Database Management System
Prof. Partha Pratim Das
Department of Computer Science & Engineering
Indian Institute of Technology, Kharagpur

Lecture - 28
Indexing and Hashing/3 : Indexing/3

Welcome to module 28 of Database Management Systems. We have been discussing

about indexing and hashing.

(Refer Slide Time: 00:28)

L "
—

i,

g
i
i
i
{
i
8
z

Module Recap

§ Balanced Binary Search Trees
n 2-3-4 Tree

o B R e SR

Databise System Cm‘lbcﬂi.s’ Edition ni C8ilbérachats, Korth shd Sudarshan

This is the third module; in that continuation.

(Refer Slide Time: 00:38)

l:!
E:

i

Module Objectives

® Tounderstand the design of B*-Tree Index Files as a generalization of 2-3-4 Tree
8 Tounderstand the fundamentals of B-Tree Index Files

:
i
!
d
i
b
i
H
i
8
z

LR RS

11 CBilberschatz. Korih and Sudarshan

In the last module we have taken a quick look at the balanced BST and specifically a and
different kind of inline data structure called 2-3-4 tree, which can be of very good use in
terms of understanding B plus tree, which we want to study in this module and we will

also take a quick look at the B tree.

(Refer Slide Time: 00:50)

Module Outline

.l1
!

3

-

i

m B*-Tree Index Files

® B-Tree Index Files

g
i
g.
d
i
b
i
H
i
8
z

LR R

-
Daiabuse Sysiem Concepts - 6 Edition 4 Bilberschaiz, Kerth and Sudarshan

So, now, B plus tree is the main data structure is or one of the main data structures to be

used for index files.

(Refer Slide Time: 01:00)

B*-Tree Index Files

=

B*tree indices are an alternative to indexed-sequential files

B Disadvantage of indexed-sequential files
performance degrades as file grows, since many overflow blocks get created
Periodic reorganization of entire file is required

B Advantage of B'-tree index files:

automatically reorganizes itself with small, local, changes, in the face of insertions
and deletions

Reorganization of entire file is not required to maintain performance
8 (Minor) disadvantage of B'-trees:

extra insertion and deletion overhead, space overhead
B Advantages of B'-trees outweigh disadvantages

B'-Irees are used extensively

EWAYAM: NFTEL-MOC MOGTs Instructor: Frof. P P Das. IIT Kharagear. Jan-Apr. 2018

“rREL RSB

Duiabise Sysiem Concepds - § Edition bl CBilbsrschaiz, Kerh and Sudarshan

So, B plus tree has now; what we have seen we have seen the ordered indexes. We have
seen the index sequential files, where you could keep the index file in a sorted manner in
the primary index you could build secondary index on that and so, on, but that is not an
efficient way of doing things, because the performance keeps on degrading as the file

Srows.

Since many overflow blocks will get created, because certainly if you if you are growing,
then naturally you have created say sparse index on uncertain values and if there are
more records in that bucket. Then naturally you need to have linked buckets. So, periodic

reorganization of the entire file becomes required which is a very costly affair.

In contrast advantage of B plus tree is it automatically reorganizes itself in small bits and
pieces with local changes and so, on; whenever insertions and deletions happen and the
reorganization of the entire file is not required for the purpose of maintenance. Of course,
there are a little bit of disadvantage the extra insertion and deletion overhead exist for the
small you know micro reorganization there is little bit of space over it, but in the face of
the advantage that we get it outweighs the advantage is outweighs the disadvantages and

B plus trees are used quite extensively.

(Refer Slide Time: 02:28)

i +
- Example of B*-Tree
—m [Mecat e Icr 1o
] [——
| 59 -
_’.-"-"J \\-‘ _\ “\-\‘\ Leaf nodes—
= 1 > ! b7 =
|Ta:u.1| Eabifies] | Cich o [Rirwsein] [51 i '-|_r:|.!| Katz [Xaem[Jed toaact]] Singh | |$ﬁ,u.||wu|\ [-

:
i‘
i
g‘
i
3
H

%'—/

0101 | Seindvasan | Comp, Sel. | 65000

[Wu _ |Feance | 0000
Mozart | Music A0
2 | Einstein | Physlcs 5000
2343 | El Suid Hitory 80000
Gold | Physics 70K

45565 | Kaiz | Comnp, Sel. | 75000
Calihes History 0000

76543 | Singh Finane 8
Crich | Biology 2000

o2l | Brandt | Comp 5. | 92000
w9835 | Kim ElecEng. | 80000

So, just recall the notion of 2-3-4 tree that we had discussed and look at this diagram. So,
2-3-4 tree have different types of node 2, node 3 node and 4 node. So, we said that there
could be a node which can be only partially filled and it has a different number of
children pointing to the; conditions of how different keys are ordered in that particular

node.

