the module outline.



(Refer Slide Time: 01:07)

=

2
£
i
i
X
E
d
a
i ]
i
§
i
|
]
H

Static Hashing

A bucket is a unit of storage containing one or more records (a bucket is typically a disk block)
Ina hash file organization we obtain the bucket of a record directly from its search-key value
using a hash function

Hash function f is a function from the set of all search-key values K to the set of all bucket
addresses B

Hash function is used to locate records for access, insertion as well as deletion

Records with different search-key values may be mapped to the same bucket; thus entire bucket
has to be searched sequentially to locate a record

“rRE Rt BD

Database !wmc;iecm-v Edition i Cfilberschatr, Korih and Sudarshan

So, static hashing I am assuming that all of you know about basic concept of hashing. So,
it what it does a there is a bucket is a unit of storage containing one or more records. So,
that is the basic logical concept typically in physical terms a bucket can be a disk block.
So, a hash file organization obtains we in a hash file organization; we attempt to obtain a

bucket for a record directly from its search key value using a hash function.

So, this is where it becomes very different compared to the ordered indexing for which
we saw all this I some method and the B plus tree where we went through different index
structure, but here we want to make use of a mathematical hash function. So, that given
the key ideally I should be able to get the bucket in which that particular record

containing the key exists that is the requirement.

So, hash function h is a function from the set of all search key values K to the set of all
bucket addresses B. So, it is a mathematical function and it is used to locate the records
for access insert as well as delete records with different search key values may be
mapped to the same bucket right this is not what ideally we wanted, but it is possible
there is a entire bucket has to be searched sequentially once you reach there to look at a

record, we can make use of other techniques there we will come to that.



(Refer Slide Time: 02:33)

Example of Hash File Organization

-

Hash file organization of instructor file, using dept_name as key

+ There are 10 buckets
« The binary representation of the th character is assumed fo be the
integer i
«  The hash function returns the sum of the binary representations of
the characters modulo 10
Eg h(Music)=1  h{History) = 2
h(Physics) = 3 hiElec. Eng.) = 3

Bk MO MOOTS Instructor: Praf. PP Das. IT Kharagear. Jan-Apr. 2018

B R A S R

a7 CBilbrschatz, Kerh and Sudarshan

Daiabase System C;«.mn-v Edition

So, let us take a quick example hash file organization of an instructor file using say
department named as key. So, we need to design a hash function. So, let us assume that
on the address space B we have 10 buckets. So, every bucket is designated by a by a
serial number bucket 0 to bucket 9 and we take department name is a key. So, itis a is a

character string.

So, we take the binary representation of the ith character and assume it to be the integer I
simply every character you take its binary representation and think as if it is an integer.
And then as a hash function we add these integer values of binary representations
modulo 10. So, M hash value of music we take the binary representation of m which is
the as key code of M capital M; then add the as key code of u the lower case u and so, on

and do that modulo 10 and we get a value which is 1.

So, naturally since we are doing modulo 10 which is the number of buckets here. So, we
will get a result for the hash function which is between 0 to 9 which, is a bucket address

where it is expected.



(Refer Slide Time: 03:51)

-.,__.!I Example of Hash File Organization
' bucket 0 bucketd
® 12121] Wu Finance 90000
% 7643| Singh | Finance 30000
|
1 |
i bucket 1 bucket 5
; 15151 Mozart | Music |40000 76766| Crick | Biology | 72000/
x
£
d
: bucket 2 bucket 6
3 3243 El Said | History [so00q] 1001 omp. ScL 5000
§ 58543 Califeri_| History {60000 43565 Katz f_‘omp.Sd.]ﬁlmi
| £3621 |Brandt_|Comp. c.92000
I | [ 1]
g bucket 3 bucket 7
s 2202 Einstein | Physics 95000
g TUHGald | Physics |70 3
3 ORM5 Kim | Eloc, Eng, 80000
E
H
; Hash file organization of instructor file, using dept_name as key
B I L

|
i
:
i

ni

EBilberschatz, Korih and Sudarshan

So, here we are showing an example. So, you can see in the earlier slide we are showing

music is 1 history is 2 physics and electrical engineering both are hash value 3.

So, you can see here in bucket 2 since history has value 2. So, those records El Said and

Califfieri records go to bucket 2 whereas, physics and electrical engineering both have

hash value 3. So, that Einstein golden came all go to the bucket 3 similarly it happens

with the other buckets as well not all buckets are shown here shown only 8 buckets are

shown, but in this way we can actually directly map them to the buckets.

(Refer Slide Time: 04:33)

- Hash Functions

i
-
|
}
;
:
: ]
:
;

proportional to the number of search-key values in the file

values from the set of all possitle values

key

Hi

Worst hash function maps all search-key values to the same bucket; this makes access time
An ideal hash function is uniform, i.e., each bucket is assigned the same number of search-key
Ideal hash function is random, so each bucket will have the same number of records assigned
to it irrespective of the actual distribution of search-key values in the file

Typical hash functions perform computation on the internal binary representation of the search-

+ Forexample, for a string search-key, the binary representations of all the characters in the
string could be added and the sum modulo the number of buckets could be returned

P eIt B

Efilberschatz, Korih and Sudarshan




And; so, such a hash function would be really useful now the question is a it is a
mathematical function; so, how good or how bad it is. So, we will say that the worst
possible hash function is one which maps all key values to the same bucket. So, that

everything will have to within them serially; so, that is of no use.

So, the ideal one would be which will distribute the different search keys values in
different buckets in an uniform manner to the from the set of all possible values. So, that
would be that will be nice to have and ideal would be that if the hash function is random
which means that. So, that each bucket will I mean it will generate from the key value it
will generate the bucket number, it will generate the bucket address in kind of a random

manner.

So, that in a random phenomena; so, that irrespective of what kind of actual distribution
the search keys may have the buckets over which the distribute will be more or less the

same. So, every bucket will have same number of records things will be balanced.

