Database Management System
Prof. Partha Pratim Das
Department of Computer Science & Engineering
Indian Institute of Technology, Kharagpur

Lecture — 25
Storage and File Structure : File Structure

Welcome to module 25 of Database Management Systems. We have been discussing

about storage and file structure.

(Refer Slide Time: 00:22)

Illl
.
a

Module Recap
§ OQverview of Physical Storage Media
® Magnetic Disks
® RAID
n Tertiary Storage

SWAYAM: NPTEL-MOC MOOTs Instructor: Prof. P P Das. IIT Kharagear. Jan-Apr. 2018

L B e i SR B

Databixsé System Concepts - 8 Edition %3 C8ilbérachats, Korth shd Sudarshan

In the last module we have talked about different storage options.

(Refer Slide Time: 00:27)

Module Objectives

8 To familiarize with the organization for database files
® Tounderstand how records and relations are organized in files

§ Tolearn how databases keep their own information in Data-Dictionary Storage - the metadata
database of a database

¥ To understand the mechanisms for fast access of a database store

EWAYAM: NFTEL-MNOC MOGTs Instructor: Prof. PP Das. IIT Kharagear. Jan-Apr. 2018 | l!
i’ :

e BN S RN

Daiabiuse Sysiem Concepls - § Edition 313 8ilberschaiz, Kerih and Sudarshan

And in this one we will talk about the; organization of database files, what should be the
typical structure to store the records in the files. And how the overall database which

manage itself we will talk about those issues.

(Refer Slide Time: 00:41)

L/] o
— Module Outline

® File Organization

® Organizalion of Records in Files
8 Data-Dictionary Storage

m Storage Access

EWAYAM: NFTEL-MOC MOGTs Instructor: Frof. PP Das. IIT Kharagear. Jan-Apr. 2018

e B S RN

Daiabase System Concepts - §* Edition A Cfilberschatz, Korih and Sudarshan

So, the file organization; so if you look at a database; what is the database? It is a

collection of relations.

(Refer Slide Time: 00:43)

File Organization

i

n Adatabase is

A collection of files. A file is

+ A sequence of records. A record is
A sequence of fields

® One approach:

assume record size is fixed

each file has records of one particular type only

different files are used for different relations

This case is easiest to implement; will consider variable length records later

EWAYAM: NFTEL-MOC MOGTs Instructon: Prof. PP Das. IIT Kharagear. Jan-Apr. 2018

e BN RN

Daiabise Sysiem Concepds - § Edition b1 C8ilberschatr, Korih and Sudarshan

So, it is a collection of files every relation is a file. Now, what is a file? A file is a
sequence of records, and what is a record? It is a sequence of fields. So, this is the
hierarchy that exists and this will have to be kept in mind, when we design the

organization of how we keep this data.

Now, one starting approach could be we can assume that all records are of fixed size
which makes a life easier and each file has records of only one type again a simplifying
assumption and different files are used for different relations. So, this is a easiest case to

implement.

(Refer Slide Time: 01:30)

i

m Simple approach:

§
i
i
X
5
é & Delefion of record i: record 0
; alternatives: record 1
i " d2
§ moverecords (+1,...,n i
g record 3
3 toi....n-1 record 4
g move record n loi reeord 3
negord &
g do not move records, but record 7
8 link all free records on a record 8
L free list record §
E record 10
4 record 11
H
H
F
H
Daiabise Sysiem Concepls - § Edition i1

Record access is simple but records may cross blacks
» Modification: do not allow records to cross block boundaries

Fixed-Length Records

Store record i starting from byte n = (i - 1), where n is the size of each record.

10101 | Srinivasan | Comp. 5d. | 65000
12121 | Wu Finance 0000
15151 | Mozart Music 40000
22222 | Einstein FPhysics 95000
3243 | ElSaid History 60000
3356 | Gold Phiysics E7D00
45565 | Katz Comp. 5ci. | 75000
58583 | Califieri | History 2000
7643 | Singh Finance B000
76766 | Crick Bialogy 72000
83821 | Brandt Comp. 5ci. | 52000
M5 | Kim | Blec Eng. | 80000

e BN S R

B9

Bilberschatz, Kerth and Sudarshan

So, we will start with that; so this is what we have we store these are fixed size records.
So, we store them one after the other and based on the fixed size, we can easily know
what is the starting address of any record and we can access it accordingly. Now, if a if a
record is deleted, then there are several things that I can do see that this is a different
alternatives, that is if I record delete record I then. So, if we delete any record then we
can actually move the records. So, that we consume that space or we can take the last
record and move it there or we can simply do not do any move, but use an some

additional pointers to denote that these records have become free rather give it to a free

list.