So, here we I show an instance of a B plus tree, which is basically trying to represent this
file in terms of the creating indexes. So, if the index is actually based on the name. So,
this is the root node that you have and for an instance; we are taking a structure where
every node can have 3 data items and 4 links and it could be it could be more it could be
less, but this is just for an example. So, as you can see; so if we have this link, then on
the left of Mozart, then it means all keys which are less than Mozart will be available on
this link below; the link that exists here is for all keys which are greater than Mozart and

less than right. Now there is nothing.

So, those will occur here. So, as you can see that Einstein gold brand all these will come
on this length Srinivasan Singh wu all this come on this side the Mozart itself comes on
this side. Now, if I look at this node the next level loads. Now this link has values which
are less than Einstein as you can see this has values which are between Einstein and gold.

So, Einstein and 1 set these are values which are more than gold.

So, this is this is a and as you can as you can see that though all nodes are shown to be of
the same type as we had mentioned at the end of the 2-3-4 tree discussion, but it has
variable number of entries. So, the number of links are between n by 1 and n. So, n here
is 4. So, you have at least either at least two entries or maximum up to 4 entries that can

go on here.

(Refer Slide Time: 05:08)

=

R
;
i
i
'
£
é
&
L9
3
LY
5
i
E’
3
H

B*-Tree Index Files (Cont.)

AB*tree is a rooted free satisfying the following properties:

B All paths from root to leaf are of the same length
® Each node that is not a root or a leaf has between [n/2] and n children,
B Aleaf node has between|(n-1)2|and n-1 values
B Special cases:
If the root is not a leaf, it has at least 2 children.

If the root is a leaf (that is, there are no other nodes in the tree), it can have between
0and (n-1) values.

B B SR

ns CSilbérachatr, Korth shd Sudarshan

Database System Concepts - 8 Edtion

So, this is the basic observe definition of a B plus tree. All paths from root two leaf are of
the same length. This is again something you should observe here, because if you if you
see all of these paths all of them have the same length here then the length is 2. So, that

is a basic property of 2-3-4 tree generalized into B plus tree.

So, each node that is not a root is a leaf level has between n by 2 to n children. Leaf node
has n minus 1 by 2 to n minus 1 value. And the if the root is not a leaf, then it has at least
2 children and if the root is a leaf there is no other nodes in the tree then it can have

between 0 to n minus 1 values which are quite obvious.

(Refer Slide Time: 05:54)

il +
- B*-Tree Node Structure

:
5
:
;i'
d
i
b
:
§
H
;
8
z

B Typical node
[ﬁ_ [K ‘ Pa ‘ }P,,.]

Ky ‘ Py

o K, are the search-key values

P, are pointers to children (for non-leaf nodes) or pointers to records or buckets of
records (for leaf nodes).

8 The search-keys in a node are ordered
K< K< Ko<, <K,

(Initially assume no duplicate keys, address duplicates later)

L =R S

-
Daiabise Sysiem Concepts - 6 Edition ni Bilberschaiz, Kerth and Sudarshan

So, naturally a typical node will look like this, where the pointers and key values
alternate starting with a pointer P 1, then keep K 1 and so, on and ending with a point at
P n. And the search keys are strictly ordered K 1 less than K 2 less than K n minus 1

these are facts that we have seen for 2-3-4 tree.

(Refer Slide Time: 06:14)

- Leaf Nodes in B*-Trees

g
H
|
i
5
§

Properties of a leaf node:

® Fori=1,2,.. ., n-1, pointer P, points to a file record with
search-key value K;,

If L, L, are leaf nodes and i < j /s search-key values are less
than or equal to L s search-key values

B P, points to next leaf node in search-key order

leaf node
[Brandt || Califier] Potnter to next leaf node
| TOT01] Srinivasan | Comp. Sel | 65000 |
12121 [Wu Finance Q0000

1551 | Mozart | Music | 40000
73737 | Einsteln | Physics | 95000
3243 | ElSid | History | 80000 |
56 [Gold | Physics | 87000
555 |Kalz___|Comp.5ai| 75000
53 | Caliheri | History | 60000
643 | Singh Finance | 80000
76766 | Crick Biology | 72000
« 83621 .

T | AR ARRRS

Al Cfilberschatz, Korih and Sudarshan

So, for a leaf node the pointed Pi points to the file record with the search key Ki and if

there are two leaf nodes Li and Lj and i is less than j, then Li search key values are less

than or equal to the Lj search key values. So, this is the basic ordering that we had seen

in 2-3-4 tree, that is what is getting generalized for a non leaf node.