A typical hash function performs computation on the internal binary representation of the
search key that is the basic that that is the one that you have just seen. So, if it is a string
then you treat the characters as they are binary representations as integer do some

modulo a number exactly what we did in the last case.

(Refer Slide Time: 05:11)

Handling of Bucket Overflows

i3

m Bucket overflow can oceur because of
Insufficient buckets
Skew in distribution of records. This can occur due lo two reasons:
multiple records have same search-key value
chosen hash function produces non-uniform distribution of key values
® Although the probability of bucket averflow can be reduced, it cannot be eliminated
itis handled by using overflow buckets

&
;
i,
i
¥
H
é
&
&
i
£
i
E’
H
z

R B R e SR

nuw CSilbérachatr, Korth shd Sudarshan

Database System Concepis - 8 Edtion




Now the question is the buckets have a certain size we said that a bucket is a is a disk
block. So, a bucket can overflow because there may not be enough sufficient buckets to
keep all the records. So, it will not fit in or your distribution could be skewed. So, there
may be many buckets where there are lot of space left, but some buckets may have a too
many records coming on to it because of the behavior of the hash function. So, that
multiple records have the same key value or chosen hash function produces non uniform

distribution and so, on.

So, if that happens then the probability of bucket flow; bucket overflow will happen and
we can try to reduce that, but it cannot be eliminated. So, all that you do is to have
overflow bucket which is nothing, but having other buckets connected to this target

bucket in a chain.
(Refer Slide Time: 07:04)

Handling of Bucket Overflows (Cont.)

u Overflow chaining - the overflow buckets of a given bucket are chained together in a linked list
Above scheme is called closed hashing

An alternative, called open hashing, which does not use overflow buckets, is not suitable for
database applications

bucket 0

bucket 1 =+ —|-|

overflow buckets for bucket 1

bucket 2

-MOC MOGTs Isstruetor: Prof. PP Das. IT Kharagear. Jan-Apr. 2018 i l l

bucket 3

‘PRI e 4RSS O G BD

Database !yumcr:c;eeﬂn-v Edition Adi Cfilberschatz, Korih and Sudarshan

So, this is called a overflow chaining as you can see there are 4 buckets shown here and
bucket 1 we are saying showing are connected with other two buckets which are the
overflow buckets for bucket 1. So, that this kind of a scheme is called closed hashing
there is an alternate scheme called open hashing, which does not use a bucket overflow
and, but it is not therefore, suitable for database applications and we will not discuss it

here.



(Refer Slide Time: 07:31)

Hash Indices

=

8 Hashing can be used not only for file organization, but also for index-structure creation

B A hash index organizes the search keys, with their associated record pointers, into a hash file
structure

m Strictly speaking, hash indices are always secondary indices

if the file itself is organized using hashing, a separate primary hash index on it using the
same search-key is unnecessary

However, we use the term hash index to refer to bath secondary index structures and hash
organized files

EWAYAM: NFTEL-MOC MOGTs Instructor: Fraf. PP Das. IIT Kharagear. Jan-Apr. 2018

A RN S SRS R

Daiabise Sysiem Concepds - § Edition .42 Silberschatz, Kerth and Sudarshan

So, hash indices can be used only for file organization I mean not only for file
organization, but they can also be used for indexed structure creation like we did for B
plus tree we can use the hash indices for index structure also. So, hash index organizes
the search keys with their associated record pointers into a hash file structure exactly in

the same way its hashing otherwise.

So, but the you can note that the hash indices are always kind of secondary indices
because if a file itself is organized using hashing; then a separate primary hash index on
it using the same search keys are necessary. Because if if you are talking about primary
hash indexing then it will mean that you are taking the primary search key and creating a
hash index on that, but if the file is hash created by hash indexing then that already
exists. So, anything that you create in terms of indexing is basically a secondary indexing

structure in a hash organized file.



(Refer Slide Time: 08:38)

- Example of Hash Index
— bucket 0
. 76766 | |
i C 1
3 bucket]
2 45565 | 1,
M 76643 | -
NN
g bucket? % \\
i mn [ NN [T Gk [ Wology | 700
£ | NN s-+[ 10101 | Srinivamn | Comp. 50 | 65000
' T e el 8 (Ko | Comp.sd | 7500
i W0 T N\ [ | Brandt | Comp, 5. | 92000
x e S s 9045 | Kim | Elec. Eng. | 80000
o e 12121 [Wu Finance 0000
: bucket o[ 7650 [Sigh [ Fiunce | A0
§ 11 ||| »[ 350 | Hisad | History | 60000
% | \ la 5550 | Califieri | History | 62000
§ - \,{« 15151 | Mozart | Music 0000
- bucket 5 == -,f s 22727 | Eimstein | Physics 5000
[ 1150 sas83 | | o 365 | God | Physics | &0
g 33456 98345 | )
3 bucket § /'Z/
E [ i
s
: — /ff + Hash index on instructor, on attribute ID
H fom T2 / + Computed by adding the digits modulo 8
i e I
H = Y
Daiabase System Concepts - §* Edition Hi Cilberschatz, Korth and Sudarshan

So, this is kind of hash indexing example. So, here I am I am showing the hash indexing
with the ID of this table and the index is computed by adding the digits modulo 8
assuming that there are 8 buckets. So, if you take; so, if you look at bucket 0 then the key
that has gone there is 76766 which is 7 plus 6; 13, 20 plus 6; 26 plus 6 32 modulo 8 is 0.

So, it goes into bucket 0 it happens that way if, but if we look into bucket 4 you will find
that the 4 IDs actually all have this value 5 under the hash function. So, they all need to
go to this bucket and therefore, but the bucket size assumed here is just 2. So, after the 2
indices have gone in there a overflow chain is created and another overflow bucket is

used to keep the next two IDs there. So, this is how a hash index can be created.



