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Welcome to module 27 of Database Management Systems. We are discussing indexing

and hashing mechanisms in a database and this is the second in that series.

(Refer Slide Time: 00:28)

 In the last module, we have discussed the basic requirement of indexing and we have

learnt about ordered indexes using primary index.



(Refer Slide Time: 00:42)

Which can be dense or parts and the multi level indexes. Now, in this module we would

try to look for the basis of how indexing the index file structure can be very efficiently

represent it. So, we will do a quick recap of our notions in algorithms goes.

Where  we have talked  about  earlier  balanced binary  search  trees  I  mean not  in  this

particular course delivery, but I expect that you have gone through algorithms course

where  you have  learnt  about  balanced  binary  search  trees  as  options  for  optimal  in

memory search data structure and from that will try to understand the issues relating to

external search data structures for persistent data and very specifically we will study two

three four tree as a precursor to BB plus tree which is an very efficient external data

structure for databases and index tables. So, these are the two topics to cover.
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So, first let me quickly take you around with search data structure now I should warn you

that here I am looking at we are looking at a little different kind of a problem here we are

looking at search as it is performed in the algorithms course which mean that when you

talk about data structures in algorithms course. 

You typically talk of data structures which have two basic properties one they are volatile

data structures transient that is they are created when the program starts and you operate

on  the  data  structure  find  queries  and  then  as  soon  as  your  program  ends  they

disappeared.  So,  they  are  not  persistent  data  in  contrast  when  you  are  dealing  with

database we are dealing with persistent data which stays even when no queries being

performed.

And the second which is the consequence of the first is the data structure that you are

study in algorithms work in memory. So, they work in a small limited space and they

could be volatile whereas, the database the data structure required for databases has to

reside in the disk. So, we have seen the tradeoff between the; on the storage hierarchy

between memory and disk and other layers. 

So, they will be brought to memory and then certain operations done and then possibly

written back and so, on. So, there is similarity in terms of the strategies, but there is a

very significant difference in that that because of the persistency the data structures that

are used in the database application in the persistent data application has to work with a



very different kind of cost. So, when we talk about cost of an algorithm say a search

algorithm we will say that a search algorithm or a sort algorithm has a certain complexity

VSSR you know the merge sort has the complexity order n login n and what it actually

means.

Is  a  number  of  comparisons  you  can  estimate  to  do  it  in  sorting  n  numbers  is

approximately n times log n, but when we talk about external data structure or disk base

data structure then your cost may often not be the operations in the CPU like comparison

or addition or assignment your cost will shift to actually the number of disk access is the

page access is that you have to do, because as you have already noted that the cost of a

disk access is much larger couple of orders larger compared to the basic cost of different

processor operations.

So, I will start with this in this module I will start talking about data structures which we

are found to be efficient in memory and then we will migrate to seeing how they can be

used in a with simple extension in the as external data structures as well. So, what we

have if you have given a to search a key in a list of n data items what are the different

choices I could make use of a linear search either items could be in an array ordered or

unordered in an array or they could be on a list either ordered or unordered I can search

that list sequentially and find the data item.

So, I have just shown an example here there is a couple of data items given in that area

and trying to find 28, there are 16 comparisons that I need to do and we all know that we

can do much better if we keep the this item sorted in terms of in an increasing order or

say decreasing order here it is increasing order and then we can do a binary search divide

and conquer and I can find the same value 28.

Now, in just four comparisons and from that we have come to the also know that this

whole binary search order can be easily represented in terms of a binary tree structure

called the binary search tree.
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So, if  we compare worst  case time here again here please keep in mind that we are

talking about in memory data structure. So, here the time is primarily that of comparison.

So,  if  you  look  at  the  different  data  structure  like  unordered  array  ordered  array

unordered list and ordered list and binary search tree and if you check the complexity of

the  three  basic  operations  which  we will  need  in  that  in  a  database  application  the

research insert and delete you can find that the search. Usually, is order n unless you

have a un ordered array I mean between array and list the search is order n unless you

have an ordered array and you can do a binary search.

The insert the time that I show for insert or for delete is usually order one, because when

I say insert is order one what it means its that after I have been able to search an item

which I need to insert after I have been able to find its position, what is the additional

time that you need to actually insert that item? So, that insert cost is often for unorder

array and any kind of list  is  order  one because you can just  manipulate  a  couple of

pointers  and insert  that,  but  if  you are  using  an  ordered  array  to  make  your  search

efficient then to insert you need a order n insertion because at the right place you need to

move the elements to the right to make the space for the new element, because you need

to maintain the ordering that the elements have.