(Refer Slide Time: 06:40)

=y -
ey Non-Leaf Nodes in B*-Trees

R —

?.
i
:
d
é
i
i
i
8
z

B Non leaf nodes form a multi-level sparse index on the leaf nodes. For a non-leaf node
with m pointers:

All the search-keys in the subtree to which P, points are less than K,

For2<i<n-1,all the search-keys in the subtree to which P, points have values
greater than or equal to K_; and less than K;

Al the search-keys in the subtree to which P, points have values greater than or
equal to K, ,

[Py [K ‘ P ‘]p,l_, [Ky | Py |

‘BRI AE

Databise WCMLS‘M ni C8ilberachats, Korth shd Sudashan

Similarly all search-keys in the subtree which P 1 points to a less than K 1, then for all
that P n points to are greater than K n minus 1. And in the other cases they are between

the two consecutive key values that exist between the pointers.

(Refer Slide Time: 07:01)

ﬂ Example of B*-tree

R

(T ECETT | |
——'-'_-_-F .-\-"‘-\-_
s _:—'-_-_- T

lI‘;";[J:HI!MIlw[l 5 2 = 2 e o

B*-tree for instructor file (n = 6)

® Leaf nodes must have between 3 and 5 values
([{n-1y2]and n -1, with n=6)

m Non-leaf nodes other than root must have between 3
and 6 children ((/2 |and n with n =6)

® Root must have at least 2 children

PP et L ED

SWAYAM: NPTEL-MOC MOOTs Instructor: Prof. P P Das. IIT Kharagear. Jan-Apr. 2018

Databixsé System Concepts - 6 Edition miar C8ilberachats, Korth shd Sudarshan

So, this is an example of a simple case which is n where n is equal to 6.

(Refer Slide Time: 07:10)

-

2
£
i
i
X
E
d
&
=
i
§
i
|
]
H

Observations about B*-trees

B Since the inter-node connections are done by pointers, “logically” close blocks need not
be “physically’ close

B The non-leaf levels of the B*-tree form a hierarchy of sparse indices
® The B*-tree contains a relatively small number of levels
Level below root has at least 2° [n/2] values
Next level has at least 2*[n/2] *[n/2 | values
. B1C.
If there are K search-key values in the file, the tree height is no more than [log .z {K)]
thus searches can be conducted efficiently

® Inserfions and deletions to the main file can be handled efficiently, as the index can be
restructured in logarithmic time

‘PRI IRL SO 0D

141 CBilberschatz, Kerh and Sudarshan

Dutabuse Systems c;neem-v Edition

So, since the inter-node connections are done by pointers, “logically” closed blocks are
not “physically” close. So, that is a key idea there is a key observation about the B plus
tree. So, 2 nodes the records which are logically closed are may not actually be
physically close, because the pointers actually define the closeness in terms of the

ordering of the values.

So, B plus tree contains relatively small number of levels, we will see what that level
would be? So, what will happen; if the level below root has two values at the most at
least and the below that will have n by 2 values, because every node has to be at least
half field. We have said every node we will have to have n by 2 lengths to n links it
cannot be less than that less than n by 2 link.

So, the next level as n by 2, then the next level has 2 into n by 2 into n by 2 and so, on.
So, every time you every level you go down you can basically increasing by a factor of n
by 2, which as you all know simply means that the number of levels or the height is log
K to the base n by 2, where K is a number of search key values that exist on the tree. So,
larger the end smaller is this value. So, larger the node size is smaller is a is a height and
therefore, the number of insertion number of you know access operations that need to be

performed.

So, insertion, deletions to the main file can be handled efficiently as the index can be

restructured in logarithmic time as you have just seen.

(Refer Slide Time: 09:01)

EWAYAM: NFTEL-MOC MOGTs Instructor: Prof. PP Das. IIT Kharagear. Jan-Apr. 2018 | l!
j |

Queries on B*-Trees

B Find record with search-key value V

C=root
While C is not a leaf node {
Letbe least value st V <K,
If no such exists, set C = last non-null pointer in C
Else {if (V=K;) SetC=P,,, else set C = P}
}
Letibe least value s.t. K= V
If there is such a value i, follow pointer P, to the desired record
Else no record with search-key value k exists

=
=)

& “u
L k'nmn”rwmql\:md, fromasal] T 1)

= \ P

~—
. e R

. o

07 O o S e IQIW‘IMHMIW

Duiabise Sysiem Concepls - § Edition

A 8ilberschatz, Kerih and Sudarshan

So, search should be very simple, because its just an extension of what you did in 2-3-4

trees. So, algorithm is given here I will skip it, because we have already done this in

detail.

(Refer Slide Time: 09:13)

S

e

:
i
;i'
d
i
b
i
H
i
8
z

Database !mc:mm-s‘iﬂm

B With duplicate search keys
In both leaf and internal nodes,
» we cannot guarantee that K, < K; < Ky <. . <K
» but can guarantee K, < K; 2 K32 . K4
Search-keys in the subtree to which P, points
» are £ K|, but not necessarily < K|

» To see why, suppose same search key value V is present in two leaf node L
and L,,,. Then in parent node K, must be equal to V

Handling Duplicates

o - R A S]

s 8ilberschaiz, Kerih and Sudarshan

Now, what we introduced I started saying that there are no duplicates. So, the keys

follow strict ordering, but the whole assumption will also hold good, if you allow the

equality between the consecutive keys, but only difference is there could be multiple

keys which are all equal; and if that happens then you have to use the same key value

present at the two leaf nodes and the parent will also have the same leaf node same

value.

