Database Management System
Prof. Partha Pratim Das
Department of Computer Science & Engineering
Indian Institute of Technology, Kharagpur

Lecture - 26
Indexing and Hashing/1: Indexing/1

Welcome to module 26 of Database Management Systems. In this module and the next 4;

that is for the whole of this week we will talk about indexing and hashing.

(Refer Slide Time: 00:33)

" PPD
[Week 05 Recap

i

E_ « Module 21: Application Design and = Module 24: Storage and File Structure/{

% Development/1 (Storage)

5 Application Programs and User Inlerfaces Owverview of Physical Slorage Media

i Web Fundamentats Magnetic Disks

i Servlets and JSP RAID

; + Module 22: Application Design and Tertiary Storage

i Development/2 = Module 25: Storage and File Structure/2 (File

e Application Architectures Structure)

H Rapid Application Development File Organization

; Application Performance Organization of Records in Files

E Application Security Data-Dictionary Storage

E_ Mobile Apps Storage Access

g + Module 23: Application Design and

Development/3

§ Case Studes of Database Applications

3

Y

z

H

o

H 2

i PRI ABI LS L ED
Dutabixse System Concepts - 6* Edition 31 SBilserschats, Korth snd Sudaiihan .

So, this is a quick recap of what we did in the last week primarily talking about
application development and then specifically; we focused on storage and file structure
that is how a database file can be stored how it can be organized and in a manner so that,

we have efficient representation for that now.

(Refer Slide Time: 01:01)

E:

i

Module Objectives

® To understand the reasons for which we need to index database table
u Tolearn about the ordered indexes and Indexed Sequential Access Mechanism

g
i
i
é
i
b
i
H
1
8
z

A RS R s

1 CBilbarschatz, Korth and Sudarshan

We will move on from there to and focus on the basic feature of a database system,
which is the ability to find information in a very fast manner the ability to update in a
very fast manner. And we will see the reasons for which we do something on the
database tables called indexing and we will talk about ordered index in this module and

about the index sequential access mechanism.

(Refer Slide Time: 01:31)

i3

i

Module Outline

® Basic Concepts of Indexing
® Ordered Indices

?.
i
I
é
i
b
i
i
i
8
z

Duiabisa Sytem Concepts - 8 Ediion 24 CBilbérschatz, Kiseth snd Sudashan

So, introduction of the basic indexing concepts and the order indices and we start with

the basic concepts.

(Refer Slide Time: 01:40)

" FFD
—— Search Records
® Consider a table: Faculty(Name, Phane)

Index on "Name" Table "Faculty” Index on “Phone"™

Name Pointer Rec# Name Phone Pointer Phone

Anupam Basu 2 1Partha Pratim Das 81908 6 81684
Pabitra Milra] 2Anupam Basu 82404 1 81998
Partha Pratim Das 1 JRanjan Sen 84824 2 B
Prabir Kumar Biswas] 4Sudeshna Sarkar 82432 4 BuR
Raijib Mall b SRajib Mall 83668 5 B3668
Ranjan Sen 3 6Pabiira Mitra B1664 3 B4624
Sudeshna Sarkar 4 TPrabir Kumar Biswas 84772 7 wm

u How to search on Name?

Get the phone number for ‘Pabitra Mitra'

Use “Name" Index - sorted on ‘Name’, search 'Pabitra Mitra’ and navigate on pointer (rec #)
® How to search on Phone?

(et the name of the faculty having phone number = 84772

Use “Phone” Index — sorled on ‘Phone’, search ‘84772 and navigate on painter (rec #)

® We can keep the records sorted on ‘Name' or on 'Phone’ (calledw

Daiabise Sysiem Concepls - 6 Edition b CBiltsrschatz, Kerth and Sudarshan .

EWAYAM: NFTEL-MOC MOGTs Instructor: Prof. PP Das. IIT Kharagear. Jan-Apr. 2018

So, consider a very simple example, let us consider an example where there is a relation
faculty which has name and phone number and additionally. So, just focus on the middle
part the pinkish part of the table which is table faculty besides the two attributes I have
put a serial number for the records which kind of can be considered as internal numbers

of the database to identify each record.

