
Database Management System
Prof. Partha Pratim Das

Department of Computer Science & Engineering
Indian Institute of Technology, Kharagpur

Lecture – 20
Relational Database Design (Contd.)

Welcome to module 20 of Database Management  Systems.  We have been discussing

about relational database design, since the last 4 modules and this will be the concluding

part of relational database design.

(Refer Slide Time: 00:33)

In the last module, we have seen some very key concepts of relational design, that of

normal forms third and Boyce Codd normal form specifically and how to decompose

into them? And how do we get benefit in terms of doing this kind of decomposition? In

removing the anomalies by reducing the redundancy in the design.



(Refer Slide Time: 00:59)

In view of that in the background of that, in this module will we would try to understand

a new kind of data dependency, an additional kind of data dependency, which is called

multivalued dependency. Which can occur when an attribute can have can take multiple

possible values, which we had eliminated in the first normal form together and based on

that,  we will define 4th normal form and decomposition into 4 NF and then we will

summarize this whole set of discussions of relational database design, and talk little bit

about what happens, when you have temporal data in your system.

(Refer Slide Time: 01:39)



 (Refer Slide Time: 01:47)

So, these are the outline points, based on our objectives and we start with the discussion

of  multivalued  dependency. Consider  a  situation  like  this.  So,  here  we are  trying  to

represent an individual instead of persons with 3 attributes, man which is an may be id or

name of that person, phones and dog like. So, the idea is that the here persons and they

can have 1, 2, 3 any number of phones, which is true for all of us and then a person may

have any number of dogs that he or she likes. 

So, both of these phones and dog like D, P and D attributes can take multiple values and

ah. So, if we if we if you look at the 1 NF normalized form here. So, in 1 NF what we

do? We create separate rows for them. So, we have created separate rows for M 1 against

P 1 and P 1 or P 2 in phones and similarly for D 1 and D 2. So, once we have done that

then we have here, we can see I have highlighted with yellow, you can see the different

redundancies that are arising.

Because, since I have phones and dog liking attributes. So, it is possible that if phone

takes 2 values and dog like takes 2 values, then actually 4 different combinations of them

are possible. But in reality, it may be in reality it may be actually these 2 are true, that M

1 has phone P 1 and likes dog D 1 M 1 has phone P 2 and likes dog D 2, but you could

also have such redundant tuples coming in, because there they are now valid.

So, this is the situation which we try to try to capture, in terms of what you see here

multivalued dependencies, where which is row shown in terms of double arrows as you



can see here. So, man I say determines multi determines phones man multi determines

dog likes. So, there are 2 different multi valued dependencies in this case. So, this multi

valued dependency adds a new source of redundancy in our data, and that is very real in

various models of our system.

(Refer Slide Time: 04:19)

So, let us move on. So, this is just another example, we have 2 different relations student

give the student id and name, courses giving course id and name and the corresponding

functional dependencies in them, you can see 2 instances of that. But if we as such, there

is no relationship between student and course, but if we choose to keep them in a single

relation, say student course which I have shown on bottom right here. Then there will be

you can see lot of redundancies coming in, because since I they can be in terms of all

different combinations. So, S 1 has in name A may be taking course C 1 having name C,

but again the S 1 having name A could be taking course C 2 having name B, you just do

not know which one is correct.

So, you can see that here again you have 2 multiple value dependencies, one where SID

multi determines CID and SID multi determines C name. So, these are the 2 different

multiple values that you can, find against the SID and this is ah. So, if 2 or more multi

valued  dependencies  exist  in  a  relation,  then  while  we  convert  the  we  convert

multivalued attributes into single valued attributes, then the multi value dependency will

show up. So, that is the basic problem that we would like to address.



(Refer Slide Time: 05:59)

This is another example of 2 relations, where the id and child are together, when id and

phone number are together. So, naturally if I combine them into a single relation, you

have a set of possibilities of multiple different tuples. Because given an id there could be

multiple children, there given an id there could be multiple phone numbers. Mind you,

this  relation  of  isn’t  info  is  still  in  Boyce  Codd  normal  form,  because  there  is  no

dependence there is no functional dependency that holds on this relation. So, the key of

this relation is the union of all the 3 attributes and therefore, that being the key and no

functional dependency holding on it, naturally vacuously makes it Boyce Codd normal

form, but you can still see that there are redundancy in that is data.