So, kind of we find that between the array and the list there is kind of a trade off in terms

of if you want to make search better you have ordered array and that degrades the insert



delete complexity and vice versa. So, to take the benefit of both we the binary search tree

is device to a you expect that the search will take the worst case order h cost which h is

the height of the tree, because that is the maximum number of comparisons that we will

need to reach that leaf node and a BST binary search tree if it is balanced then h would

be of the order of log n and this is what we desire.

(Refer Slide Time: 07:58)

So, if you look at BST is balanced h is of the order of log n I am not going into the

theory of proving why balancing means h is of the order of log n or how this order of log

n comes if you have doubts please refer to your algorithms book you will find plenty of

that  now that naturally  now if  a in the data structure if I  am regularly inserting and

deleting data.

Then it  is  not guaranteed  that  it  will  remain  balanced it  might  for example,  if  I  am

inserting the data in a in a say in increasing order in a in a binary search tree then every

time the insertion will happen on the rightmost node and if. So, that will mean that I will

have along the rightmost node I will have a long chain and therefore, it become like a

linear list and therefore, any search in that will not remain optimally it will take order in

time.

So, there as different strategies that you have studied in terms of balancing just to remind

you there are strategies which give you the best possible worst case time of log n which

is the famous AVL tree there are randomized strategies in terms of randomized BST skip



list there are amortized strategies which say that I do not really care about what happens

with a particular insertion search or deletion, but what I care is if I have done a large

number of insert delete search operations on the array then on the average what it should

be balance on the average it should be of ordered log n.

So, we have seen all of these different strategies and. So, in an order in an attempt to

generalize them for external data structure we note that these are typically good for in

memory operations these are good worked well; when you deal with a small volume of

data I mean you may be that may still be large, but is small in the sense that the whole

data fits into the memory and you can manipulate muscles the whole data in memory and

it of course, all these many many of these algorithms.

Particularly, the AVL tree and quite a bit of the randomized BST have complex rotation

operations that need to be performed the order different random generators need to be

involved in the randomized BST or skip list.  So, there are other complexities in this

whole factor comparison cost is not the only cost that you have and in the simple thing is

they  do  not  skill,  what  external  data  structures  they  are  not  optimized  in  terms  of

minimizing or optimizing the disc accesses or they do not scale to millions and millions

of entries and so, on.

(Refer Slide Time: 10:38)

So, you need to look at a different approach and this different approach in the day in

terms of database application database structures is called B plus tree and what I am



going to discuss is an in memory version of that which is a 2, 3, 4 trees. So, that we can

understand the basic principle of such search data structure which can work with external

data with this data, but first understand them in as an in memory version.

So, what is a 2, 3, 4 tree a 2, 3, 4 tree in contrast to other BSTs or in contrast to the

typical BSTs where you know every operation needs the height of the tree to be balanced

because some leaves could happen at  a much deeper level some could be at  a much

shallow level in a 2, 3, 4 `tree all leaves always are at the same level the same depth the

bottom level.

So, height h is the height of all the leaf nodes and that is guaranteed to be of order of log

n, if the tree has n number of nodes the complexity of search, delete and insert all are

order h that is a consequence of a constant height h or or a fixed height h that given n

that is maintained all data are kept in a sorted order. So, if you do a in order traversal of

the tree you will get the data in the sorted order, but the (Refer Time: 12:13) difference is

in contrast to the BST where every node is a binary node is a is a (Refer Time: 12:19)

one key and has two children here every node either a leaf node or an internal node every

node is one of the three types it can either be a 2-node or a 3-node or a 4-node.

A 2-node holds one, data 3-node once holds 2 data and 4-node holds 3 data and there

they give the name get the name 2-node 3-node and 4-node based on the number of

children that they can have the 2-node can have 2 children, 3-node 3 children and 4-node

4 children. They can generalized easily to larger nodes which can have a large number of

different types of nodes and it extends very naturally to external data structure. So, that is

with the basic about the 2, 3, 4 tree.
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So, let us just go through it in little bit more detail it uses three kinds of node as I have

said and now let me just show you. So, if you are talking about a 2-node. So, this is a 2-

node. So, there is one data item S and all search keys which are less than S around this

side all search keys which are on greater than S around this side.