(Refer Slide Time: 09:43)

Handling Duplicates

;‘l

B We modify find procedure as follows
traverse P, evenif V= K;

As soon as we reach a leaf node C check if C has only search key
values less than V

+if s0 set C = right sibling of C before checking whether C contains
v

B Procedure printAll
uses modified find procedure to find first occurrence of V
Traverse through consecutive leaves to find all occurrences of V

SWAYAM: NPFTEL-MOC MOOTs Instructer: Prof. P P Das. IIT Kharagear. Jan-Apr, 2018

** Errata note: modified find procedure missing in first prmtlm

Databisé System Concepts - 6 Edition Fo ALY CSilberachatr, Korth shd Sudarshan

So, for doing in the case of such duplicates will have to a little bit modify the procedure

for doing the search and say printing all values and so, on. So, you could go through that.

(Refer Slide Time: 09:58)

Queries on B*Trees (Cont.)

u I there are K search-key values in the file, the height of the tree is no more than log; ., (K)|
m A node is generally the same size as a disk block, typically 4 kilobytes

and n is typically around 100 (40 bytes per index entry)
8 With 1 million search key values and n = 100

at most loge,(1,000,000) = 4 nodes are accessed in a lookup

m Contrast this with a balanced binary tree with 1 million search key values — around 20 nodes are
accessed in a lookup

above difference is significant since every node access may need a disk /0, costing around
20 milliseconds

ik -HOC MOOCs Instructore: Prof. P P Das. IT Kharageur. Jan-Apr. 7018 l!
tl I

B R LS R

Database !ymmcn_nemn-sﬁmm #AT Cfilberachatz. Korih and Sudarshan

So, if there is a key search-key values in the file, then let us see what the cost is coming
to actually, then the height of the tree is not more than log key to the best n by 2. So, if

we say that the every node. So, how large would be the node. Now again I would remind

you that we are moving from 2-3-4 tree, which was a in memory data structure to a
external data structure. So, our main cost is a disk axis. So, what would you like to make
this node size, if we make the node size too small, then there will be too many nodes and

every node will have to be accessed? So, as you can see this is log to the base n by 2.

So, we benefit by making n larger the n this log value or the height will be less, but can I
make n arbitrary large then n will not fit into one disk block. So, it would it cannot be
accessed in one fetch from the disk to the memory. So, we would typically like to make it
is customary to make the node as the same size as the disk block, which is typically say 4
kilobyte or 8 kilobyte like that and therefore, the if that is a size then it the n will be
typically around 100, because if 4 kilobytes is a is a total space and if I assume that 40
bytes per index entry, which is very typical, then n would be about 100.

So, if I assume that my index file has actually 1 million search key values to look for,
then I will need 1 million to the base 100 by 250. So, 1 million log 1 million to the base
50 which is approximately 4 node accesses in a lookup table. So, that is amazingly fast if
you contrast this with binary balanced binary tree which will be log 1 million to the base
2; which would be about 20 nodes accesses 20 disk accesses for this lookup. So, this is
the co reason that B plus trees are preferred and with this if even, when you have couple
of million records in a in a table you can actually manage with a very small number of
node accesses for the lookup, which makes the realization of algorithms possible in the

next couple of slides.

(Refer Slide Time: 12:23)

o,

7
£
i
i
x
E
d
&
1Y
3
1Y
i
i
|
]
E

Updates on B*-Trees: Insertion

1. Find the leaf node in which the search-key value would appear
2. Ifthe search-key value is already present in the leaf node
Add record 1o the file
If necessary add a pointer fo the bucket
3. Ifthe search-key value is not present, then
Add the record to the main file (and create a bucket if necessary)
If there is room in the leaf node, insert (key-value, pointer) pair in the leaf node

Otherwise, split the node (along with the new (key-value, pointer) entry) as
discussed in the next slide

‘PR 4RSS SO G BD

Databise System Coneegts - 6* Ediion .1k Bilberschatz, Kerih and Sudarshan

I have discussed about how to update B plus trees talked about the insertion and the
deletion process. I will skip them in the in the presentation, now because as we have
discussed the process of insertion in depth in terms of the 2-3-4 tree the only difference
here is that this is in a generalized framework, but follows exactly the same idea of node
splitting and keeping in mind that in case of 2-3-4 tree you move from 2 to 3 and 3 to 4
node here. All that you will have to remember is you always make sure that you have

every node half filled, because n by 2 is a minimum requirement.