Now, let us say let us assume that we have to search on names suppose we have a query
that get me the phone number of Pabitra Mitra. So, you can see that Pabitra Mitra the
record name occurs at position 6. So, if we have to get the phone number, then naturally
we have to look at all these entries from one end to the other till we come across Pabitra

Mitra match the name Pabitra Mitra and we can access the phone number.

Now, similarly if we have to search for a phone number we will have similar situation.
So, if we want to get the phone numbers of the faculty having phone number 84772.
Again we will have to search on the phone number from one end to the other and find the
name of the faculty. Now, certainly this will mean that if there are n records in the
database then we will need or the order of about n by 2 comparisons to be done or

accesses record accesses to be done before.

We can find the desired record which is certainly not a very efficient way of doing things
and you know from your knowledge of basic algorithms that; if we have a set of data and

we want to find a particular one then we can make it efficient by actually keeping the

data in a sorted manner and doing some kind of a binary search that is one one possible

mechanism through which you can do that.

So, we can use that same context same concept now and just look at the left side the blue
part of the blue part tableware, what I have done have collected all the names of the
faculty and I have sorted them in lexicographically increasing order and with that I have
kept the record number as a pointer. Now, since this is a sorted array. So, here I can
search for Pabitra Mitra for the first query in a binary search. So, at least in the log n
order of comparisons I should be able to find professor Pabitra Mitra and get the fact;
that it is record number is 6 navigate to the record number 6 in the table in the middle

and take out the phone number.

Similarly, without disturbing the actual faculty table I can build a similar kind of
supportive table on the right the yellow one where I collect all the phone numbers and I
have sorted on the phone numbers I can again do binary search on the phone number
84772 and find the phone number find the record number where this phone number

occurs and go and find the name of the faculty.

So, you can see that naturally this gives us a alternate way of finding out and certainly
you would say that we could have kept the record sorted on name or on phone number,
but certainly if we keep it sorted on name the first query we will get benefited the second
query will still take a linear time if we get keep it sorted by phone number the first query
will take a linear time. So, if we cannot actually keep the data sorted on both and
therefore, this is just an alternate mechanism called the indexing mechanism through
which even though the original data is not sorted by maintaining some auxiliary data we
can actually make our search mechanism more efficient and that is the core idea of

indexing.

(Refer Slide Time: 05:39)

Basic Concepts

dom,

® |ndexing mechanisms used to speed up access to desired data.
For example:
Name in & faculty table
authar catalog in library
n Search Key - atfribute to set of attributes used to look up records in a file
® An index file consists of records (called index entries) of the form

8 Index files are typically much smaller than the original file
® Two basic kinds of indices:
Ordered indices: search keys are stored in sorted order
Hash indices: search keys are distributed uniformly across "buckets” using a "hash function”

2
£
i
i
X
E
d
a
=
i
§
i
|
]
H

‘rREL RSO B

Database !yumcn:meﬂn-s‘ Edition i Bilberschaiz, Korth and Sudarshan §

So, indexing mechanism is used to speed up accesses to desired data. So, as as you have
just seen. So, what we search on is called the search key and an index file consists of the
index entries as you have just seen it has a search key and the pointer pointer is the
record number or the internal you know address of the record where it occurs and
certainly I have shown an example where there just two attributes in general there will be
a large number of attributes. So, the entry of every index would be much smaller than the

corresponding record.

So, the overall index file will be a much smaller one than the original and we can index it
and there are two basic ways to index and; that is what we will discuss through these
modules one is called ordered index where this search keys are stored in sorted order as
you have just seen and the other is hash indices where the search keys are distributed
randomly across different buckets. Using, concepts of hash function which you must

have studied as a part of your data structure course.