(Refer Slide Time: 06:48)

So now, let us define multivalued dependency in a formal way and. So, we say that alpha

multi determines beta, naturally alpha and beta both have to be subsets of the given set of

attributes. When we say that? When there are for all pairs of tuples t 1 and t 2 such that

they match on the fields of alpha, this till this point it looks like functional dependencies.

There  exists  2  more  tuples  t  3  and  t  4  such  that  this  condition  sold,  what  are  the

conditions? Look, carefully here we say that all of them match on the alpha attributes

which is fine, then you say that t 3 matches with t 1 in the beta attributes and t 3 matches

on the remaining attributes with t 2. Similarly, t 4 matches with t 2 in the beta attributes

and t 4 matches with t 1 on the remaining attributes.

So, let us look at an example, gets confusing. So, here is course book and lecturer ah. So,

it  is  a  relationship  of  university  courses  known naturally,  every  course  has  multiple

recommended books and every course has  been taken by multiple  different  lecturers

from time  to  time.  So,  course  can  have  multiple  books.  So,  there  is  a  multivalued

dependency here, it can be taught by multiple lectures.

So, there is a multivalued dependency here and therefore, I can have an instance of this

particular relation and I am just showing you, how to test for the multivalued dependency

course multi determines book. So, these are the 2, 4 tuples I have marked t 1, t 2, t 3, t 4

if you look into the first condition. So, this is your alpha I am checking for. So, this is

alpha this is beta. So, this is beta and this is ah. So, to say R minus beta minus alpha ok.



So, the first condition that all these tuples will have to match on alpha yes, they do, all 4

of them have AHA here.  So,  that is  fine take at  the second condition t 3 on beta  is

Silberschatz and t 1 on beta is also Silberschatz. So, they match and t 3 on the remaining

attributes remaining attributes are, if I take out beta if I take out book it is AHA it is

course and the lecturer that is remaining. Now it already matches on the course. So, I do

not have to check for that, but. So, I can just check for whether it matches on lecturer,

between some checking for this rule, whether t 3 and t 2 match yes t and t 2 match, they

have the same name for the lecturer.

Look at the next one which is t 4 and t 2 match on beta, t 4 and t 2 match on beta yes,

they have the same name of the book, and whether t 4 and t 1 match on the lecturer, this

rule t 4 and t 1 match on the lecturer this rule. So, it also satisfies. So, I can say that this

relation  has  holds  the  multivalued  dependency  course  multi  determining  book.  In  a

similar way you can you can mark your t 1, t 2, t 3, t 4 on this and check for course multi

determining  the  lecturer,  actually  we  will  we  will  soon  state  that;  if  course  multi

determines book, then it is trivial that course will also multi determine lecturer.

(Refer Slide Time: 10:36)

So, this is just to tell you if you have 3 non-empty sets of attributes Y, Z and W and then

we say, Y multi determine Z, if and only if there are these are the possible relations. That

I can have Y 1 and Z 1 W 1 in a relation and Y 1 and Z 2, W 2 in the relation, then I can



have Y 1, Z 1 with W 2 and Y 1, Z 2 is W 1, that is you can basically take the cross of

these to other 2 attributes and those are r tuples, possible tuples in your relation and ah.

So, you can you can naturally if you read it in little in a different way, then you can

observe that since the behavior of Z and W are identical they are switchable. So, if Y

multi determine Z, then you can you have Z Y multi determining W and vice versa. So,

this is; what is a core observation in terms of the multi value dependencies?

(Refer Slide Time: 11:40)

So,  this  is  in  terms  of  our  example,  you  can  now clearly  understand  that  id  multi

determines child name and id multi determines phone number, in the earlier example that

we  took  and  ah.  So,  we  can  also  note  that  if  there  is  a  functional  dependency,  Y

functionally determines Z then; obviously, Y will multi determine Z, that is that is just

quite obvious.



(Refer Slide Time: 12:06)

So, we have to we can make use of multi value dependency to specify, further constraints

to remove redundancies and defining what is legal in a relation. And if a relation fails to

satisfy a given multivalued dependency, then we can construct a relation r primed, that

does satisfy the multi valued dependency by adding tuples to that r right?