(Refer Slide Time: 09:45)

Deficiencies of Static Hashing

i,

m |n static hashing, function h maps search-key values to a fixed set of B of bucket addresses.
Databases grow or shrink with time

If initial number of buckets is too small, and file grows, performance will degrade due 1o too
much overflows

If space is allocated for anticipated growth, a significant amount of space will be wasted
initially (and buckets will be underfull).

If database shrinks, again space will be wasted

m One solution: periodic re-organization of the file with a new hash function
Expensive, disrupts normal operations

m Befter solution: allow the number of buckets to be modified dynamically

i
i
i
i
X
£
i
&
1Y
3
Y
i
i
E’
]
E

R aas e B

Database !yumcr:c;mn-v Edition .44 Bilberschaiz. Korth and Sudarshan

Now, this is this kind of a scheme where you start with a fixed number of buckets and
then you design a hashing function which maps the search key values to this fixed set of
buckets is known as a static hashing it is static because you start with a fixed number of

buckets.

So, yeah naturally the question is what should be this value of B the number of buckets.
Now if it is initially too small then the file keeps on growing the performance will
degrade because you will have too many overflow chains and if the all advantages of
having done the hashing will get lost. On the other hand if you take a too large a B then
you will unnecessarily allocate a lot of space anticipating growth, but it may take a very
significant amount of time to utilize that that space or also it is possible that it the
database at certain point of time grew to a large size and then it started shrinking and

then again space will get wasted.

So, static hashing has these limitations. So, naturally what you will have to do is to
periodically reorganize the file with a new hash function which is certainly very
expensive because it changes the positions of all records. So, it disrupts the normal
operation; so, it would be better if we could allow to change the number of buckets to be
changed dynamically at the as the database grows. So, if the database grows it can use

more and more buckets and if we could adjust this in the hashing scheme inherently; then



it will certainly be better as a solution. So, that gives rise to what is known as dynamic

hashing.

(Refer Slide Time: 11:30)

g Dynamic Hashing

m Good for database that grows and shrinks in size
m Allows the hash function to be modified dynamically
m Extendable hashing - one form of dynamic hashing
Hash function generates values over a large range — typically b-bit integers, with b = 32
At any time use only a prefix of the hash function to index into a table of bucket addresses
Let the length of the prefix be i bits, 0< 1< 32
Bucket address table size = 2", Initially i= 0
Value of i grows and shrinks as the size of the database grows and shrinks
Multiple entries in the bucket address table may paint to a bucket (why?)
Thus, actual number of buckets is < 2
The number of buckets also changes dynamically due to coalescing and splitting of buckets

:
i
i
i
£
é
&
LY
3
LY
5
H
i
E’
3
H

ns S S O |

So, it is certainly good for databases that regularly grows and shrinks in size, allows the
hash function to be modified dynamically. Of the different dynamic hashing schemes I
will discuss the extendable hashing which is a very popular scheme. So, let us see what
how it works. So, it at the hash function will generate the value over a large range say

typically a B bit integer say 32 bit integer now.

So, what you have is you have generated a value which is hash value which is say over
32 bits, but what you do at any time you use only a prefix of that; you only use a part
frontal part of that to index the table to the bucket address and the length of that prefix is
1 bits; then naturally it could be at least theoretically it could be 0 that is you do not use

any prefix and it could be up to that you use all the prefixes.

And so, therefore, if you are using i bits then the bucket address table the possible you
know bucket addresses that you could have is 2 to the power i initially you keep that as

0.

So, then the address table will actually point to different buckets let us start moving to an

example and see what is happening.



(Refer Slide Time: 12:57)

g General Extendable Hash Structure

hash prefix

] [i]

:
i
i
:
E
i
a
1Y
3
Y
H
H
i
5
8
E

bucket address table . bucket 3
'

.
In this structure, i, = iy = |, whereas j; = |- 1

Decode j number of bits to find the recard in m

L L =

So, this is the general scheme. So, you have a hash prefix which is using i number of bits
and therefore, different values of i number of bits. So, there will be 2 to the power 1
entries naturally you have different buckets here, but you may not actually have all 2 to
the power 1 buckets you may have less than that as it is shown here that bucket 2 and

bucket 3 exist, but bucket 1 is a holder for both this prefix 0 0 as well as prefix 0 1.

So, and on on top of every bucket you have a kind of bucket depth given. So, it is a
number of bits that you need to explore in the in the representation in the; so, that you

can distinguish the different records of that bucket.

Naturally the maximum value of any of these i is the i here, but it could be less than that.
So, I am I am sure this is this probably is not making much sense immediately. So, let me

move to my detailed discussion.



(Refer Slide Time: 14:19)

Use of Extendable Hash Structure

® Each bucketjstores a value |

Allthe entries that point to the same bucket have the same values on the first  bits
B To locale the buckel containing search-key K,

Compute h(K) = X

Use the first / high order bits of X as a displacement into bucket address table, and follow the
pointer to appropriate bucket

8 Toinsert a record with search-key value K,
Follow same procedure as look-up and locate the bucket, say |
If there is room in the bucket j insert record in the bucket
Else the bucket must be split and insertion re-atterpted (next slide)
» Overflow buckets used instead in some cases (will see shortly)

Bk -HOC MOOCs Instructoe: Prof. PP Das. IT Kharageur. Jan-Apr. 7018 l!

‘FETLINL SO B

Database System cn;'m.-s- Edition il Cfilberschatz, Korih and Sudarshan

So, what I was saying that each bucket j stores a value 1 j. So, this is the all the entries
that point to this bucket has the same value on the first i j bits. So, this i j bits are are
identical. So, all of them have come to this bucket. So, how do you look at the bucket
that contains the search key K j? So, it compute the hash function which is X user prefix
1 bits of X as a displacement into the buckets address table and follow the pointer to the

appropriate bucket.