(Refer Slide Time: 06:44)

e,

i
i
i
i
X
E
i
a
.
i
i
i
E’
8
H

Index Evaluation Metrics

§ Access types supported efficiently. For example,

records with a specified value in the attribute, or

records with an afiribute value falling in a specified range of values
Access time
Insertion time

Deletion time:

Space overhead

B B S RS R]

Databise System Coneepts - 8 Edtion i c8ilberschatz, Korlh and Sudarshan

Now, if we I mean why what should we index on the basic question is should we index
on all attributes should we index on one attribute should we index on combination of
attributes. So, access. So, there are certain measures to decide as to what is a good way to
index. So, that will be that will be measured against the basic requirements of the

database that is I should be able to index in a way.

So, that the access time the insertion time the deletion time all these should get as
minimized as possible and as you have just seen indexing might mean maintaining
additional structures. So, that overhead of space should also be minimal. So, with that
with indexing we should be able to do at least certain kind of accesses where a particular
value matches the attribute of a record or falls within a range of values in a record those
kind of searches those kind of queries should become very efficient and these metrics

will have to always keep in mind.

(Refer Slide Time: 07:51)

o,

:
i
i
:
E
i
a
1Y
3
1Y
H
H
i
5
8
H

Ordered Indices

In an ordered index, index entries are stored sorted on the search key value. For example, author
catalog in library

Primary index: in a sequentially ordered file, the index whose search key specifies the sequential
order of the file

Also called clustering index
The search key of a primary index is usually but not necessarily the primary key

Secondary index: an index whose search key specifies an order differant from the sequential order
of the file

Also called non-clustering index

Index-sequential file: ordered sequential file with a primary index

B R A SR

Databise System Coneepts - 8 Edton i Chilbsruehatz, Korth and Sudarshan

So, let us look at the first concept of ordered index which is pretty much like what we
have just sent. So, in a sequentially ordered file the index whose search key specifies the
sequential order is known as the primary index. So, the sequential ordering is done based
on that primary index it is called also called the clustering index and please keep in mind
that the search key of a primary index is usually the primary key, but not necessarily the
primary key it could be different from the primary key also and if I create an index who
search key is different from the sequential order of the file then we say it is a secondary
index and it is also called the non clustering index. So, index sequential file is ordered

sequential file which is ordered on the primary index.

(Refer Slide Time: 08:44)

-f!l Dense Index Files
E ® Dense index — Index record appears for every search-key value in the file.
T w Eg. index on ID atiribute of instructor relation
§' 10101 [10101 |Srinivasan | Comp. Sci. | 65000 i
§ 12121 « 12121 [Wu Finance | 90000 _:':)
£ 15151 15151 |Mozart | Music | 4000 | 1
i 2022 22222 |Einstein | Physics 95000 -’f)
. 32343 32343 [EISaid | History | 60000 | 4~
i 3456 - 396 [Cold | Physics | 87000 |4
: 45565 +[45565 [Katz | Comp.Sci. | 75000 | -+~
H 58583 58583 |Califieri | History 62000 Bl
: 76543 | - 76543 [Singh | Finance | 80000 |+
g 76766 76766 |Crick Biology 72000 -
8 83521 8821 |Brandt | Comp.Sai. | 92000 | 47
! 98345 | - « 9835 |Kim Elec. Eng. | 80000 |}~
il Cfilberschatz, Korih and Sudarshan

So, here I show an example and this is example of dense index file. So, you can see the
blue part is actual table which has different fields the id the name of the faculty, the
department, and the salary and this is as you can see that it is completely sorted on the id
in the increasing value of id and on the left the white is basically just the ids and with
every idea we have a pointer they record the number possibly of the record that it
corresponds to here all the indices that feature in the table are also put on the index file
and therefore, it is called a dense index you should also note on the right that the records
are interlinked through a chain I mean kind of they are being formed in terms of a linked

list whose purpose would be seen later on.

(Refer Slide Time: 09:40)

i,

:
i
i
:
E
i
a
1Y
3
1Y
H
H
i
5
8
E

Dense Index Files (Cont.)