(Refer Slide Time: 12:32)

Now, once having defined the notion of multi valued dependency, we next proceed to

check,  how  do  we  reason  about  that.  So,  I  would  remind  you  about  functional



dependencies, and the different rules of ah functional dependencies Armstrong’s rules,

that we had introduced the all of these of augmentation transitivity and all that.

So, in terms of functional dependencies we have 3 rules, commonly called the cat rules.

Which purely involve the functional dependencies, first is a complementation which is a

kind which we have just discussed shown, that if X multi determines Y, then X multi

determines R minus X union Y with multi determines the remaining set of attributes.

Augmentation that is I can augment any multivalued dependency with left and putting

attributes on the left and right-hand side, as long as I put all attributes that I put on the

right-hand side, I put them on the left-hand side. I may put more attributes on the left-

hand side, but all attributes that I put on the right-hand side here Z must be a subset of

the attributes that I put on the left-hand side, that augmentation is possible. Transitivity is

manifesting in a little different way, if X multi determines Y and Y multi determines Z

then, X multi determines Z minus Y.

So, these are the these are the 3 rules which are basically these 3 are rules that, involve

only multi valued dependencies and the other 2 rules, actually involve the relationship

between multi value dependency the replication rule and the coalescence rule, which are

between the multi value dependency and the functional dependency. We are not going

deeper into that further, or trying to take specific examples and show how they work. 

I  just  want you to know that such rules exist  through which,  you can define similar

algorithms for multivalued dependency also, as we did for functional dependency like as

you can  understand the  most  critical  algorithm to  define  would  be  the  algorithm of

closure,  which can again be used in the situation where I have functional  as well as

multivalued dependency.

So, just we will keep that, in little bit advance space of this course. So, just know that

such things exist, but we are not going into the details of that. Finally, for a multivalued

dependency where, X determines Y we call that MVD to be trivial. If either y is a subset

of  X which  is  the  notion  we used for  functional  dependencies  or  there  is  a  second

condition here, that the union of the X and Y that left hand right hand side gives you the

whole set of attributes, otherwise a it is a non-trivial multivalued dependency and we

have to repeat the values. So, these are the 2 conditions, if they satisfy then we know that

we have a trivial multi value dependency and we do not want to deal with that.



(Refer Slide Time: 15:40)

So, there is little bit of references to the theory given here, I have mentioned that there

are closure algorithms ah. So, that given a set of dependencies I will now generalize and

set dependencies, which means that there could be functional dependencies, always lies

multivalued dependencies. Even a set of dependencies you can define a closure of all of

these functional and multivalued dependencies together, that are implied by the given set

and we can have all those parallel definitions of closure of the dependencies, the minimal

cover canonical cover and so on.

So, I just want you to note that these things have been defined and the existent theory,

but will be beyond the current course that we are pursuing. So, it is now that we have is

we have seen a another additional source of redundancy in our data, in terms of multiple

values and in terms of the multi value dependency that hold.



(Refer Slide Time: 16:50)

So,  we  would  now  like  to  look  into  if  such  dependencies  exist,  then  how  do  you

decompose a relation to satisfy that the redundancy caused by such dependencies are not

affecting us. So, such a normal form it is beyond the third normal form is called to be

said to be a 4th normal form or 4 NF. Where you say that a relation is in 4 m NF if, every

multi  value  dependency  alpha  multi  determining  beta,  in  the  closure  of  the  set  of

dependencies is either trivial, trivial means that left hand side is a subset of the right-

hand  side  or  the  union  of  the  left  and  right-hand  side  gives  you  the  whole  set  of

attributes.

So,  it  is  either  trivial  every dependency is  either  trivial,  or alpha  left-hand side is  a

superset of the schema R, you can very well relate that this is just a little twist on the

definition of the Boyce Codd normal form, where the second condition was identical and

only thing in the first condition instead of MVD, you had a functional dependency. So,

when we have this, we say we are a relation would be in the in the 4th normal form.

Naturally, if a relation is in 4th normal form, it is trivial that it will be in the Boyce Codd

normal form, but the reverse will not be necessarily true.