So, you keep on inserting in a node till it becomes full, when it becomes full you cannot
insert any more you divide it and split it into two nodes. So, that each one of the them
become at least half filled and that is the simple logic and rest of it you can figured out

by following on the 2-3-4 tree insertion. So, this is the first algorithm.

(Refer Slide Time: 13:33)

-y
—=

i
;
;:
|
9

Updates on B*-Trees: Insertion (Cont.)

n Spliting a leaf node:

o lake the n (search-key value, pointer) pairs (including the one being inserted) in sorted
order. Place the first n/2]in the original node, and the rest in a new node

o let the new node be p, and let k be the least key value in p. Insert (k p) in the parent of the
node being split

o Ifthe parent is full, split it and propagate the split further up
B Splitting of nodes proceeds upwards till a node that is not full is found
+ Inthe worst case the root node may be splitincreasing the height of the tree by 1

Adams| | Brandt 1 CaliﬁeriI[ICrickII —

Result of splitting node containing Brandt, Califieri and Crick on inserting Adams
Next step: insert entry with (Califieri peinter-to-new-nede) into parent

LB B S

i Parih and Sudarshan

Then we have shown here the strategy to splitting the node, which I have just you know
discussed and the same notion of propagating the middle element of the split continues

here go to next and here the examples shown in terms of the B plus tree.

(Refer Slide Time: 13:47)

q B*-Tree Insertion
=
Roo! node
Lead nodes

[o] e e e e s T T} ol [T Wt T Wonef [S [] ™ T e [Wa [T) -~

ARNSSN

[t [erick] [[Jo{ Jmutin[Jr s [T4o{ o] [t il o | et [ingd] || inivasan]][]

-MOC MOGTs Instruetor: Prof. PP Das. IT Kharagear. Jan-Apr. 2018

B*-Tree before and after insertion of “Adams”
L B R R S S R

Dalabase WCM—O‘M B Cfilberschatr, Korth and Sudarshan

Before and after insertion of a certain key you can go through that and convince yourself.

(Refer Slide Time: 13:57)

y
-

EWAYAM: NFTEL-MOC MOGTs Instructor: Prof. PP Das. IIT Kharagear. Jan-Apr. 2018

|
i
:
i

B*-Tree Insertion

T~

prdama] Jarnct][[} Jouber[o] [o] Jemsen] e S| [} o] [e i tomare fingh] | _ e [emivasan] il [_[]

-
L

.p-""#a

1= = l]L--Lt 0 (E===ITTTT
|

e |

}
11550 o o e e Y 0 e | e e e e

B*-Tree before and after insertion of "Larnion"

BH C8ilberschatr, Korih and Sudarshan

There is some more steps in the algorithm please go through them carefully and try to

understand.

(Refer Slide Time: 14:04)

—y
-

-MOC MOOCs lestrueter: Prof. P P Das. IIT Kharagear. Jan-Apr. 7018

Databisié Syatems Concepts - 6° Edtion ma CSilbérschatz, Kseth snd Sudarshan

§ Spliting a non-leaf node: when inserting (k p) into an already full internal node N

B Read pseudocode in book!

Insertion in B*-Trees (Cont.)

« Copy N to an in-memory area M with space for n+1 pointers and n keys
¢ Insert (k,p) into M

o Copy Py Ky, .., K jnzig,P na from M back into node N

o Copy PrugtetK inzieise - Ko Paet from Minto newly allocated node N'

o Insert (K, N') into parent N

= =

Adams

|Brand Calfer Crck [Adams Brant, | | Cii
I S S

S B -RE E-R A S S|

The whole process and then this is the basic algorithm written in a very cryptic

pseudocode, I should say you should refer to the book actually 2, 4 and study the whole

pseudocode to understand the algorithm better and work through examples as well.

(Refer Slide Time: 14:19)

g Examples of B*-Tree Deletion

=

LTM_WI_IMU_H-I]‘_"MlhmH,_lHIVMIh=\-_-=![_[]—¢|f'-'dl\h-llml+l'ww {Pirgh[[[} eivmn Wl _])

Before and after deleting “Srinivasan”

1
[[dums] oran T 4{ [catfen] Tcrick T [3+{ [Brtein o T [{+{ ot Tt i $-{ [dgas g [u]]

EWAYAM: NFTEL-MOC MOGTs Instructor: Prof. PP Das. IIT Kharagear. Jan-Apr. 2018

8 Deleting “Srinivasan” causes merging of under-full leavg

A RS R s N

By CBilberschatr, Korih and Sudarshan

|
i
:
§

Similarly, examples of deletion in B plus tree; so the trees are shown before and after

deletion of Srinivasan, then if we delete like that; now in case of in contrast to splitting.

(Refer Slide Time: 14:43)

g Examples of B*-Tree Deletion (Cont.)