8 Dense index on dept_name, with instructor file sorted on dept_name

| Biology ~+——{ 76766 | Crick Biology 72000

Comp. 5ci. | + 10101 | Srinivasan| Comp. Sci. | 65000
Elec. Eng. 45565 | Katz Comp. Sci. | 75000

| Finance |~ | 83821 |Brandt | Comp. 5ci. | 92000
History v s+ 9835 | Kim Elec. Eng. | 80000
:]\;:mr | 12121 | Wu Finance 90000
ysics \ 76543 | Singh Finance 80000

\\ T+ 32343 |ElSaid | History 60000
\\ | 58583 | Califieri | History 62000
\ + 15151 |Mozart | Music 40000

| 20222 | Einstein | Physics 95000
| 33465 | Gold Physics 87000

s
>
-
1
12
il
P
1
1’4
L

‘PR 4SS SO BD

Database System C;deeﬂl-v Edition Wil Cfilberschatz, Korih and Sudarshan g

Now, instead of doing id if I want to do a dense index on department name, then
naturally the sequential file has to be indexed primarily on the department name and as
you can note that unlike the id which is also the primary key and therefore, every id
value was unique the department name is not a primary key it is a different attribute
which allows for multiple value multiple records having the same attribute value and
therefore, when we sort we have one instance of biology, but three of computer science

two of finance and so, on.

So, when we make the index we made the index collect all the distinct values of the
department names and for every department name we put a pointer we put the index
marking the first record in the sequential file with that department name. So, you can see
that your computer science points to the record starting with 1 0 1 0 1 and then the; it

goes on to the next two records.

So, now you can understand why we need the link list; because if we are looking for the
all those teachers all those faculty who are associated with department computer science,
then I can find it on the index file with the department name, computer science traveled
to the record first record in that which is of Srinivasan and then keep going on this list
through the linked list that we have on write and find the record for Katz and record for
Brandt and till we moved to the next record for Kim which does not match the

department name anymore.

:
5
:
;i'
g
i
b
i
H
;
8
z

(Refer Slide Time: 11:26)

-y
=

® Sparse Index: contains index records for only some search-key values.

Sparse Index Files

Applicable when records are sequentially ordered on search-key

® Tolocate a record with search-key value K we;
» Find index record with largest search-key value < K
+ Search file sequentially starting at the record to which the index record points

10101 | 4

+ 10101

T
o

Comp. 5di.

65000

r =
| 3883 |4 12121 |Wu Finance | 90000 | 1~
L7676 [\ ™ 15151 [Mozart | Music | 40000 |
NN [2222 [Einstein | Physics | 95000 | <
\ 3B [ESd | Hisory | 6000 [1
\ 33436 |Gold Physics | 87000 -'.‘_')
\ | 45565 |Katz Comp. 5i.| 75000 |
Y | 58583 |Califieri | History 62000 =
\ [76543[Singh [Finance | 80000 | =”
76766 |Crick | Biology | 72000 |
83821 [Brandt | Comp.5c.| 92000 | <~
98345 |Kim Elec. Eng, | 80000 | 1~
iy CSilberschatr, Korth and Sudarshan

Now instead of dense index we could also do sparse index. Tweak parse index it means
that instead of maintaining all the search key values that exist in the file we just take a
subset of that and we maintain those in the index file. So, here again we are showing a
index sequential structure with id being the primary index and we have chosen three of
the ids and kept them in the index file. So, in the sorted order so, this if you want to say
look at a record with search K value K we can find the index record with the largest key
value largest search key value id value which is less than K and then search sequentially

or onwards because these are all linked together in the sequential manner.

(Refer Slide Time: 12:18)

i
i
i
i
d
:
:
3
%
g
§

Sparse Index Files (Cont.)

n Compared to dense indices:
» Less space and less maintenance overhead for insertions and deletions
» Generally slower than dense index for locating records

» Good tradeoff: sparse index with an index entry for every block in file, corresponding to least
search-key value in the block

data
block 0

L\

da&

block 1

Cfilberschatz. Korih and Sudarshan

So, naturally compared to the dense index of sparse index takes less space and therefore,
less overhead for maintenance when we do insertion deletion you must have already
noted that if I were dense index then every time I insert a value it will have to be the
dense index file will also have to change changes will be required there for insertion as
well as for deletion for sparse index it will not be required, because it will just be
required when I am actually changing the record or creating a record which is existing on

the sparse index.