(Refer Slide Time: 18:19)

So, again the same set of concepts that, if I have a set of dependencies and you have a

decomposed relation then smaller relation, then I can project that set of dependencies, in

terms of a particular subset of the attributes and here is the condition that is given.

(Refer Slide Time: 18:43)

So, the decomposition algorithm into 4 NF is exactly like the decomposition algorithm of

the Boyce Codd, normal form BC NF. Only difference being that, now you may be doing

this crucial step of to a decomposition, for every multivalued dependency also earlier we

were doing this only for the functional dependency.



So, now if there is any offending multivalued dependency, which is not satisfying the

phone in a form? We can decompose the relation in terms of R 1 and R 2, as in here

which is exactly like the Boyce Codd normal form and then the rest of it is simple. If ah

if it is you know by this another important point, that you that you must note is in this

process you actually guarantee lossless join.

So, this also continues to be in lossless join, with every decomposition and then you keep

on repeating till all dependencies in f, in your set has been dealt with the attributes in R 1

and have converted them into the 4 NF form. So, you have a total 4 NF decomposition

happening.

(Refer Slide Time: 20:04)

 (Refer Slide Time: 20:13)



Ah let us take a this here, is the like before here is a formal algorithm for those who

would be interested, to formally study the steps. Ah here I am just showing examples of

4 NF decomposition.  So, we started this  discussion with a  person relational  scheme,

having man phone and dog likes MPD, I have added I have just modified and I have

added another attribute address. So, that in addition to the multi value dependencies, I

can also have a functional dependency. So, we have 2 multivalued dependencies like

before, man multi determining phones and man multi determining dog like, but now we

have a functional dependency man determining address the key continues to be MPD.

So, all of these dependencies will violate the 4 NF, because none of them satisfy the

either of the condition, that none of them are trivial and on for none of them left hand

side is a super key because a key is MPD. So, you can see that in on instances of this,

relational schema you will have multiple redundant records, in the actual instance. So, on

the right we normalize we normalize by taking f D 1; take the union of man and phones

that gives you the first relation and then the rest of it. Then again you split based on f D

2, you have the second relation in the decomposition man and dog like and the third one

gets generated as a byproduct of that, which is man and address.

And you have 3 relations now, which together represent the original relation each one of

them  is  in  4th  normal  form.  Actually,  what  happens  is,  when  you  when  you  have

decomposed then, f D 1 in this has become a relation where, the multivalued dependency

man multi determining phones can be checked in terms of a functional dependency itself,

and that that is what gives you the multi value dependency. And since it is multivalued



so, man and phones together continues to form the key, similarly in the second one the

man and dog like is the key. Because you just have the multivalued dependency and

given the same man, you will have multiple dogs whom he or she likes, but in the third

one in the person address where you have man and address you have only man as the

key, because man is a functional dependency that holds.

 (Refer Slide Time: 23:01)

So, this is a simple illustration of decomposition into 4 NF, here is a little more elaborate

one, again this is a we have I have worked through the steps. So, there are 3 multivalued

dependencies and you can see that, A multi determining B is not does not is not who does

not hold the condition of 4 NF. So, you have to decompose, you decompose get R 1

which is in 4 NF and the remaining R 2 which is also not in 4 NF. So, decompose in R 3

which is in 4 NF and R 4, we can R 4 is not in 4 NF you decomposER 4 into R 5 and R 6

and work through that, and you will be able to see that R 5 is in 4 NF and R 6 also is in 4

NF, which gives a complete multivalued decomposition of this whole set.

Naturally with that, we will conclude our discussion on the decomposition process, there

are there would be some more aspects to look at and there is lot of more normal forms

that  exist.  But this is  for all  practical  purposes; a database is  normalized,  when it  is

represented in terms of the third normal form. And I have discussed still I have discussed

the  4th  normal  form,  because  in  some places  people  prefer  to  represent  also  in  4th

normal form.



So, that they guarantee that they have even less redundancy in the data, but leaving that,

let us quickly take a round in terms of the what we have done so far and what is a basic

overall design process that we should be following.