(Refer Slide Time: 02:22)

g Deleting record 3 and compacting

record(| 10101 | Srinivasan | Comp. Sci. | 65000
recordl | 12121 | Wu Finance 90000
record2 | 15151 | Mozart | Music 40000
record4 | 32343 | El Said History 60000
record5 | 33456 | Gold Physics 87000
record 6 | 45565 | Katz Comp. 5ci. | 75000
record7 | 58583 | Califieri | History 62000
record8 | 76543 | Singh Finance 80000
record9 | 76766 | Crick Biology 72000
record 10| 83821 | Brandt Comp. Sci. | 92000
record 11| 98345 | Kim Elec. Eng. | 80000

EWAYAM: NFTEL-MOC MOGTs Instructor: Prof. PP Das. IIT Kharagear. Jan-Apr. 2018

BRI

|
i
:
i

33 Cfilberschatz, Korih and Sudarshan

So, these are the three main strategies. So, here we showing the first one the record three
has been removed. So, all records have moved up in this it is we have move the last
record 11 in the place of record 3. So, record 3 is gone, but still the whole thing reminds
compact only the point that must be noted that in the earlier one, where well we moved
everything then the ordering that existed here of this key of this key field is maintained,
but if we move the last record the naturally that ordering has got destroyed. So, it will

have implications in terms of indexed organization that will cover in the next modules.

(Refer Slide Time: 03:08)

= .
—= Free Lists

Store the address of the first deleted record in the file header
Use this first record to store the address of the second deleted record, and so on
Can think of these stored addresses as pointers since they “point” to the location of a record

More space efficient representation: reuse space for normal attributes of free records to store
pointers (No pointers stored in in-use records)
header | T I T~
record 0 [10101 | Srinivasan | Comp,Sci, | 65000 |)
record 1 [1
record2 | 15150 | Mozt | Music 000 |
record 3 | 22222 | Einstein Physics 95000 !
record 4 +
woord5 | 39456 | Gold | Physics |
record [I T
record 7 | 58583 | Caliieri | History
record8 | 76543 | Singh | Finance
waord9 | 76766 | Crick | Biology
record 10 83821 | Brandt | Comp.5di
record 1198345 | Kim | Elec, En,

EWAYAM: NFTEL-MOC MOGTs Instructor: Prof. PP Das. IIT Kharagear. Jan-Apr. 2018

e BN S N

Daiabise Sysiem Concepls - § Edition B Bilberschaiz, Kerth and Sudarshan

The third option could be use a free list, which is a nice one because you would you do
not neither here neither you destroy the order that existed and no one have to really move
records which is expensive, but you just start with a pointer and keep on pointing to the

empty records.

And once you delete it you use that space itself to point to the next deleted record. So,
whenever you have to you know delete a record all that you need to do is adjust this
point. So, which is pretty fast and quite efficient way of getting this linked together in
terms of; so there is as such no space over it and it is a fastest possible that you can do

now in contest to fix length record.

(Refer Slide Time: 03:54)

Variable-Length Records

=

B Variable-length records arise in database systems in several ways:
Storage of multiple record types in a file
Record types that allow variable lengths for one or more fields such as strings (varchar)
Record types that allow repeating fields (used in some older data models)

B Aftributes are stored in order

® Variable length attributes represented by fixed size (offset, length), with actual data stored after all
fixed length attributes

® Null values represented by null-value bitmap
Null bitmap (stored in 1 byte)
7
21,5 26,10] 36, 10| 65000] 10101 | Srinivasan| Comp. Sci. |
Bytes 4 8 12 200 % 36 45

SWAYAM: NPFTEL-MOC MOOTs Instructor: Prof. P P Das. IIT Kharagear. Jan-Apr. 2018

B R e i SR R

Dutabiss Systei Concepts - §* Edition »nu Silbérschatr, Korth shd Sudarihan

If the record becomes variable length, then certainly every record may of very different
size and it is very common for example, we have types like varchar a lot of strings are
varchar. So, we just we do not know how much it will take. So, the typical way you
represent that is a you represent as to; what is a starting pointer of a particular of the
actual value and the size of the value the number of bytes it will take. So, when we say
twenty one five which we mean that this field will actually start from location 21 and we

will have 5 locations 5 bytes, then the next 1 is 26, 10.