(Refer Slide Time: 13:11).

Secondary Indices Example

sy

A \
: ~
§ e ali=t 51 Comp.Sci. | 65000 | 1=
a 40000 Srinivasan | Comp. Sci. 2
_% 60000 = Wu Finance | 0000 | ——
i 62000 | 4 Mozart | Music | 40000 | =
H G000 1 - 2 |Einstein | Physics | 95000 | _+”
i 72000 | - Fi%id |History | 60000 | _+~
H 73000 | A — e =]
E o« 3456 | Gold Physics 87000 |
d 80000 | - - = P
i 000 | - g 45565 [Katz Comp. Sci. | 75000 | 4=
e 90000 | y ¥ 98583 | Califieri | History 62000 _‘2_7
< o000 | / Singh Finanoe S0000 =il
] <000 | /NN b
& 95000 | ™ \U- 4y 76766 |Crick Biology 700 | =
% \ \“\I /ol 83821 | Brandt Comp. 5ci. | 92000 el
i . i 98345 | Kim Elec, Eng. | B0000 | |+~
l ‘_‘f =
g Secondary index on salary field of instructor
g : o
E B Index record points to a bucket that contains pointers to all the actual records with that
i particular search-key value.
E B Secondary indices have to be dense
H ‘PPILITF S LB

Daiabiuse Sysem Concepds - § Edition nis CBilberschatr, Korih and Sudarshan g

So that way it is it is better than the dense index, but certainly in the dense index I can go
to any record directly from indexing in the sparse index I need to first index and then go
sequentially. So, it will be in general slower in terms of performance and will need to
look at this tradeoff now it is also. So, these were the ways to do the primary indexing
where we decide the order in which we actually keep the record sorted or the fields on
which we do that and the index associated with it, but once since the data can be

primarily indexed on one or couple of attributes and that gets fixed.

But we may want to search for other values also to make that efficient we create a
secondary index. So, here we show an example where the primary index is id. So, the
whole recall records are sorted in terms of that and we are creating an index on the
salary. So, that we can quickly find the salary of and given the salary of an employee we

can quickly find the employee or the employees who get that salary.

So, you can see that for secondary index now it is quite possible that there are multiple
entries for the same value of salary for example, if you look at the salary eighty thousand
that is received by Professor Singh as well as Professor Kim. So, if you look at the index
file of the index sequence of the salary values you will find that against 80,000 we have
two entries which marked to two different records corresponding to the faculty who are
drawing that salary. So, secondary index naturally has to be dense and is created when
we want we feel that there is a need to quickly search on that field or that set of fields

and we will discuss more about those issues later on.

(Refer Slide Time: 14:46)

- Primary and Secondary Indices

&
:
i
i
X
£
é
&
&
i
i
i
é
8
z

B Indices offer substantial benefits when searching for records

B BUT: Updating indices imposes overhead on database modification --when a file is
rodified, every index on the file must be updated

¥ Sequential scan using primary index is efficient, but a sequential scan using a
secondary index is expensive

Each record access may fetch a new block from disk

Block fetch requires about 5 to 10 milliseconds, versus about 100 nanoseconds for
Memory access

“rRRTL RS A BD

Databise System Coneepts - 8 Edtion 014 Silbsruehatz, Korth and Sudarshan

So, indices offer substantial benefits when searching for records, but updating index
impose over it; because if you create an index whenever you insert a record or a delete a
record or you change the value of a field which is indexed in a record then certainly all
these indices will have to be also updated and therefore, while your access time
significantly reduces, because of indexing your actual update insert delete update time

will increase and therefore, the indexing will have to be done carefully.

So, sequential scan using primary index is efficient, but sequential scan using secondary
index is expensive. So, you will have to bring them in blocks and that will require couple
of millisecond versus the amount of time that you need in the memory access. So, these
are the factors that we will have to take into consideration and we will talk more about

those.