Now if I have to insert a record with a search key K j; you will follow that same
procedure as a lookup and look at the bucket j and then you will have to look for making

some space. So, let me do something.



(Refer Slide Time: 15:15)

g Deletion in Extendable Hash Structure

:
g
i
|
]
:
;
‘
:

§ Todelete a key value,
locate it in its bucket and remove it

o The bucket itself can be removed if it becomes empty (with appropriate updates to the
bucket address table)

» Coalescing of buckets can be done (can coalesce only with a *buddy” bucket having same
value of j; and same ij -1 prefix, if it is present)

Decreasing bucket address table size is also possible

» Nole: decreasing bucke! address table size is an expensive operation and should be
done only if number of buckets becomes much smaller than the size of the table

PP 4TI OB

Hai CBilberschatz. Korth and Sudarshan

Let me before going through this statement of the algorithm.

(Refer Slide Time: 15:20)

- Use of Extendable Hash Structure: Example

i
-
:
!
d
é
i
i
8
z

dept_name h(dept_name)

Biology 0010 1101 1111 1011 0010 1100 0011 0000
Comp. Sci. 1111 0001 0010 0100 1001 0011 0110 1101
Elec. Eng. 01000011 1010 1100 1100 0110 1101 1111
Finance 1010 0011 1010 0000 1100 0110 1001 1111
History 1100 0111 1110 1101 1011 1111 0011 1010
Music 00110101 1010 0110 1100 1001 1110 1011
Physics 1001 1000 0011 1111 1001 1100 0000 0001

[ R-E S BN A R

Let me just go through an example first and we can come back to this formal statement.

So, what we are trying to do is there is the department names which we are using as a
key to do this hashing index and they are represented in terms of the binary
representation. So, this is this is the hash of that department name and hashed into you

can you can easily see this is 1, 2, 3,4, 5, 6, 7, 8. So, this is hashed into 32 bit number.



(Refer Slide Time: 16:01)

" dept_name hidegt_name)
= L Biology D010 1101 1117 1001 0010 12000011 0000
..ﬁ Example (Cont.) Comp. 5. 1171 0001 0010 (100 1001 0011 0110 1101
Elec. Eng, 01000011 1010 1100 1100 0110 1101 1111
Finance 1010 0011 1070 0000 1100 0110 1001 1111

History 1100 0111 1110 1101 1011 11110011 1010
Musie 0011 0101 1010 0110 1100 1001 1110 1011
m |Initial Hash structure; bucket size = 2 Physics 1001 1000 D011 1111 1001 11000000 D001
hash prefix @
bucket address table bucket 1

® Insert “‘Mozart", “Srinivasan®, and “Wu' records

EWAYAM: NFTEL-MOC MOGTs Instrucior: Prof. PP Das. IIT Kharagear. Jan-Apr. 2018

i = TG s

Now, what do we do? So, initially we start with. So, this is this is all the different hash
values that you can see | am sorry this is all the different hash values and this is the table
that I need to actually represent. So, initially there is nothing. So, I try to I will try to

insert Mozart Srinivasan and these 3 records here. So, let me try that.

(Refer Slide Time: 16:33)

" dept_name hidegpt_name)
= Biology 00101101 1111 10110010 11000011 0000
= Example (cont) Comp. S, 1111 0001 0010 0100 1001 0011 01101201
Elec.Eng,  0I0DDOIT 1010 1100 100 0110 1101 1111
e Finance 10100011 1010 0000 1100 0110 1001 1111
H Hisory  11000LE1 1110 1101 1011 11110011 1010
: - \ R . Music 00110101 1010 0110 1100 1001 1110 1011
i m Hash structure after insertion of “Mozart", “Srinivasan”,  Physis 1001 10000011 1111 1001 11000000 0001
'i and "Wu" records
i
x .
E hash prefix
{ [ ]
3 1 *[15151|Mozart |Music {40000
Y
H
E bucket address table m
g 10101 [Srinivasan/Comp. Sci
§ 1221Wu  [Finance
tein record

So, if I look at Mozart then Mozart is from the department of music. So, and Srinivasan
is from computer science Wu is from finance. So, let us look at this. So, Mozart is from

music Srinivasan is from computer science and Wu is from finance. So, these are the 3



now if we look into the prefixes of their hash values; you can see that their hash values

are 1 1 and for music it is 0 right.

So, if T use a hash prefix which has just one bit and naturally therefore, I have two entries
0 and 1 then music with the value 0 maps to this bucket where I entered the record for
music. And computer science and finance the records corresponding to them has a hash
value prefix 1. So, they both map to discipline this is how it can get started. So, you you

find out while inserting you find out where is Mozart and based on that you create this.
Now, let us try to insert Einstein.

(Refer Slide Time: 18:09)

dept_name hidept_name)

Exa mp|e (C ont. ) Biology 0001101 1111 10110010 11000011 0000

—d Comp.Si. 1111 0001 6010 0100 1001 6011 0110 1101
Elec.Eng,  0I0DOOIT 1010 1100 1100 0110 1101 1111

Finance 10100011 10100000 1100 0110 1001 1111

tHeshsucre e fErotinrerod 50 B e
Physics 1001 1000 0011 11111001 11000000 0001

hash prefix

] []

_— |15151|Mozart | Music |40000

T (12121 W Finance | 90000
22222{Einstein | Physics [95000

Tw |Gk |Bokgy | oo |
2 s | NG| Senivasan | Comp. 30 | 50
R Comp. 5, | S0 |
2

10101{Srinivasan Comp. Sei 65000

g
i
i
!
i
8
z

38881 | Gallied | Hanry | 2000

w and El Said records

Dutabuse !nm-tn«‘wn-v Edition HH CBilterschatz, Kerth and Sudarshan

So, to insert Einstein what do we find? So, what all we already have? We have music, we
have computer science, we have finance and now Einstein comes in Einstein is from
physics. So, what would happen when you try to insert Einstein? You already had

computer science with 1 as 1 prefix and finance with 1 prefix.