(Refer Slide Time: 24:43)

So, again to remind you the goal for our design is to have a relational database which is

in  BC  NF  or  3  NF  has  a  lossless  join  due  to  the  decomposition,  and  dependency

preservation. If we cannot achieve that, I am I am sorry earlier what I meant is BC NF or

4 NF not BC NF and 3 NF. So, the idea would be I have a decomposition in BC NF and

4 NF lossless join and dependency preservation which may not be achievable. If I cannot

achieve that then I go I have to sacrifice either, the lack of dependency preservation. So,

dependencies will have to be checked using natural joint or, I will allow a little bit of

redundancy and use the third normal form where I have the guarantee.

Now, at this point you must wonder and note that SQL, the language in which we are

doing the creation and update and the query processing. That SQL does not provide any

directory of specifying or checking any dependency, other than the functional other than

the functional dependency that checks the super key. Super key is the only functional

dependency  that  SQL would  check,  no  other  functional  dependency  or  multivalued

dependency and other type dependencies are can be specified or checked in SQL. You

can do that using assertions,  in the in the while  discussing SQL I were talked about

assertions we can do that using assertions, but that too is very expensive to test. So, it is



not usually supported by any of the databases, which are widely used because that slows

down your every process very, very much.

So, you can understand that in terms of your design goals, you have to do a very good

job  to  make  sure  that,  your  functional  and  multivalued  dependencies  are  accurately

expressed in the design and accordingly the schemas are normalized in the proper ways

satisfying BC NF for 4 NF or 3 NF normal forms. But because, while you will actually

have instances there will not be a practical way, to see if you are violating any one or

more of these ah rules of dependencies that you have set.

(Refer Slide Time: 27:09)

So, as I mentioned there are actually these are not the only forms, there are various other

normal forms as well and fifth normal form 6 normal form and so on, but it is very rarely

these are very rarely used. It is not easy to decompose into these normal forms and by

this  decomposition  does  not  give  you  enough  returns  in  terms  of  the  reduction  of

redundancy and removal of anomalies, that people often would have motivation to do

them, but you should know that such normal forms exist.



(Refer Slide Time: 27:44)

So, in the overall process if we look, at I mean what we have been doing is there are

several tracks that we could be taking one possible thing is, the whole set of attributes

have been generated while we have converted or relation has been generated. When you

have converted the entity relationship diagram, the UML or the ER diagram into a set of

tables,  that is  how we got our set  of attributes  or the relational  schema R, it  is also

possible  that  we just  started with a  single relation  containing  all  attributes,  which is

called  the  universal  relation?  And  then  normalization  will  break  them  into  smaller

relations. It could have been or could have been the result of some adds of design of

relations also, and then you convert them.



(Refer Slide Time: 28:33)

So, there are possible all different possible tracks that can happen. So, if we have taken

the ER model track, then frankly speaking if the ER model is carefully designed, then

every entity defined in that ER model will  have only the dependency;  which are the

determining super key.

 So, just recall the employee department building kind of situation we discussed earlier.

So,  an  employee  entity  has  attributes  department  name and building,  and there  is  a

functional dependency from department name 2 building. So, what it means that in the

entity relationship diagram itself we didn’t do a good job. If we had done a good job then

we would have identified that the department itself is an entity and therefore, would not

feature as an attribute on the employee. So, it would have been I mean right there, we

would have if we had called it as a separate entity, then that is equivalent of what we are

doing now taking the relation and then breaking it down through decomposition.

So, functional dependencies from non-key attributes of a relationship are possible ah, but

are rare. So, mostly the relationships are binary, and if you do a careful design of the ER

model  then  many  of  these  deep  exercise  of  normalization  you  will  not  have  to  go

through.



(Refer Slide Time: 29:55)

It should also be kept in your view, that at their times when you want to de normalize

want to use denormalized relations, because if you have normalized and the only way to

get  back  the  original  view  is  to  perform  join.  So,  if  we  of  course,  if  you  have

prerequisites and if you want to say, view or print prerequisites with that title and course

id naturally you will have to take a join with the course, which is expensive.

So, one option could be first alternative could be that, you use a de normalized relation,

where the course prerequisite is actually included in the course and you know that will

have you know violations of some of the normal forms. Because,  there are there are

functional dependencies between them, but that will certainly lead you to first a look up,

because you have them in the same table you do not need to perform join. But you need

extra space exact extra execution time for update, because you have redundant data you

have redundancy while programming on that coding on that, because of this redundancy

there could be possibility of error, because any of these anomalies can happen and your

code will have to now take care of that.