(Refer Slide Time: 15:44)

Multilevel Index

B |f primary index does not fit in memory, access becomes expensive

® Solution: treat primary index kept on disk as a sequential file and construct a sparse
index an it

outer index - a sparse index of primary index
inner index — the primary index file

B [feven outer index is too large to fit in main memory, yet another level of index can be
created, and so on

B |ndices at all levels must be updated on insertion or deletion from the file

EWAYAM: NFTEL-MOC MOGTs Instructor: Prof. PP Das. IIT Kharageur. Jan-Apr. 2018

‘PRI 4D SO BD

Duiabise Sysiem Concepls - § Edition wir Silberschatz, Kerth and Sudarshan g

Now, if I have a primary index then naturally to be able to access the records I will have
to first access the primary index and then do a search in that and then travers the point at
to go to the actual record in the file. So, to access the primary record we would prefer
that if the primary index can actually fit into the memory. So, that I can do a in memory

search like we do the binary search in a in an array.

So, because if the primary index is large then that also has to exist in the disk and
therefore, bringing that primary index into the memory and then searching will add two
additional access cost of the disk and you have already seen in the earlier modules as. So,
how these costs are expensive these accesses are expensive. So, primary index if it is not

in the memory then we usually have a lot of disadvantage.

So, to take care of that if you have primary index actually is large enough. So, that it
does not fit in memory then we simply apply the notion of indexing once again on the
primary index file itself. So, we construct a say on the primary index we construct a past
sparse index. So, which is called the outer index which is a sparse index of the primary

index and in that index is the actual primary index file.

So, if now in turn the outer index the sparse index of the primary index also is too large
to fit in memory then you need to do yet another level of indexing on it and. So, on till
you come to a index of list which fits into a memory can be directly accessed. So, the

cost for that so, this is what is called a multi level indexing.

Because, you are following multiple levels for indexing and the cost naturally of update
insert delete increases; because now all of these multiple levels of indices will have to be

updated.

(Refer Slide Time: 17:48)

Multilevel Index (Cont.)

- index | +— data
——+'block f].—_“\\bluck 0
‘-\\ ' ‘\\
\ ' \
, L L1
\\ \‘
N — N, p—
index ¥ | data |
block 1 | | block 1

outer index

inner index | |

EWAYAM: NFTEL-MOC MOGTs Instrucior: Frof. PP Das. IIT Kharagear. Jan-Apr. 2018

Daiabiuse Sysiem Concepds - § Edition ik Silberschaiz, Kerh and Sudarshan d

When you do an update so, this is what is a view of the multi level index you can see the
outer index which is sparsely index and index those lead to different blocks of primary
index of the of the inner index which is the primary index and then you traverse to the
specific block where your record is expected. So, with this you since your outer index are
in memory. So, you need to do one disk fetch for finding out the inner index block which
should be one disk page or disk block one axis and then based on that to find another

access to for the block in which the record exists.

So, with this you would be able to manage with to block accesses in this case and that is
how the multiple this would not have been possible if in this case you would not have
done the sparse outer index, because you would have required the different parts of the
inner index of the primary index to be fetched repeatedly from the disk till you act could
actually find the final result in that.

(Refer Slide Time: 18:59)

EWAYAM: NFTEL-MOC MOGTs Isstructor: Prof. PP Das. IIT Kharagear. Jan-Apr. 2018 | l!
Fl I

|
i
:
i

So, updating the index particularly if you do deletion then the if it is a dense index then
the deletion of the search key is similar to deletion of the actual record in the file because
it is dense if these parts, then naturally you will have to take care of some of the cases,
because if it falls within a range then just deleting it would not matter, but if it falls on

the boundary where it is actually sparsely indexed then that will have to be appropriately

updated.