:_
|
£
,5;
;
5
§

== ([I T 11

1 o 20 O T G O Y P

Deletion of “Singh” and “Wu" from result of previous example

m Leaf containing Singh and Wu became underfull, and borrowed a value Kim from its left sibling
m Search-key value in the parent changes as a result

L R N

Dalabiié Syatem Concepts - 6° Edtion M CSilberschatz, Kseth and Sudarshan

Now I will have merging of nodes which will start happening there are some more steps
in the deletion shown here, please go through them and work this out they should not be
you should not have any difficulty in understanding them given your background in the

2-3-4 tree.

(Refer Slide Time: 14:56)

(L

Example of B*-tree Deletion (Cont.)

(e T
[lcagen] Teniinl] T} II\le I
Jiams i!«m ;IWIMII [+ [nescefesd T [Tt e T +{ Tt otosan]

[cate] JEinsein} [God]

//

[rmﬂu“mm” [{{ |catifier [crick || |+ [Einsein] [m1saia | | }+] [Kate] [kie] [Mozart]|

Before and after deletion of “Gold" from earlier example
® Node with Gold and Katz became underfull, and was merged with its sibling
§ Pareni node becomes underfull, and is merged with its sibling
» Value separating two nodes (at the parent) is pulled down when merging
® Root node then has only one child, and is delete

Daiabase System Concepts - §* Edition BB Warih and Sudarshan

EWAYAM: NFTEL-MOC MOGTs Instrucior: Prof. PP Das. IIT Kharagear. Jan-Apr. 2018

So, more steps in the deletion. So, this is the deletion process in terms of algorithmic

steps and what you need to do for deletion.

(Refer Slide Time: 15:05)

3

Updates on B*-Trees: Deletion

® Find the record to be deleted, and remove it from the main file and from the bucket (if present)

B Remave (search-key value, pointer) from the leaf node if there is no bucket or if the bucket has
become empty
® [fthe node has too few entries due to the removal, and the entries in the node and a sibling fit
into a single node, then merge siblings:
o Insert all the search-key values in the two nodes into a single node (the one on the left), and
delete the other node.

» Delete the pair (K_,, P), where P, is the pointer to the deleted node, from its parent,
recursively using the above procedure.

SWAYAM: NFTEL-MOC MOOTs Instructor: Prof. P P Das. IIT Kharagear. Jan-Apr. 7018

|
i
%
f

nx ESilbérachatr, Korth shd Sudarshan

So, this is all detailed here just. So, B plus tree file organization is takes care of the

degradation problem.

(Refer Slide Time: 15:12)

Updates on B*-Trees: Deletion

u Otherwise, if the node has too few entries due to the removal, but the entries in the node and a
sibling do not fit into a single node, then redistribute pointers:

* Redistribute the pointers between the node and a sibling such that both have mare than the
minimum number of enfries

+ Update the corresponding search-key value in the parent of the node
® The node deletions may cascade upwards fill a node which has [w/2] or more pointers is found

® [fthe root node has anly one pointer after deleticn, it is deleted and the sole child becomes the root

-MOC MOGTs Instructoe: Prof. PP Das. IT Kharagear. Jan-Apr. 2018 | l!
i' :

FpPEe Il SO B

Dalabuie !;-mmcr:nem-&‘!mm R 8ilberschaiz, Kerih and Sudarshan

In terms of the index files which would have happened, if we were used pure ordered
indices like, the index sequential access method for storing the index files. So, that is
now taken care of and even the data File degradation problem can also be solved by

using B plus T organization.

(Refer Slide Time: 15:20)

g B*-Tree File Organization

]
!
|
£
:
g
i
§
H

m Index file degradation problem is solved by using B*-Tree indices

m Data file degradation problem is solved by using B*-Tree File Organization

m The leaf nodes in a B'-tree file organization store records, instead of pointers
B Leaf nodes are still required to be half full

+ Since records are larger than pointers, the maximum number of records that can be stored in
a leaf node is less than the number of pointers in a non-leaf node

® Insertion and deletion are handled in the same way as inserion and deletion of enfries in a B*-
free index

FPEe eIl te B

Database !mCMn-O‘M nH Bilberschatz, Kerth and Sudarshan

So, it can be used for both maintaining the B the index as well as the actual data file and
the leaf nodes in the B plus tree file organization stored the records instead of pointers.

So, you finally, have the records there and the leaf nodes are still required to be half full

since they are records, but since records are larger than the maximum number of records
that can be stored would be less than the number of pointers in a non leaf node insertion

and deletions are handled in the same way as in the B plus tree index file.

So, here all that we are explaining that. So, far we have not explained the whole B plus
tree in terms of index file organization and we are saying that you can do the same thing
with the data file and only at the leaf level you will have to actually keep the data records

for maintenance.

(Refer Slide Time: 16:47)

- B*-Tree File Organization (Cont.)