We are just for the simplicity of discussion where I am assuming that all keys in this data

structure are unique. So, there is no repeated keys the repeated keys can be handled in a

very easy manner. So, this is one type of node a second type of node is a 3-node which

must contain two data items S we are calling it S and L and three links the first is less

than S the last is greater than L and the middle is greater than s, but less than L which

means actually what we enforce in terms of the two keys that exist at the node S must be

less than L.

So, values less then L go on one link values between S and L go on the middle link and

values greater than n go on the third link. Similarly, if I have a 4-node here I have three

values  where S is  less than M is  less than l.  So,  now, you can understand why the

acronyms S, M and L small, medium and large. So, on and we have four links the first

link gives you values less than S second is between S and M third between M and L and

forth greater than L. So, these are the or three different types of nodes that a 2, 3, 4 tree

can support and if it is a leaf node then it can be it can contain either 1, 2 or 3 get items.

So, let us go forward.
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Now, to search to search is a simple extension of BST you know how to search in a BST

you start with the route see whether the given key to search is greater than the key at the

route if it is greater you go to right if it is less you go to left and you do the same thing

here for a 2-node for a 3-node all that you will need to find out is between S and L

whether it is less than L then less than S then you take the leftmost whether it is greater

than L then you take the rightmost if it is between S and L you take the middle similar

strategy you do for 4-node and search is a simple extension of the BST algorithm. So,

you can suddenly work it out.
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Now, what we will need to do in terms of an insert, insert is very interesting. So, for

insert first you search and find the expected location where you are expecting it. So, that

is not there. So, you will expect. So, now, what are the possibility? Possibilities where

you have found the expected location that node could be a 2-node if it is a 2-node all that

you simply need to do is change that where 3-node inserts the second item if it is a 2-

node it has only one item. So, just insert this new item there and making it into a 3-node

good.

In the second case if you find the location if you find that it is a 3-node. So, it has two

items you just change it to a 4-node and insert this is as a third item; obviously, when you

insert you will have to decide has to whether where you should insert that depends on

whether you are given key is greater than the key that already existed or smaller than that

and so, on. Now, the question is what happens; when if you locate the place to be insert

itself is already a 4-node. Now, naturally you do not have anything bigger than a 4-node.

So, if it is a 4-node then all that you need is to split that node you have to split the node.

So, you have a 4-node.

So, you have a 4-node. So, you have you have a data one here you have data 2 here, you

have data 3 here and you are you know that the your d has to get inserted in this. So, you

cannot insert it by changing the node type because this is a maximum allowed. So, all

that you want to do is to change that into at different structure and that structure is called

a node splitting structure. So, we will we will see in the next slide as to how this is done

and we will see how different splitting sequence can happen and what will happen when

a 4-node will split when it was a root or the different kinds of parents that it has let us

just go there.
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So, what we are saying is the suppose you have a 4-node which is a root now splitting

that is actually doing this. So, you have to convince yourself that enough 2, 3, 4 tree what

we have already assumed; whether I represent this or I represent this are algorithmically

their equivalent. So, a single root 4-node and a such a structure of your 3, 2-nodes are

equivalent why is it? So, for example, if you are looking say if you are looking for a here

then it is it say it is less than s. So, you come here now if you are looking for the same a

here what happens a is less than S. So, it is it must be less than M remember S is less

than M is less than L.

So, a is less than M. So, you take this part it is less than S to you come here let us take a

case of c lets say c. So, if it is c you should come here, now if you check here c if it is

falling on this link; that means, it is greater than M and it is less than L. So, is greater

than M you come here it is less than L. So, you come here. So, you reach the same link.

So, you can see that actually a 2, 3, 4 tree is not a unique representation depending on the

requirement I can replace 4-nodes in terms of other 2-nodes and actually create a new

tree configuration. So, if it is at the root I can get rid of a 4-node and replace it by this

equivalent tree.
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Now, suppose there are the 4-node is not at the root it is somewhere else. So, what are

the possibilities the; if it is not at the root it must have a parent now the parent could be a

2-node. So, if it is a 2-node then these are the two possibilities if it is a 2-node, then. So,

this is a parent node which is a 2-node. So, then the 4-node could be a left child of that or

it could be a right child of that if it is a left child, then we use split take the middle item

and insert it in the parent and by that process a parent becomes a 3-node from a 2-node

and make these become two different 2-nodes.

Again  the  way I  was  just  explaining  in  the  in  the  previous  slide  you can  convince

yourself that this structures are equivalent for example, if I am looking for d let us say if

I am looking for d in this tree.

So, if I am looking for d that is greater than l. So, how do I arrive here now since this is a

left child? So, it must be placed than P, otherwise it could not have occurred on this side.