So, you had in bucket two corresponding to 1 you already have 2 records that bucket is
full assuming that it can take only 2 records. So, now, you get another which is value 1;
so, its value is 1. So, what I need to do? I need to actually expand this now how do I do
that? I cannot expand this because there is no more space left. So, all that I need to do is

to actually expand the bucket address table.



So, earlier if I if I just if I just go back. So, if I just go back earlier we had only two
entries because we are using only 1 bit in the prefix and with that I could not have
inserted Einstein oh is from department of physics which also has a 1 bit prefix which is
1 it was. So, I need more space; so, I have increased the prefix level to 2 going here and
now naturally I have if [ have increases to 2; now I have let me erase this these entries
and now I look at for music I look at 2 for physics 1 0, for finance 1 0, for computer

science 1 1.

So, now, I find that after I have moved from looking at 1 bit of prefix to 2 bits of prefix
now finance and computer science which was earlier together because I was looking at 1

bit now becomes different, but finance and physics both come to the same 1 0.

So, in the hash bucket address table 1 0 you have financial physics coming in with Wu
and Einstein records and computer science which has got 1 1 the Srinivasan record goes
to a new bucket which comes from 1 1 here. Now the interesting fact is what happens to
Mozart who which was there if you if you remember the earlier structure this is we had
only 1 here. So, this was going to Mozart this was 1 and Mozart was here because music

had a prefix 0; now music has a prefix 0 0.

So, what he would have expected? You would have expected that therefore, since 0 0 has
come and 0 1 has also come in. So, you would have expected that to have another bucket
here which 0 1 is, but then you observe that actually that would be a quite a wasteful to

do because you do not actually have a record which has a prefix 0 1.

Out of these two which are we are looking at two prefixes, but you do not really right
now need to look at both the prefixes you can still resolve just by based on the first
prefix 1. So, you do a simple trick you do not change the prefix level of the particular
bucket you say it is 1. Because it is you just need to look at one bit to be able to come to
the records in this bucket and the globally it has changed to 2 bits prefix, but locally you
keep it as 1.

And with that what you have? You have 0 1 which has a bucket address table entry
actually does not have a bucket because there is no records for that. So, you let that point
to the same bucket. So, this is a very critical observation that these numbers are basically
the local depth; the local information of how many bits in the prefix you need to look at

to be able to resolve for coming to this bucket for the records that you currently have.



Whereas this is the global one this is a global maximum that you have. So, naturally
local depth cannot exceed the global depth, but if it is equal then you have a unique
mapping from the bucket address table entry to the bucket, but if the local depth as in
here is less than the global depth; in terms of the number of prefix bits you are looking at
then multiple bucket address table pointers actually end up in the same bucket and that is
the main principle of this algorithm we can just continue further inserting gold and said

into this.

(Refer Slide Time: 23:47)

“ dept_name hidegt_name)
4 Examp|e (Cont ) Biology 0010 1100 1111 10110010 11000011 0000
iy "1 Comp.Sd. 1111 0001 D010 0100 1001 D011 G110 1101
Elec Eng, 01000011 1010 1100 1100 0110 1101 1111
° o . Finance 10100011 10100000 1100 0110 1001 1111
H W Hash structure after insertion of Gold and El Said records ~ Histoy 11000111 1110 1101 1011 1111 0011 1010
M Musle 0011 0101 10100110 1100 1001 1110 1011
b | 1 ] Physics 1001 1000 0011 1111 1001 11000000 0001
§ hash prefix — T :
i 3] F (7=2{15151 | Mozart | Music | 40000
2 , i
; Sy '
¥ | = el |
E ! /|
& /:u" —h e o Tl
. —" [/~ "(22222| Einstein | Physics  |95000 B |nsert Katz record
i ' | |33456| God | Physics [s7000
H L/
* ~ [
g | a\\ k
g - —r|12121| Wu Finance | 90000 R |Gk [Balgy | 7m0
*, 0k | Sanivasan | Comp. 50, | 5500
8 oy | o Comp. %, | 38000
H BN (ST | Beandt | Comp 5. | G200 |
table 5\, 0 | Km | Uecfrg. | B0
i\ m T (W Finee | 000 |
\\\ (7188 g Franer | 00|
—d e | 1 bR History oo
- | 10101 | Srinivasan|Comp. Sci. 65(m| {88881 | Clled 1;::; |
32343) ElSid | History | 60000]
L1 Rl 4 o

So, as you try to insert gold and said gold is also from physics which we already had. So,
physics and said is from history which we did not have. So, history finance computers let
me let me just mark them by the side. So, you have now computer science, finance,

history, music and physics.

Now, you will find that you need to you now have physics is 1 0 and you have two
records for that and music is continues to be 0 0 ah; obviously, history is 1 1 same as
computer science. So, that has to go on this and finances on 1 0 now, but what happens is
when you try to do this; you could not have inserted more records because you have run
out of space in the buckets. So, again you have run out of that; so, you need to expand in

terms of the number of bits that you look at.

So, you increase that to 3 and now you have 0 0 0 to 1 1 1, but as I have explained not all

buckets really need to look into. So, many bits Mozart this bucket continues to B with a



local depth of 1 because if you look into all these 4 different cases; then music is the only
one which has a prefix 0, everyone else has a prefix 1. So, if I know that it is 0 then it
comes to only this bucket and nowhere else consequently all these 4 bucket address

pointers actually go to this bucket table.