So, this will start to 26 and go for 10 such; so what happens is; if you look into this part
of the data, then that part is actually for all practical purposes the fix length 1, because

here you are just keeping double x for the variable length data or you have some field

which is a fixed length data anyway or you have a null which is stored in one byte, and
then you have all the variable stuff at one end. So, you can actually make part of this

fixed length by using this kind of encoding. So, this is what is explained here.

(Refer Slide Time: 05:22)

Variable-Length Records: Slotted Page Structure
Block Header Records

S

Size # Entries Free Space
Location|

[————

End of Free Space
u Slotted page header contains:
number of record entries
end of free space in the block
location and size of each record

m Records can be moved around within a page to keep them conliguous with no empty space
between them; entry in the header must be updated

u Pointers should not point directly to record — instead they should point to the entry for the record
in header

EWAYAM: NFTEL-MOC MOGTs Instructor: Frof. P P Das. IIT Kharagear. Jan-Apr. 2018

B BB A SR

Daiabase Sysiem Concepds - § Edition B2 Silberschatz, Kerth and Sudarshan

So, for variable length records a one main issue is if you if you keep it like this, then
since you are using actually you are using pointers here we saying that this data actually
is on 21. So, what will happen is if you change the position of the record if you relocate
the record, then all these references will have to be updated. So, that becomes a slotted
thing. So, what the slotted page structure does is it does a [li/little] little bit of adjustment

it ports a puts a records here at the at the end.

And it has a header it has a. So, it has a block header as in here and the block header has
actually pointers to the records and then you have a an entry which points to the end of
the free space where more records can still be stored. So, when you refer to a particular
record you do not actually refer here. So, you do not refer here, but you refer here. So,
what you maintain is the header is actually not changed, but if there are relocations
required adjustments required, then that will be done with respect to this. And so, this
value will change, but any references made to this location will remain invariant. So, that
is the basic idea of the slotted page structure, which can allow you to have the variable

length record with easy re locatability in the design.

Now, let us see the given this what is the organization of the records in the file.

(Refer Slide Time: 07:05)

Organization of Records in Files

i,

Heap - a record can be placed anywhere in the file where there is space

Sequential - store records in sequential order, based on the value of the search key of each
record

Hashing - a hash function computed on some aftribute of each recard; the result specifies in
which block of the file the record should be placed

Records of each relation may be stored in a separate file. In a multitable clustering file
organization records of several different relations can be stored in the same file

Motivation: store related records on the same black 1o minimize /0

EWAYAM: NFTEL-MOC MOGTs Instructor: Prof. PP Das. IIT Kharagear. Jan-Apr. 2018

e B N

Duiabise Sysiem Concepts - § Edition Bid Bilberschatz, Kerth and Sudarshan

So, there are different organizations that have been tried out the simplest is the heap is a
record can be placed anywhere in the file where there is space. And you can link to that
that is that is one way certainly there is nothing very smart in terms of doing that, but you
can you would possibly like to do better than that. So, one is you can store the; records in
a sequential manner let us store records in a sequential order in terms of certain search

key.

So, based on the value of the search key you put them in the sequential orders. So, what
it will mean that it will become easier to search the records in that way, but it has
consequences or you can hash you can use a hash function on a some of the attributes of
the record and the results specified on which block which disk block the record will be
placed. So, these are the different option and a records of which relation may be stored in
a separate file that is a basic convention, but in some cases there could be multi table

clustering as well.

So, let us quickly take a look at these options.