So, it is less than P. So, d is less than P d is greater than l. So, given that if I search for d

here so, it is less than P and since it is we I also have from this the d is greater than M,

otherwise it would not have come to the; this third link this forth link it would have been

elsewhere. So, I know that d is greater than M. 

So, and it is less than P. So, if I combined this 2, then d has to go on this middle ink,

because it is greater than M and less than P and then I have it is greater than L. So, it has

to be on the right. So, it comes to the right position.



So, in this way you can convince yourself in every search case that if the parent is a 2-

node, then you can equivalently split the 4-node and make an insertion in the parent 2-

node converted into 3-node and get rid of the 4-node altogether that lives us with.
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One other case which is if the parent is a 3-node naturally if it is the parent is a 3-node

then there are three possibilities. Now, because your 4-node could be a left child a middle

child or a right child and in every case you do the same thing you split the 4-node take

the middle item put it to the parents. So, parent converts from 3-node to 4-node. Now

and your rest of the split and pointed adjustments had done. So, that you get rid of this.

So, what happens in this process in and like the earlier ones here you do not get rid of the

4-nodes altogether, because in replacing one 4-node your creating another 4-node, but in

the process what is happening the 4-node is moving up it is it is going one level up. 

So, again what you will do is in recursively the new parent 4-node parent will again be

split and I just split if it is it is parent that is parent of the parent if that parent is also a 3-

node, then that will become a 4-node this will continue till your root becomes a 4-node

and we know that when root becomes a 4-node I can always change it to a configuration

of 3, 2-nodes. So, in this process as we have shown that we can actually get rid of the 4-

nodes in the whole of the 2, 3, 4 tree when it is required.



(Refer Slide Time: 23:03)

So, the basic strategy is very simple that will keep on constructing the 2, 3, 4 tree and

whenever we come across a 4-node for the first time we will split that and rearrange. So,

that I can get rid of it so, here what I show you is a basically an insert sequence over the

next couple of slides where which is trying to insert  the data in this following order

starting with an empty 2, 3, 4 tree. So, we first insert 10. So, you get this then we insert

30 that is here. So, 2-node becomes. So, the here the convention that I am I am following

is blue is a 2-node green is a 3-node and red is a 4-node. So, then you insert sixty it

becomes a 4-node and as soon as it becomes a 4-node the next element to be entered is

20.

But, before that this 4-node will have to be split and this is the case of splitting at the

root, because this is this has no child yet. So, you split and you get the middle moves to

the top here as 30, then you have two children 10 and 60 and after the splitting you move

on to actually inserting the intended 20 into it.
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So, 20 gets inserted on this side 20 is inserted on this side, because a smaller than this

and comes here. So, this 2-node becomes a 3-node then you insert 50 which goes on this

side which goes on this side and gets inserted here. 

(Refer Slide Time: 24:41)

So, your insertion continues your next to insert  is  40 which gets the inserted here it

becomes a 4-node and as soon as it becomes a 4-node and before the next insertion of 70

can happen you need to do a split. So, you do a split.



If you do a split then your 50 moves to the parent this becomes a 3-node. Now and your

40  and  60  becomes  two  2-node  children  as  this.  So,  it  is  a  same  information  is

represented, but now in this new 2, 3, 4 tree you do not have any 4-node. So, in you can

go ahead and insert 70.
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So, insert 70, 70 gets inserted here the 2-node becomes 3-node the, this is done. So, then

you insert 80, 80 gets inserted here is greater than it comes here and this becomes a 4-

node and. So, naturally the next would be two insert 15. So, 15 goes in on to the left. So,

15 has come in here which becomes a 4-node.
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And the next is to insert 90. So, which has to get inserted here it should have got inserted

here. So, this is already a 4-node. So, you need to split.

So, in split and as you split you get 40 40 was already there you get 60 and 80 and the

70, that existed in the middle goes to the root and your root becomes a 4-node. 
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So, this is the configuration you move on to your 90 gets inserted. Now, you have to

insert 100. So, you before that this your root has become a 4-node. So, you do a split. So,



as you do the split this is a new configuration that has happened and this is what has

resulted from the split of this 4-node at the root.
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And then naturally you can go ahead and insert 100 and 100 is now inserted. Here, you

could do adjustments  of  changing this  this  4-node into by splitting  it  and moving it

onwards I have not shown that, but if you now go back if you just now go back on on

these this whole process and you will see that specifically that we claim that all leaf

nodes would be in the same level. So, you can see that initial three trees all are at the

same level, then leaf and their level 0 and then when you have had this split then the leaf

nodes 10 and 60 are both at level once.