Whereas these two for physics I have 1 0 and for finance we have 1 0 here and these
come to. So, physics now is looking into 3; so, it is 1 0 0 finance is into 3 itis 1 0 1. So,
both physics and finance go to different buckets; now coming to computer science it is 1
1 1 and there is no. So, computer science is 1 1 1 and there isno 1 1 0. So, the 1 1 0
bucket address table pointer continues to point to the same bucket and the local depth

value is just 2 less than 3 in the global table.

So, this is the basic process of doing dynamic hashing. So, I will not ah; so, the whole

example in terms of this table I have given here worked out.

(Refer Slide Time: 26:49)

“ dept_name hidegt_name)
-y Biology 0010 1101 1111 10110010 11000011 0000
-.__,_, Example (Cont) Comp. Sci. 1111 0001 0010 0100 1001 0011 0110 1101
Elec, Eng, 010000111010 1100 1100 01101101 1111
B H r insertion of Fiance 1010 0011 1010 0000 1100 0110 1001 1111
aen siruciure aﬁe. sertion of Katz record History 11000111 1110 1101 1011 11110011 1010
1 Musie 0011 0101 1010 0110 1100 1001 1110 1011

. T 1 Physicy 1001 1000 0011 1117 1001 1100 D000 0001
(15151 Mozart | Music | 40000]

8 |nsert Singh, Califieri, Crick,
Brandt record

| —[mn[wa [Finance |s0000]
3= | .
1 | J

| AN

_-"| (7 | Gk [ Blegy | 70|
{000 | Snivasan | Comp, 56 | 5500 |
AN | K Comp. 3d, | 7500
|55 | Vet | Comp. 30 | SK00 |
S | Kim e, Eng, | W00
LT Finance | w000 _|
(S| Segh | Finance | W0 |
TW | D%l | ey | 600

-MOC MOGTs Isstruetoe: Prof. PP Das. IIT Kharagear. Jan-Apr. 2018

N \ Ll
bucket address table’, .| 12“3] El Said

{388 | Callberl | Plory | 62000 |

Database !mcm.-v Edition AR 8ilberschaiz, Kerih and Sudarshan

So, you can just go through every step and try to convince yourself.



(Refer Slide Time: 26:54)

dept_name hidegt_name)
-4 Biology 0010 1101 1110 1011 0010 1100 0011 0000
= Example (Cont) Comp. S, 1111 0001 00100100 1001 0011 01101201

Elec, Eng. 01000011 1010 1100 1100 00101101 1111
|z| Finande 10700017 1070 0000 T100 01101001 1111
(7 5 i o)
u./_ 76766 Crick gy | 7200
3 B Hash structure after insertion of Singh,
l = {2222] Einsin [Pysis [oso|  Califieri, Crick, Brandt records
(=g 3456 | Gold | Physics | 87000
[ =/l
— |
= /II E]

|

r |

| — ~—+(12121| Wu Finance | 50000
| __{// 76543 | Singh | Finance | 80000
| —

History 11000111 1110 1107 1001 11110011 1010
Musle (011 0107 1010 G110 1100 1001 1120 1011
Physics 1001 1000 0011 1111 1001 11000000 0001

:
g
£
=
El
[=1]

u nsert Kim record

(i |Gk | Bokgy | 00 |
ISt Lavems [ohme o oun
Al | K Camp. 5, | 00
{4 | Bandt | Comp.5d. | $2000
S0 | m Tee. brg._ | W00 |

[T W Finance | w0000 |

EWAYAM: NFTEL-MOC MOGTs Instructor: Praf. P P Das. IIT Kharagear. Jan-Apr. 2018

(3 g R O

This is an interesting case that happens here where again you come to computer science
professors to be entered. So, at level 3 of prefix you have all of them have prefix 1 1 1.
So, you would have required to split or increase the prefix level globally the prefix level
to 4, but assuming that there is an upper bound on the number of prefix levels; you can
do which decides the size of the bucket address table. If that is given to be 3 you
certainly cannot increase it further; so, all that you will have to do is actually do a kind of

an overflow chain here as well.

So, all of them are 1 1 1 here which brings you to this you cannot find it you go to this
and all 1 1 ones in future will have to be. So, it is a its kind of a tradeoff between what is
the size of the global depth, how many prefixes globally you would like to look at what
is the size of every bucket that you will have to maintain and what is the kind of chaining

that you will have to accept because of that. So, this is what happens particularly.



(Refer Slide Time: 28:05)

“ dept_name hidegt_name)

=4 Examp]e (Cont ) Biology 00101101 1111 10110010 11000011 0000
- :

~ Comp. 54, 1111 0001 D010 0100 1001 0011 0110 110

i

m Elec.Eng, 01000011 1010 1100 1100 0110 101 1111
Finance 101000111010 0000 1100 0110 1001 1111
({15151 | Moman [Muse [ s Hiory  LI0DOLLT 101101 1011 11110011 1010
[ oe] oo | Biokogy |70 Music 00110101 10100110 1100 1001 1110 1011
I Physics 1001 10000011 1111 1001 11000000 001

Il 3‘

| -, - 1 R 4
hashprei I\.//"‘.W’] Yio |l Eng,_ O, ®  Hash structure after insertion
] il

Y/ — of Kim record

™,
R\
buschet addrress |4t\>\__ i 3

(i [ Crick | Bokgy | 2o |
0120 _| Srnivasan | Comp 5 | A0 |
R Comp %, | S0 |
|52 | Wi {Comp. 0 | GA00 |
S | Kim e, Erg. | W00
THH | Wa Finance | w000 _|
CRED [ Sngh P | R0 |

| m
S ’f'um 5, | 65000 &E Brandt C-mnp.Sﬂ. % {323 [ EiSed | Hiskory [0
- g (S | Callben | Hwry | 620
45565 [Katz | Comp. 5. | 7soan . I
N

N

EWAYAM: NFTEL-MOC MOGTs Instructor: Frof. PP Das. IIT Kharagear. Jan-Apr. 2018

Daiabiuse Sysiem Concepds - § Edition AR Cfilberschatz, Korih and Sudarshan

So, you can continue in this way and this is a final table where all things have been
hashed well. So, this is the basic extendable hashing scheme it has in this the
performance does not degrade with the growth of the file and there is very minimal
overhead of the space. But it does have disadvantages for example, there is a extra level
of indirection to find the desired record because it the hash then come to the hash bucket
address table and then go to the bucket address table itself may be very big because it is

exponential in the size of the number of beds.