(Refer Slide Time: 08:16)

ﬂ

Sequential File Organization

J AVAVAVAVAVANANAVANVAVAN

—

% m Suitable for applications that require sequential processing of the entire file
? m The records in the file are ordered by a search-key

i 10101 [Srinivasan | Comp. Sci. | 65000 | |
§ 12121 |Wu Finance 90000 E
£ 15151 |Mozart | Music 40000 | <
i 2222 |Einstein | Physics | 95000 |
. 338 |ElSaid | History | 60000 | -+
: 3% |Gold | Physis | 87000 | -
E 45565 |Katz Comp. 5ci. | 75000 1
i 58583 |Califieri | History 62000 J.
: 76343 |Singh | Finance | 80000 | |
g 76766 | Crick Biology | 72000 |
g 83821 |Brandt | Comp.Sci. | 92000 | -
: 98345 |Kim Elec. Eng. | 80000 Al

[el s e

So, these sequential file organizations. So, these things are kept sequentially here as you

can see there all consequentially here and this is the link key of those.

(Refer Slide Time: 08:34)

% Sequential File Organization (Cont.)

sequential order

SWAYAM: NPTEL-MOC MOOTs Instructor: Prof. P P Das. IIT Kharagear. Jan-Apr. 7018

Dalabirie Byitem Cancpts -6 Edtion

¥ Deletion = use pointer chains

+ ifthere is free space insert there

® Need o reorganize the file
from time to time 1o restore

+ if no free space, insert the record in an overflow block
o In either case, pointer chain must be updated

m Insertion —locate the position where the record is to be inserted

10101 | Srinivasan | Comp. Sci. | 6000 T
12121 | Wu Finance 90000 =
15151 | Mozart | Music 40000 <
200 | Einstein | Physis | 95000 |
W |BSid | Hisoy | 60000 | 5
Bi56 |God | Physis | g0 | ||
43565 | Katz Comp. 5ci. | 75000 +-
58583 | Califien | History 62000 -4{
76543 | Singh Finance 50000 -'{;
76766 | Crick | Biobgy | 7200 | ¥, ||
621 | Brandt | Comp.5ci. | 92000 ‘1/ f:
(] |]
%45 | Kim lec, Eng, | 50000, |

So, this is the issues of deletion and if you delete you use pointer chains. As you have we

have discussed earlier, and if you have to insert then you look for a free space, if you find

a free space you can put it there you insert it there if there is no free space then you have

to use a overflow block, where you can go and place that separately as the dilemma

shows here; in a multi table clustering what you would do is more than one relation

could be kept in the same file.

(Refer Slide Time: 09:00)

Multitable Clustering File Organization

=

Store several relations in one file using a multitable clustering file organization

dept_name building budget

]

i

i de Comp, Sci. Taylor 100000

i Physics Watson 70000

E— D name dep!_name salary

H 10101 | Srinivasan | Comp. Sci. 65000

3 St 3456 | Gold Physics §7000

§ 45565 | Katz Comp. 5ci. 75000

E 83821 | Brandt Comp. 5¢i. 92000

i . :

g Comp. 5ci. Taylor 100000

: multitable clustering 45564 Katz 75000

¢ f'nf;ffcj;"’f"‘a”d 10101 Srinivasan | 65000

i 83821 Brand 92000

H Physics Watson 70000

: B e RS
Ol o o o v av S e S 0 b J

For example, here we are showing two relations department name building and budget
these attributes doing department and instructor, id name, department name, and salary is
a other instructor in a way keeping them together here naturally, where we keep them

together.

For example here in we have one which is here in we have one, which is and entry of
record from the department relation. Similarly here is another which is from the
department relation whereas, these are entries from the instructor relation; please note
that since we are doing it multi table with a department we do not need to keep these
information in as a part of the record, but what you mean is if there is a computer science
entry here. Then all those records which follow this computer science entry are actually
instructors in the computer science till I actually come across another departments entry
where which will be followed by instructors for that department. So, that is a basic multi

table convention that is to be followed here.

(Refer Slide Time: 10:26)

Multitable Clustering File Organization (cont.)

good for queries invalving department [instructor, and for queries involving one single
department and its instructors

bad for queries involving only department

results in variable size records

Can add paointer chains to link records of a particular relation

EWAYAM: NFTEL-MOC MOGTs Instructon: Prof. PP Das. IIT Kharagear. Jan-Apr. 2018 d ll

| Comp.5d. Taylor 100000)\
45564 Katz 73000
10101 Srinivasan 65000)
83821 Brandt 92000
Physics Watson 70000 L
33456 Gold 87000 -

T L B i e
Daiabase System Concepts - * Edition B Cilberschatz, Korth and Sudarshan

Now, it is actually good for queries that involved joining department with instructor,
because based on the value of the department you have the instructors club together and
they could be very easily quickly taken together and it is also good for single queries
with departments and it is instructors, because as you can see you can if you want to
know for example, who are the faculty for at computer science department; then it be
very easy to answer that, because you need to search for computer science and then you

know all the list of the faculty will be in consecutive block.