(Refer Slide Time: 19:32)

s
=

SWAYAM: NPTEL-MOC MOOTs Instructor: Prof. P P Das. IIT Kharagear. Jan-Apr, 2018

Databisié Systems Concepts -6 Edition

¥ Single-level index entry deletion:
» Dense indices - deletion of search-key is similar to file record deletion
Sparse indices -

+ IF an entry for the search key exists in the index, it is deleted by replacing the
entry in the index with the next search-key value in the file (in search-key order)

» If the next search-key value already has an index entry, the entry is deleted
instead of being replaced

Index Update: Deletion

[C1mon +[10101_[Srinivasan| Comp. Sci.[65000 [1
EEEY BRI Wa | Finanee | SO000 |
16766 1\ ™ [I5I51 [Mozart | Miusic [40000 | 1<
|22 [Einsiein | Physics | 95000 | 1
B [f deleted record was the only y (5 L I
: gy ; \ |36 [Gold | Physics | &000 | 4
record in the file with its particular s (ke Comp, 5| 7500 ?
search-key value, the search-key SM; sCalll}:crl :liston' m
: . \ [76543 [Sing Finance =
is deleted from the index also. \ o766 [crek [Bilogy | 7200 >

83821 |Brandt | Comp. Sci| 92000 |

58345 [Kim | Elec. Eng, | 80000

iy

Index Update: Insertion

B Single-level index insertion:
» Perform a lookup using the search-key value appearing in the record to be inserted
Dense indices - if the search-key value does not appear in the index, insert it

+ Sparse indices - if index stores an entry for each block of the file, no change
needs to be made to the index unless a new block is created

» If a new block is created, the first search-key value appearing in the new block
is inserted into the index

nn

C8ilberschatr, Korth and Sudarshan

B Multilevel insertion and deletion: algorithms are simple extensions of the single-
level algorithms

CSilberachatr, Korth shd Sudarshan

Similar thing will have to be taken care of in terms of insertion. So, first you will have to
look up to find out to where the record needs to be inserted and then if it is a dense index
if the search key does not appear in the index then you will have to insert it in case of
sparse index you will have to do the additional care that whether it already belongs to the
range and or whether if it will have to be a new block has to be created then it has to be
also entered in terms of the sparse index and if you have multi level indexing then

insertion deletion will be extensions of these basic algorithms.

(Refer Slide Time: 20:14)

-,

i
:
i
i
X
£
i
a
1Y
3
1Y
i
i
é
3
H

Secondary Indices

B Frequently, one wants to find all the records whose values in a certain field (which is not
the search-key of the primary index) satisfy some condition

Example 1: In the instructor relation stored sequentially by ID, we may want to find
all instructors in a particular department

Example 2: as above, but where we want to find all instructors with a specified salary
or with salary in a specified range of values

B We can have a secondary index with an index record for each search-key value

B AR A S RS R

Databise System Coneepts - 8 Edtion #a Bilberuchatz, Korlh and Sudarshan

For secondary indices frequently we want to find all records where certain value in a
certain field which is not the search key or the; of the primary index satisfy some
condition. And, we can have a secondary index with an index record for each of this
search key values depending on what we expect what we would think or likely fields on

which more search will be done.

(Refer Slide Time: 20:45)

Module Summary

¥

m Appreciated the reasons for indexing database tables

® Undersiood Indexed Sequential Access Mechanism (ISAM) and associated nofions of the ordered
Indexes

EWAYAM: NFTEL-MOC MOGTs lestrucion: Pral. P P Das. IIT Kharagewr. Jan-Apr. 2018

Daiabase System Concepts - * Edition nn Bilberschatz, Korth and Sudarshan d
Or more range queries will be done. So, to summarize we have taken a brief look at the
basic reasons for indexing database tables which is to speed up the process of access
insert and delete and we have seen that primarily indexing primarily focuses on speeding

up the access process.

So, in that maintenance of indexing whereas, insertion and deletion might have some
additional overhead, but since insertion and deletion both inherently needs access to be
done because you can insert only when you have tried to access and have not found
exactly where the record should occur or for deletion; obviously, you need to first find

the record to be able to delete it.

So, even though it is focused indexing is focused on improving the access time it actually
improves the time for access insert delete all of that, but we will have to keep in mind
that in the process there are certain overheads of index update for insert and delete that
will have to be kept as a minimal and the additional storage requirement will also have to
be kept as a least overhead. So, with this we will close this module we have taken the
basic look at the index sequential access mechanism this is called index sequential access

mechanism associated with different database index files.