So, it could be larger than memory if that. So, much of you know a contiguous allocation
may not be possible. So, you will need to have another possibly a B plus tree structure to
locate the desired record in the bucket address table first. And then changing the bucket

address table will become a quite an expensive operation. So, the growth will become.



(Refer Slide Time: 28:13)

Extendable Hashing vs. Other Schemes

B Benefits of extendable hashing:
» Hash performance does not degrade with growth of file
» Minimal space overhead
§ Disadvantages of extendable hashing
» Extra level of indirection to find desired record
» Bucket address table may itself become very big (larger than memory)
» Cannot allocate very large contiguous areas on disk either
» Solution: B'-tree structure to locate desired record in bucket address table
» Changing size of bucket address table is an expensive operation
B Linear hashing is an alternative mechanism
» Allows incremental growth of its directory (equivalent to bucket address table)
» Atthe cost of more bucket overflows

EWAYAM: NFTEL-MOC MOGTs Instructor: Frof. PP Das. IIT Kharagear. Jan-Apr. 2018 | '!
i' :

PPV 4TI SO B

]
i
:
§

HH Cfilberschatz, Korth and Sudarshan

So, there are several disadvantages that also this scheme has. So, another alternate is to
use a linear hashing allows incremental growth of his directory at the cost of more bucket

overflows of course,.

(Refer Slide Time: 29:25)

Loy m
-g +  Stalic Hashing

* : Dynamic Hashing
Comparison of
Ordered Indexing

and Hashing
+  Bitmap Indices

COMPARATIVE SCHEMES

EWAYAM: NFTEL-MOC MOGTs Instrucior: Prof. PP Das. IIT Kharagear. Jan-Apr. 2018

R N RS B R RS )

Daiabise Sysiem Concepls - § Edition Ax 8ilberschaiz, Kerih and Sudarshan

I would quickly try to compare the two major schemes that we have discussed.



(Refer Slide Time: 29:30)

Comparison of Ordered Indexing and Hashing
B Cost of periodic re-organization
B Relative frequency of insertions and deletions
B |s it desirable to optimize average access time at the expense of worst-case access time?
B Expecled type of queries:
Hashing is generally better at retrieving records having a specified value of the key
If range queries are common, ordered indices are to be preferred
8 |n practice:
PostgreSQL supports hash indices, but discourages use due to poor performance
Oracle supports static hash organization, but not hash indices
SQLServer supports only B'-trees

&
:
i
i
X
£
é
&
]
i
i
i
é
8
z

BH C8ilberschatz, Korih and Sudarshan

Databise System Coneepts - 6* Edion

The ordered indexing and the hashing now naturally ordered indexing has suffers from
the cost of periodic reorganization. And because the indexing will have to be maintained
the hashing is better in terms of that relative you will have to look at the relative
frequency of insertion deletion that decides much of the cost between going between

these two schemes.

You will have to see is it desirable to optimize average access time at the expense of
worst case access time. For example there could be several ways to organize; so, that
your average become your worst case may be really really bad, but as long as your
averages is very good you should be happy about it. So, those kind of hashing schemes
should be more preferred. So, you also depends on the kind of expected type of query.

So, for example, hashing is better in terms of retrieving records which have a specific
value of the key because you can directly map from that key to the bucket. And if range
queries are common then as we have seen ordered indices would make it make much
better sense because in terms of the ordering you can quickly get all the required records

at the same physical location nearby physical location.

If you would like to understand as to what the industry practices are it is very mixed.
And if you just look into 3 of the very common database systems PostgreSQL does
support hash index, but recommends does not recommend it because of the poor

performance oracle supports static hash organization, but not hash indices SQL server



supports only B plus trees no hash index space scheme. So, of course, you can see that
there as the community is mixed in terms of it is a reaction to whether its indexing or

hashing, but hashing powerful at least in limited ways is a powerful technique to go with.

(Refer Slide Time: 31:35)

4

i

+ Stalic Hashing

Dynamic Hashing

+ Comparison of
Ordered Indexing
and Hashing

+  Bitmap Indices

BITMAP INDICES

:
i
!
d
i
b
i
H
i
8
z

PP 4TI SO B

Hy Cfilberschatz, Korih and Sudarshan

The last two that I would like to just quickly remind I mean take you through is what is

known as bitmap indexes.

(Refer Slide Time: 31:43)

Bitmap Indices

® Bitmap indices are a special type of index designed for efficient querying on multiple keys
§ Records in a relation are assumed to be numbered sequentially from, say, 0
Given a number n it must be easy to retrieve record n
» Particularly easy if records are of fixed size
m Applicable on attributes that take on a relatively small number of distinct values
E.g. gender, country, state, ...

» E.g.income-level (income broken up into a small number of levels such as 0-9998,
10000-19999, 20000-50000, 50000- infinity)

B A bitmap is simply an array of bits

- MOC MOGECs Iestructor: Prof. P P Das. IT Kharagear. Jan-Apr. 7018 | lg
’t :

(R R RN RN

Databisé !MCM.O‘M nn C8ilberachats, Korth shd Sudarshan

Bitmap indexing is a very simple idea. So, what you it is a special type of indexing

which is designed for querying on multiple keys; the basic idea is that if let us assume



that all records in a relation are numbered from 0 to n and let us say that you are talking

about attributes which can take very small number of distinct values.