So, you can easily lift that, but certainly this is not true, if you want to involve queries
which have department only; because that department information are all now partially
distributed. So, if your query has the department based information to be to be
accumulated, and then this may not be a good option. So, that will result in then you can
have supporting pointer chains to actually link the department information. So, this is a

one kind of a design that you have ok.

Now think about; so the whole so, we have; so, far talked about the relations and
relations going to either single files or multi table relations; multi table file where
multiple relations are on the same file. Now, if you look at the database as a whole. So,

what is a data base?

(Refer Slide Time: 12:08)

Data Dictionary Storage

=

The Data dictionary (also called system catalog) stores metadata; that is, data about data, such as:

® |nformation about relations
names of relations
names, types and lengths of attributes of each relation
names and definitions of views
integrity constraints
® User and accounting information, including passwords
® Statistical and descriptive data
number of tuples in each relation
B Physical file organization information
How relation is stored (sequential’hashy...)
Physical location of relation
¥ |nformation about indices

EWAYAM: NFTEL-MOC MOGTs Iestructor: Frof. PP Das. IIT Kharagear. Jan-Apr. 2018

R BB A o

Daiabise Sysiem Concepds - § Edition B Silberschatz, Kerth and Sudarshan

The database as a whole has a whole lot of tables; and so far we have just been focus on
the fact that tables we know the tables we know their attributes and the data resides in
inside, but if you think in terms of the database, then somebody; somewhere we will
need to remember that what are my tables? What are my relations? For a given relation |
need to know what are the attributes that the relation has, what is the; you know length
type of this attributes I did remember what are the views that I have created on the

database the constraints that exist.

So, all of these information which you can say is databases own metadata information
needs to be also maintained; and what is done is that; also is maintained as a database
within the database system. And such a metadata system is usually known as the name of

data dictionary or system catalogues.

So, it has informations like this. So, you put them again, you create the schema design
based on the all this metadata information that you need, also you can have you will need
to maintain information for users, accounts, passwords and so, on. Then you may have
statistical information, where you would like to; we will see the use of statistical
information when we talk about indexing in the following week you will see that you
need to know, what is the you know how frequently the different queries are fired, what

are the number of peoples in each relation and so, on; you may also need to have

information in terms of what has been your choices in terms of the physical locations of

file the storage options and so on the index files.

(Refer Slide Time: 14:05)

!,..l Relational Representation of System Metadata
i

: . Relation_metadata ‘ Attribuite_metadata
% u Relational relatioii_tianie e telation_name

3 representation on number_of attributes altribute name

i disk storage_organization domarn_type

H location position

i B Speciglizeddata ———— length

£ structures

i designed for f —

. efficiant access. in | Index_metadata

H memary idex_natme r

LY

§ relation_name

] index_type

E inder attributes User_metadata
] WSEr_name

g encrypted_password
§ | View_metadatn | i

E view_name

L e,

: . definition

-

T

H

L BN A i SR R

ar

So, here is a sample one. So, what if you look into; so you can again see a number of
schema. So, this is saying that the; this is the relational metadata schema which is talking
about, what is the different relations? So, every record here is not keeping the data of
your application, but its keeping the information that here you have these different
relations. For example, couple of modules back we are talking about the library

information system.

So, in the library information system we had different we designed different relations the
book issue, the book catalogue, the book copies and so, on. So, those relation names and
the how many attributes they have? How will you organize the storage, where is that
storage will go to this particular table? Then depending on the kind of index that you are
creating we have still not discussed about index we will do subsequently; but those index

information can be preserved the view information we can have attribute metadata.

So, it is for the relation name what is attribute name and what is the type of that
attributes. So, if the relation name is say book catalogue, then the attribute name is title,
then what is the domain type. So, we will say this is a varchar; then the position of that
attribute, the length if it is given the user metadata all of this are typical things that will

go into this system catalogue or the data dictionary that we will require.