LIETET)
s ||
[l es [Thlcn] oo (e En] G I:H,ﬂj|~_)/-j|

—— |

Iy == ’

C-['{l.;;] 08 | [H[Kfl_)]i[‘.r;}] [l{ A Ns A

Example of B*-tree File Organization

¥ Good space utilization important since records use more space than pointers,
® Toimprove space utilization, involve more sibling nodes in redistribution during splits and merges

ing 2 siblings in redistribution (to avoid split/ merge where possible) results in each
aving at least |2,/3| entries

-MOC MOGTs Instruetor: Prof. PP Das. IT Kharagear. Jan-Apr. 2018

‘FRLTE 4RSS

Dalabuie !ymmcr:mm-s‘iﬂm nu Bilberschatz, Karih and Sudarshan

So, this is showing some instances of the B plus tree organization.

(Refer Slide Time: 16:54)

...,...Il Other Issues in Indexing

i,

2
i
i
i
X
£
i
a
1Y
3
1Y
i
i
5
3
E

B Record relocation and secondary indices
If a record moves, all secondary indices that store record pointers have to be updated
Node splits in B*-tree file organizations become very expensive
Solution: use primary-index search key instead of record pointer in secondary index
Extra traversal of primary index to locate record
Higher cost for queries, but node splits are cheap

Add record-id if primary-index search key is non-unique

“rRRL RS BD

Database System c-;«em-v Edition BH CBilberschatz, Korih and Sudarshan

So, there is a couple of other issues the record relocation and secondary index, if a record
moves all secondary indices that store record pointers will also have to be updated node
splits in B plus tree file organization is very expensive. So, what we do is? We use
primary index search key instead of record pointer in the secondary index. So, in the
secondary index we do not actually keep the direct record pointer instead, we keep the
search-key of the primary index and we know that the primary index can be very
efficiently searched. So, what happens is when in the secondary index when you have
been able to actually find that you do not get a pointer directly to the record, but you get
the search key through which you can use the primary index and actually go to that.

But with that you get yourself get rid of the requirement of maintaining different

secondary index structures and getting into several record relocationess problems.

(Refer Slide Time: 18:05)

.

:
i
i
:
E
i
a
19
3
1Y
H
H
i
5
8
H

Indexing Strings

B Variable length strings as keys

Variable fanout

Use space utilization as criterion for splitting, not number of pointers
8 Prefix compression

Key values at internal nodes can be prefixes of full key

Keep enough characters to distinguish entries in the subtrees separated by the
key value

E.g. “Silas" and “Silberschatz” can be separated by “Silb"
Keys in leaf node can be compressed by sharing common prefixes

“rRRTL RS A BD

nu 8ilberschaiz, Kerih and Sudarshan

Databise System Coneepts - 6* Ediion

There are your indexing also may need to take care of other issues of string your variable
length string could be keys which are variable fan out and so, the general strategy in
handling indexing with string is to do a kind of what is known as prefix compression. So,
you kind of find out what is the shortest prefix which can distinguish between the strings.
So, if you have Silas and Silberschatz then you can easily make out that Silb would be a
separating string between these two. So, Silb will match with Silberschatz, but or not will
match with the first one. So, you do not need to look beyond that so, we can just keep
enough characters to distinguish entries in the subtree separated I by the key values and

keys in the leaf node can be compressed by sharing common prefixes.

(Refer Slide Time: 19:12)

ﬂ B-Tree Index Files

Sirmilar to B+-ree, but B-ree allows search-key values to appear only once; eliminates redundant
storage of search keys

Search keys in non-leaf nodes appear nowhere else in the B-tree; an additional pointer field for
each search key in a non-leaf node must be included

Generalized B-ree leaf node
lpll’ﬂ“’z]"- PMlIKM‘Pn‘

(@)

| BB | K) B K P

By | By | Ky w1 wl | Sl]

)

Non-leaf node - pointers Bi are the bucket or file record pointers

EWAYAM: NFTEL-MOC MOGTs Instructor: Frof. PP Das. IIT Kharagear. Jan-Apr. 2018

“rRR LRSS BD

o ol P - (1 [

i
:

So, that is a very common strategy next let us just take a quick look into the B tree index
file which is another alternate possibility the basic difference between a B plus tree. And
B tree allows search key values to appear only once, if you if you remember in the B plus
tree your search key values where which occurs in an internal load keeps on occurring at
multiple node levels also B plus B tree does not allow that the search key non leaf nodes

appear nowhere else in the B tree.

So, if it does not then naturally the question is when where will the actual record value
we found out for this key. So, what you do is in the node itself you introduce another
field after along with the key which is the; pointer to the actual record. So, as you can as
you can see here let us get back. So, as you can see this is this was a general structure of
the B plus tree node. And, now what we are doing is we are putting in separate pointers
along with the key which will actually maintain the data for that key which will be
pointers to the actual record, because this earlier in B plus tree all records. Finally, appear
in terms of the leaf level nodes only they are their pointers come in the leaf level
whereas, here the there is no repetition of the search key along the structure. So, they

come wherever there.