So, we can see that when actually you split at the root you add one level to all the leaf

nodes and that is the only time your height changes. So, beyond that you look at this the

level has not changed I am going to the next the level has not changed instruments to be

height 1 level does not change height 1 does not change does not change till the left here

and then we have a case again of splitting a 4-node at the root.

When the one level has been added to all the; so, all the leaf nodes where at level 1 now

all of them are at level 2. So, in a 2, 3, 4 tree you achieve this invariance of all leaf nodes

being at the same level by maintaining that the only time the height changes is when you

split a 4-node at the root and add one level uniformly to all of them.



And then rest of the logic is quite simple that these are here you can do actually follow

the same logic as of the binary search tree analysis that if there are n n items here; then

the maximum height could actually be order log n; because we though all nodes are not

binary, but the nodes that are not binary actually have more data.

So, they will be they will the height will always be log n or less than that of course, there

is an issue of concluding the complexity, because now you will argue that there are 3-

nodes or 4-nodes where more than one comparison is required to decide about the node,

but the counter argument to that is even if that be the case even if you have along the

path of the tree from the root to any leaf node.

Even if all of the nodes are of are 4-node that cannot happen as you have seen because

you will keep on splitting and distributing that, but if all of them are or 4-node also then

what will add is simply a factor of three two rather additional with the log n and the

overall complexity remains to be log n will go.
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Now, if you have to delete you have to do very similar operations I have not shown the

details, but you look at the node and then actually find the in order successor for that and

swap it with the item and then you can do the other arrangements of collapsing the nodes

as  we  have  done the  splitting  of  nodes.  Now I  have  to  do  the  collapsing  of  nodes

following the same river structure and leave that as an exercise to you just work it out at

home.
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So, if you look at if the 2, 3, 4 tree and there is a time to justify why we are doing this all

leaves are the same depth which is a great advantage the height is order log n always

complexity of search insert  delete  all  are  order log n all  data  kept  in sorted order  it

generalizes easily to larger nodes are and extends to external data structure. So, what you

mean by larger nodes, let us let us look at that a little bit before that of course, 2, 3, 4 tree

has a major disadvantage compared to binary research trees of the other kinds because it

uses a variety of node types. So, you I mean when you change from a say 2-node to a 3-

node you actually if you think in programming terms you have lot of additional cost,

because you need to distract the 2-node and create a 3-node.

If you split a 4-node and create 3, 2-nodes as required, then you have to distract the 4-

node and create 3, 2-nodes. So, there are lot of over rights in terms of that.
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So, what leaf if we if we just simplify that process and if you assume that, there is only

one node type which has enough space for three items and four links we do not have two

I mean we functionally there will be 2-node 3-node 4-node, but physically let them with

a same type of node. So, any internal node can have what is specification? So, there the

same type any internal node has 2 to 4 children and a leaf node has 1 to 3 items that is

what all that we are saying.

So, by doing this we will waste some space, but we have several advantages particularly

when you look at this for external data structure. So, what will happen is if I can think

about 2, 3, 4 tree in that manner then I can; obviously, generalize that it is not necessary

that I will have to restrict myself at 4 links, 4 children, I can do more than that.

So, in general I can say that there are a node has n children and it is each node is not a

leaf not a root or a leaf will have between n by 2 and n children. So, put n as 4 you will

find that it becomes 2, 3, 4 tree and a leaf node will have n minus 1 by 2 which is 1 and

for enough n being 4 and n minus 1 or 3 values which is what did you have.

So, if you just generalize from 2, 3, 4 to n by 2 to n and have a a container have a node

container which can have either n by 2 or n by 2 plus 1 or n by 2 plus 2 or maximum up

to n minus 1 data items and corresponding number of children then we will be very

easily be able to arrange for a similar data structure which will have all the nodes all the

leaf nodes at the same level and. So, this is the structure which is which extends very



easily and this is a fundamental structure of what he says a B-tree or a b plus tree will see

the differences shortly.

But this is a basic notion and the strategies of node splitting and node merging in case of

deletion and the algorithm of insertion deletion that we have discussed here will simply

get generalize in case of B-tree.
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When we go to the next module so, we have recapitulate in on the balanced binary search

tree and we introduced a the notion of a 2, 3, 4 tree which is a precursor to b plus tree B-

tree which is which are efficient external data structures and will be covered in the next

module.