So, it does help in certain way in terms of getting a better efficiency, but it there is a there

is a cost to pay in a different way also the other alternative could be you can have a

materialized view, which is  actually  the joint  and course of prerequisite.  In terms of

performance it has a same benefit or the costs as you say, but only thing is you will not

need to do that extra coding. So, it is better from that perspective.



So, always keep the issue of de normalization in view, and we do a careful design that if

it is very frequent that, you will have to compute a join then, you might want to sacrifice

some of the redundancy some of the you know possibilities of having anomaly, and still

have a you know de normalized design in your database.

(Refer Slide Time: 31:59)

There are several other issues of design, which do not get captured in what we have

designed. For example, let say very regularly we are we have returns, income tax returns

to submit and we will be maintain income tax return tax your sales tax return and on all

that, and you maintain your accounts book of transactions debit credit accounted and so

on. Now naturally, these are all bound in terms of one-year effectivity.

So, when they come when in the next year comes, then you need a separate you know set

of records to be done for that year. So, how do you. So, if you if you have such a table

where you along with the company idea of year and amount and then how do you take

care of this situation, because one way could be that you have all of these you take out

year, from the attribute and you have separate table in every year. So, you will have to

create new table and remember their name. So, if queries which run across year will be

difficult to do.

The other way could be that, you every New Year you start renaming you know you do a

year where your earnings from different years are shown on different columns. So, you

are basically every year you have the result in terms of a different attribute. So, that also



is not a very good solution for a database it is something which is with the spreadsheets

will often use, but in terms of data which has a certain format and needs to be you know

redefined from scratch, at a at a different time frame in a different way, then you will

come across these issues.

(Refer Slide Time: 33:56)

Ah let me close with just pointing out that, if we have a one kind of data that we have not

looked at which are temporally in nature, that is all that we have said is the attributes and

their values. So, if we put at value to an attribute then that value is taken to be the truth

for  now, and  for  the  past  and  for  the  features.  So,  if  that  value  changes,  then  you

completely erase that in the database.

So, for example, today I stay at a certain address, tomorrow I may take up a different

quarter my address has changed. So, in our design if there is against my employee id

there is an address given, then once I change my quarter my address will change it will

not be possible to recollect, what address I resided in say 2017.

So, temporal  data of such kind,  temporal  data I  am sorry just  of such kind have an

association with an interval. So, a snapshot often does not solve the problem. So, you

have you have to decide, how you do that? Whether you can you would like to put some

attributes,  which  specify  the  timestamp  or  you  would  like  to  I  mean  really  have

multivalued attributes, denoting the different time frames where they are they may have

taken effect, there is no accepted standard. And the fact that, if you if you know that it



keeps on changing with time then your original dependencies might get affected they

will they will change as well. So, these are the things that you will have to take care ah.

(Refer Slide Time: 35:30)

This is another style, that many a times when you have to say that ok. This course with

this title existed from this semester, a different semester the title may have changed. So,

you can put a start and end attribute with which specifies what is the time for which the

remaining attributes made sense a good design, but these also have issues because, if you

do this kind of temporal intervals, then how do you make sure that between 2 records the

intervals are not overlapped. So, you are not saying that at the same time this course had

them X this of course, also had name Y. So, they have to be disjoint. So, how do you

check for this ah this consistency of data, there is no easy way to do that.

So, the foreign key references and all those. So, handling of temporal data is another

aspect which will have to be looked into very carefully, in the design and you will need

to do some kind of design compromise and implementation has to take care of those

issues.



(Refer Slide Time: 36:33)

So, to summarize we have ah taken a full look into the multivalued dependencies and

tried to understand what happens, when your attributes get multiple values. Learn the 4th

normal form for that and the decomposition into that, and most importantly we have tried

to summarize the core database design process. That we have been discussing for the last

4 modules, this is the 5th one including this and we have understood that and we have

talked a little bit about the temporal data.

And with this we close our discussions on the relational database design, and from the

next module we will move on to other aspects of the database systems.