So, bitmap indexing is not for any attribute. So, consider attributes such a very small
number of distinct value say gender which has two possible values or few possible
values the country state. So, take those or maybe you can you can nominally bucket a
range of numbers source income level 5, 6, 10 income levels. So, small range of
possibilities and bitmap is simply array of bits. So, take an array of possible array for the

records and for the possible values you mark 1 or 2 0.

(Refer Slide Time: 32:39)

-Il Bitmap Indices (Cont.)
% B |n its simplest form a bitmap index on an attribute has a bitmap for each value of the attribute
3 Bitmap has as many bits as records
1—3 In & bitmap for value v, the bit for a record is 1 if the record has the value v for the atiribute,
H and is 0 otherwise
i
s Bitmaps for gender  Bitmaps for
F it] income_level
g number| [P | gender | income_level ‘ m | 10010
3 v L 10100
£ 0 | 7766 m Ll f 01101
§ 66
i 1 |2m| f L2 L2 | o1000
g 2 |12 f L1 B3 [ ooonn |
3
: dd M 4 | ooow0
: 4 58583 f - g
L5 00000
Daiabase System C;meﬂn-v Edition HH C8ilberschaiz, Korth and Sudarshan

So, this here is an example showing it. So, we are showing bitmap index for gender. So,
you have a array for m the male gender and f female gender and if you look into the
record 076766 has male under m gender m. And therefore, in the male gender bitmap

index the first bit is 1 in f it is 0; so, actually m and f are complimentary.

Similarly, for the income levels you have 5 different bitmaps encoding; the 5 different

possible levels in the income that you can have.



(Refer Slide Time: 33:21)

Bitmap Indices (Cont.)

Lo,

m  Bitmap indices are useful for queries on multiple attributes
not particularly useful for single attribute queries

m  Queries are answered using bitmap operations
Intersection (and)
Union (or)
Complementation (not)

®  Each operation takes two bitmaps of the same size and applies the operation on corresponding
bits to get the result bitmap

Eg. 100110 AND 110011 = 100010

100110 OR 110011 = 110111
NOT 100110 = 011001

Males with income level L1: 10010 AND 10100 = 10000
Can then retrieve required tuples

Counting number of matching tuples is even faster

EWAYAM: NFTEL-MOC MOGTs Irstructor: Frof. PP Das. IIT Kharagear. Jan-Apr. 2018

‘BRI L AN LS LD

Daiabase System Concepts - § Edition AE CGilbsrschatz, Kerh and Sudarshan

Now the big advantage of bitmap indices are doing different queries on multiple
attributes. And for example, the often queries have intersection union and they can be
simply computed in terms of bitmapped operations. So, if you have two different values
to be two conditions to check in terms of bitmap indices; then you can just make there

and whatever satisfy.

So, say if you are looking at males at for example, here males at income level L 1, then
you can you can just take the bitmap for gender and bitmap for income level and do the

ending and you get that the first record has value 1.



(Refer Slide Time: 34:08)

g Bitmap Indices (Cont.)

® Bitmap indices generally very small compared with relation size
» E.g.ifrecord is 100 bytes, space for a single bitmap is 1/800 of space used by relation
» If number of distinct attribute values is 8, bitmap is only 1% of relation size
8 Deletion needs to be handled properly
+ Existence bitmap to note if there is a valid record at a record location
Needed for complementation
« not(A=v):  (NOT bitmap-A-v) AND ExistenceBitmap
m Should keep bitmaps for all values, even null value
v To cormectly handle SQL null semantics for NOT{A=v):
+ intersect above result with (NOT bifmap-A-Null)

EWAYAM: NFTEL-MOC MOGTs Instrucior: Prof. PP Das. IIT Kharagear. Jan-Apr. 2018

A R - S S N

E
i
:
§

B Cfilberschaiz. Korih and Sudarshan

So, that is answer and you can quickly come to that. So, bitmap indices generally very |
mean naturally they are they are they are small in compared to the relation size because
you are doing bitmap indexing only if the attribute can take small number of distinct

values.

Of course, the deletion has to be handled properly look at this and should keep bitmap
for all values even if there are null values you must keep that otherwise you will lose

track of that.

(Refer Slide Time: 34:33)

- Efficient Implementation of Bitmap Operations

m Bitmaps are packed into words; a single word and (a basic CPU instruction) computes and of
32 or 64 bits at once

E.g. 1-million-bit maps can be and-ed with just 31,250 instruction
n Counting number of 1s can be done fast by a trick:

Use each byte to index into a precomputed array of 256 elements each storing the count of
1s in the binary representation

» Can use pairs of bytes to speed up further at a higher memoary cost
+ Add up the refrieved counts

m Bitmaps can be used instead of Tuple-ID lists at leaf levels of B™-trees, for values that have a
large number of matching records

Waorthwhile if > 1/84 of the records have that value, assuming a tuple-id is 64 bits

Above technique merges benefits of bitmap and B*-tree indices

EWAYAM: NFTEL-MOC MOGTs Instructor: Prof. P P Das. IIT Kharagear. Jan-Apr. 2018

‘TR AHLAe B

By Cfilberschatz, Korih and Sudarshan

|
i
:
§




And there are several efficient implementations some information I have given, but is we

do not want to go in much depth here.

(Refer Slide Time: 34:45)

Module Summary

i

® Explored various hashing schemes - Static and Dynamic Hashing
m Compared Ordered Indexing and Hashing

® Studies the use of Bitmap Indices for fast access of columns with limited number of distinct values

%
i
1
{
i
8
z

ns CSilbérachatr, Korth shd Sudarshan

Database System Concepts - 8 Edtion

But several compression techniques are possible in terms of bitmaps; in the next module
I will talk little bit more about how to use that. In this module to summarize we have
talked about various hashing schemes static and dynamic hashing, compared the order

indexing with hashing and introduced the notion of bitmap indices.