(Refer Slide Time: 15:47)

Storage Access

=

§ Adatabase file is pariitioned into fixed-length slorage units called blocks
Blocks are units of both storage allocation and data transfer
m Database system seeks to minimize the number of block transfers between the disk and memory

We can reduce the number of disk accesses by keeping as many blocks as possible in main
memory

u Buffer - portion of main memory available to slore copies of disk blocks

® Buffer manager - subsystem responsible for allocating buffer space in main memory

EWAYAM: NFTEL-MOC MOGTs Instructor: Frof. P P Das. IIT Kharagear. Jan-Apr. 2018

L BB e SR

Daiabise Sysiem Concepds - § Edition B Bilbsrschatz, Kerth and Sudarshan

So, finally, the access to the storage the database file as I have been repeatedly saying is
partition into fix length units called blocks, because blocks are defined; so that they can
be easily allocated and transfer and they are the fastest unit of data that can be transferred

between the disk and the memory.

So, unlike many of our typical algorithmic considerations; so when we talk about
different algorithms, what we try to minimize? We try to minimize certain expensive
operations in the CPU; say the comparison operation or the assignment or may be the
memory read operation. But in terms of database systems block is a basic unit of data
transfer and the data transfer two and from the disk is the most time taking factor much
takes much larger time compare to any in memory operation that we do. So, this kind of

becomes the primary unit of cost that we want to minimize.

So, normally we will see that as we talk about index saying and other different kinds of
mechanisms, our primary target is to minimize the number of block transfers. So,
certainly we can do that by; can reduce the number of disk access by keeping as many
blocks as possible in the main memory. So, we can how can you minimize that transfer,
if we can keep more of the blocks in our main memory and naturally of course, there is a
limitation because main memory is much smaller. So, often we make use of different

buffers.

So, a portion of the main memory will be kept to store copies of the disk block. So, every
time you need a block you may not want to need to bring it from the; disk storage. So,
you keep it in the buffer in main memory, and then you have a management strategy to
manage this buffer. So, whenever you want to actually access a record which should be
in a particular block; you check whether that block is already available in the buffer; if it
is available in the buffer it use that if it is not available in the buffer, then you take it
from the disk you will need quite a bit of cycles for that and as you get that from the disk

then you keep a copy in the buffer so that it can be used in future.

(Refer Slide Time: 18:33)

Buffer Manager

m Programs call on the buffer manager when they need a block from disk.

If the block is already in the buffer, buffer manager returns the address of the block in main
memary

If the block is not in the buffer, the buffer manager
Allocates space in the buffer for the block

Replacing (throwing out) some other block, if required, to make space for the new
block

Replaced block written back to disk only if it was modified since the most recent time
that it was written to/fetched from the disk

Reads the block from the disk to the buffer, and returns the address of the block in main
memory fo requester

e BB i S B

g SWAYAM: NFTEL-MOC MOGCs Instructor: Pral. PP Das. IIT Kharagear. Jan-Apr. 2018 l l

Now as you keep on doing that, naturally soon you will run out of the buffer memory.
So, you will come to a situation, where we need to bring a block from the disk to the
memory, but the buffer does not have enough space. So, then we will have to create
replace some of the blocks and create space for that. So, here is a basic buffer

management strategy.

So, as I said if we if we start if the block is already there in the buffer, then that is given
out if the block is not there in the buffer the buffer manager will need to allocate some
space how do you allocate space by throwing out some other block which is not required
or replace the; then replace the block return back to disk and if it was modified and make
space free and then read from the disk and keep a copy in the buffer. So, that is a simple

strategy as you can see.

(Refer Slide Time: 19:36)

Buffer-Replacement Policies

~am.

B Most operating systems replace the block least recently used (LRU strategy)
B |dea behind LRU - use past pattern of block references as a predictor of fuure references

B Queries have well-defined access patterns (such as sequential scans), and a database system
can use the information in a user's query to predict future references
LRU can be a bad strategy for certain access patterns involving repeated scans of data
For example: when computing the join of 2 relations r and s by a nested loops
for each tuple trof r do
for each tuple ts of s do
if the tuples ir and s match ...