(Refer Slide Time: 20:43)

L..!l B-Tree Index File Example
IERII
P —
— ;
2) N0 20 2 O T

T
Brandt Califieri

. and 5000 (o other reconds...
word mod ~0 et record

B-tree (above) and B+-tree (below) on same dala

Mazart I [+ Root node

.-'/ ------.-"-.
el [caa [] (el] el rdes
L VN
. -
_,—-"/ HH“‘-». \ . Leaf nodes
- -~

EWAYAM: NFTEL-MOC MOGTs Instructor: Prof. PP Das. IIT Kharagear. Jan-Apr. 2018

. - -

Pl ¥ o ¥

|| et Caitien] [ceica}| Trimstein] 6 Saia] | T[] ot] cate [T] Iczan]] Siegh [T e FrimivasanJwa []] ~
I [= /

L LR as e b]

So, let me just show you an example. So, if you look into this carefully. So, this is what
you have seen is a B plus tree. So, you can see that Mozart happened here, it also
happened here and this is the leaf level. So, from here actually you get pointers to the; to

the record for Mozart.

Similarly, Einstein happens here and it happens here Srinivasan happens here in. So,
there are multiple times there happening this in contrast is a B tree representation where
Einstein, if it happens then alongside with it the pointer to the Einstein’s record exists, if
brands happen here along with it the brands record exists and Einstein would not happen
anywhere else in the tree. So, you do not have the second instance of the Einstein or this
instance of the Mozart in the B tree. So, naturally that is the basic optimization that B

tree does?

(Refer Slide Time: 21:48)

=,

§
i
i
i
X
£
i
a
1Y
3
1Y
i
i
5
3
H

B-Tree Index Files (Cont.)

m Advantages of B-Tree indices:

May use less tree nodes than a corresponding B*-Tree

Sometimes possible to find search-key value before reaching leaf node
® Disadvantages of B-Tree indices:

Only small fraction of all search-key values are found early

Non-leaf nodes are larger, so fan-out is reduced. Thus, B-Trees typically have greater depth
than corresponding B*-Tree

Insertion and deletion more complicated than in B*-Trees
Implementation is harder than B*-Trees
m Typically, advantages of B-Trees do not out weigh disadvantages

‘PRI 4RSS SO G BD

Database !yumcn:mn-v Edition nH Cfilberschatr, Korih and Sudarshan

. So, it is advantages it may use less notes than the corresponding B plus tree sometimes
it is possible to find the search key value even before reaching the leaf node. So, search
could be efficient, but it does have a lot of disadvantages, because what happens is only

small fraction of all search key values are actually found early non leaf nodes are larger.

Now, because you have pointers to the data as well, so the fan out gets reduced which
means that the number of children you can have is gets reduced. So, though you are
expecting to get a benefit, because you are not having to go to the leaf every time, but
you pay off because your fan out gets less. So, if your fan out get less naturally the tree
has a greater depth. Now, because you can you are fanning out less number of children at
every node. So, it has a greater depth. So, eventually your cost increases the naturally the
deletions insertions are more complicated than in B plus tree and implementation is more

difficult.

So, typically the advantages of B tree do not outweigh the disadvantages.

(Refer Slide Time: 23:01)

Module Summary

L,

® Understood the design of B*-Tree Index Files in depth for database persistent store

® Familiarized with B-Tree Index Files

EWAYAM: NFTEL-MOC MOGTs Isstrucior: Prof. PP Das. IIT Kharagear. Jan-Apr. 2018

So, it is not very frequent that you will use b trees, but they are use at times, but that is
not a very common thing and we stick to B plus tree for both of the data file as well as
index file storage. So, in this module you have understood the design of B plus index B
plus tree index files in depth for the purpose of data base persistent store and I would
again remind you that whole discussion of how B plus tree is organized and how
operations of access insert delete are done in B plus tree. I have introduced them in
keeping in parallel with the simpler in memory data structure for this which is a 2-3-4

tree discussed in the last module.

So, while going through the insertion deletion processes of B plus tree, if you have
difficulty following I would request that you go back to the 2-3-4 tree that is kind the
simplest situation that can have that can occur and understand that and then you come
back to the specific points in the B plus tree algorithm and also always keep in mind.
When you refer to 2-3-4 tree for understanding also always keep in mind that in case of
B plus tree all load types are same and the basic requirement is every node must be at
least half full all the time except of course, for the root and in addition we have also
familiarized with B tree and reason that B tree possibly is not a very powerful is not
powerful enough it does not give enough advantages so, that to we would like to use it in

place of B plus tree.