Mixed strategy with hints on replacement strategy provided by the query optimizer is

g SWAYAM: NPTEL-MOC MOGCs Instructor: Prof. PP Das. IIT Kharagear. Jan-Apr. 2018

preferable
(3 g LI O AR e

Now, certainly when you have to replace the block in the buffer, then the question is
which block would you replace. Now if you recall from your from similar situations in
the in the operating system in terms of memory management, you have read about
different strategies for doing replacement and one of the very common strategy more
often used is the LRU strategy of the least recently used strategy. So, the idea of behind
LRU is use the pass pattern of block references as to predict the future. So, least recently
used is if this is not been used in the recent past. So, it has less likely hood of being used

in the future.

Now, to queries; now here we are trying to do the similar thing in terms of queries. So,
they have a well defined access pattern and database system can make use of that and as
it turns out LRU can be a bad strategy for example, often you are doing computations in

terms of such what you say such nested loops.

So, you have for each tuple you do this; so you have basically trying to do a join. So, you
have two relations and you are trying to do a join. So, when you do this when you are
going through the inner loop, there will be lot of transfers that will happen; and the
original block where you have been holding this is here and you are not accessing that

for quite some time.

So, while you are doing this if you if this block, which was which was holding r at that
time if that turns out to be a LRU; then you will throw it away, but with that when you

complete this loop and come back here, you will again have to read it from the disk. So,
this is not LRU for such nested computations may not be a good strategy, so may be

some kind of mixed strategy would work better.

(Refer Slide Time: 21:50)

Buffer-Replacement Policies (Cont.)

i,

Pinned block = memory block that is not allowed 1o be written back to disk

Toss-immediate strategy - frees the space occupied by a block as soon as the final tuple of that
block has been processed

Most recently used (MRU) strategy - system must pin the block currently being processed
After the final tuple of that block has been processed, the block is unpinned, and it becomes the
most recently used block.

Buffer manager can use statistical information regarding the probability that a request will
reference a particular relation
E.g., the data dictionary is frequently accessed. Heunislic: keep data-dictionary blocks in
main memory buffer

Buffer managers also support forced output of blocks for the purpose of recovery

EWAYAM: NFTEL-MOC MOGTs Instructor: Prof. P P Das. IIT Kharagear. Jan-Apr. 2018

e B S RN

Daiabise Sysiem Concepls - § Edition B Cfilberschatz, Korih and Sudarshan

So, there are several that are used in terms of buffer replacement one is called pin block,
where you mark a certain memory block which is not allow to be return back to the disk
it has to stay in the buffer or a toss immediate strategy is quite often used. So, it frees the

space occupied by a block; as soon as the final tuple has been return.

So, it is a toss immediate. So, as soon as you are done you just throw it out you are you
are done with it so you write it back. Another which is commonly uses most recently use
the; if whenever the block is currently being processed, then the system will kind of keep
a marker a pin. So, that it is not removed, but after the final tuple has been processed, the
block will be unpinned and then it becomes a most recently used block and you can go

with defining the most recently used block and having the strategy.

(Refer Slide Time: 23:04).

Module Summary

o=,

® Familiarized with the organization for database files
® Understood how records and relations are organized in files

B Learnt how databases keep their own information in Data-Dictionary Storage - the metadata
database of a database

m Understood the mechanisms for fast access of a database slore

EWAYAM: NFTEL-MOC MOGTs Instructor: Prof. PP Das. IIT Kharagear. Jan-Apr. 2018

e e B S RN

Daiabise Sysiem Concepls - § Edition BH CBilbserschatz, Kerh and Sudarshan

You can certainly use different kinds of statistical information and in summary; so on
this we have talked about the basic organization of database files starting from the fixed
record to variable record handling of the different file organization and try to take a look
in terms of how records and relations are organized in terms of the in terms of the files
and what are the options that we have and we took a look at the data dictionary storage

the basic system catalogue, where database keeps its own information.

And then noted that block happens to be the major unit of data transfer between the disk
and the main memory and therefore, that is the unit of defining unit of cost that we have
to incur, and to minimize that we have a buffering strategy in the main memory, where
the disk blocks will be kept a few disk blocks will be kept for quick use whenever
required. And there needs to be various different smart replacements strategies for good

management of this buffer.

