Database Management System
Prof. Partha Pratim Das
Department of Computer Science & Engineering
Indian Institute of Technology, Kharagpur

Lecture - 02
Introduction to DBMS/1
(Refer Slide Time: 00:42)
..g Module Recap |

* Why Databases?

= KYC: Know Your Course
Course Prerequisite
Course Outline
Course Text Book
Course TAs

£ SmATAM MeTEL-SOC MOGCS Inwtrusion Frol = Dat. 5T Kiaragee. Ja-Ape. 7018

Welcome to module two of database management systems. In this module, we will talk
primarily about the introduction to the DBMS. This discussion will span two modules
that is the current one module 2 and the next one that is module 3. Just to quickly recap
in the last module we have discussed about why we need databases, and we have

introduced you to different aspects of the course.

(Refer Slide Time: 00:54)

(]

Module Objectives

+ Tofamiliarize with the basic notions and terminology of database management systems
+ To understand the role of data models and languages
+ Tounderstand the approaches to database design

i
!
:
|
!
|
|

[E] Aifssruchaiz, Korih snd Sudarshan

In view of this, in this module, we would familiarize you with basic notions and
terminology of a database management system just at an introductory level. We will try
to understand the role of data models and specific languages for database systems. And

we would also outline the approach to database design.

(Refer Slide Time: 01:21)

Module Outline

]
]
a2

* Levels of Abstraction
+ Schema & Instance
+ Data Models
- Relational Databases
« DDL & DML
+ SQL
« Database Design

i.
|
;
!
E
|
i

pReteensdtad 0

Distatirss Bysteim Concepts - §* Bddsn [2] Sifteer wchatz. Korth wed Sudarshan

So, the module outline would be like this. And as we go along you will be able to follow

which particular aspect of this outline we are discussing about.

(Refer Slide Time: 01:35)

PPD
- I sLevels of Abstraction

*Schema & Instance
sData Models

*DDL & DML

»S0L

«Database Design

LEVELS OF ABSTRACTION

[/3] Sitarachaiz Forth end Sudarshan

So, to start with we talk about levels of abstraction.

(Refer Slide Time: 01:40)

a Levels of Abstraction
] = Physical level: describes how a record (e.g., instructor) is stored
; « Logical level: describes data stored in database, and the relationships
among the data
! type instructor = record
t 1D string;
! name : string,
H dept_name ! string,
g salary : integer,
4
] end,
E + View level: application programs hide details of data types
* Views can also hide information (such as an employee’s salary) for
H secunty purposes
!
! L B R A B
Databions Byssem Concepts - 7 Lot (1T} Alraatr Korth wd Sudaishan

A database system like any other system is conceptualized in terms of three levels of
abstraction. At the lower most level is the, what we say is a physical data level or the
physical level which describes how a record is actually stored, so that is about the
physical storage in the system. At the next level, we talk about it we say it is a logical
level which describes the data stored in databases and its relationship amongst the data.

So, you can any data that is stored you can think about it as a record. So, if we here we

are illustrating the record of an instructor who teaches a course. So, as you know the
record is a collection of multiple fields of different types. So, here we have field to
describe the ID identifying number or shrink of an instructor, we have the name of the

instructor, the name of the department, the salary and so on.

So, this logically says this is the entity this is a record or this is the structure of a record
that I want at a logical way. So, this in contrast to the physical level, logical level is not
concerned particularly with how that these data, how this string the number and all that
will be actually stored, and how these multiples of hundreds and thousands of records
will actually be stored so that they can be efficiently used. But we are just concerned

with the logical view that I should be able to deal with records as they are.

At the third level which is it can say the topmost level is called the view level where the
application program tries to view the data. And when the application program tries to
view the data, it deals with the details that it needs to; and rest of the details are usually
hidden from this view. For example, if here we talked about the university database in
the last module, so if you are talking about the university database, and then you are a
student. And you are when you access the database you should be able to see what all
courses you are enrolled in or where is that course being held who is the instructor of that
course and so on. But you should not be able to access or see the view of what is the
instructors salary or for that matter, what are the grades that are obtained to by different

students in different courses and so on.

Whereas, an instructor may be able to view the performance of the students in multiple
different courses particularly the ones that he or she is involved in evaluation, but she
again may not be allowed to check the salary of other instructors. So, view level is a high
level where of abstraction where you try to provide the information about the data in
terms of what the application needs, what the users of that application need, but you do

not actually deal with the details of all the records that the logical level has.

(Refer Slide Time: 05:29)

ﬂ

View of Data

An architecture for a database system

view n 1

view level

view 1 ‘ view 2

logical
level

physical
level

T SWATAM MFTEL-MOC MOCCS B Prof P Des. [T Kharsgeaer San-aps. 2008

ibssrashate Korth sl futiarshan

E

So, these are three levels form the basic structure of a database system architecture of a
database system. As you can see the physical level using that a logical level of records
are formed. Physical level typically is in terms of database files is binary in nature, the
organization of those files. The logical level deals with the records and the different

fields of the records the schema of the database and so on.

And the view level is something which is constructed from the logical level in terms of
different views that the different applications need. I am sure at this stage you may not
understand the whole of these levels and their implications, but this is just to give you an
idea of the existence of three levels, and the need to deal with the three levels. And as we
go along, we will see that we will refer to these levels more and more and discuss about

the specific aspects of those.

(Refer Slide Time: 06:27)

FFD

sLevels of Abstraction
*Schema & Instance
*Data Models

DDL & DML

S0L

«Database Dasign

SCHEMA AND INSTANCE

IR TAME NP TEL-WOC MOOCS MSTeer Prof. P P Des. (T KParsgear. San-apr. 2008

Daiabuns fynsem Conceps - i Beman (1] Riwsrachns Korth wed Rugarshan

Next, let us talk about schema and instance.

(Refer Slide Time: 06:34)

Schemas and Instances

+ Similar to types and variables In programming languages
+ Schama
+ Logical Schema - the averall logical structure of the database
+ Analogous lo type information of a variable in a program

« Example; The database consists of Information aboul a set of
customers and accounts in a bank and the relationship between
them

+ Customer Schema

Name CustomerID Account# AadhaarlD Moblile #

+ Account Schema

Account# Account Type Interest Rate Min. Bal. Balance

Physical Schema- the overall physical structure of the database

Y AN N TEL-SOC MOOCS InSTuenme Prod P P Des. 0T Rharsgpar. Sen-apr. 2018

TINRE AL
We will very regularly keep on referring about schemas and instance. The schema is in a
very simple terms say if we talk about first a logical schema, it is a way a certain data
needs to be organized, it is a plan for organizing data. So, if you can draw a parallel then
say when a building is constructed, a plan is prepared. And according to that plan several
buildings a in a say residential complex may be constructed. So, there is a difference

between the plan which gives you the layout of where different rooms should be where

there is a staircase where is the courtier and so on and the actual building when or the
group of buildings which are constructed. So, the schema primarily talks about what is

the plan to organize the data.

So, if we talk about a customer schema, it has multiple different fields, it should talk
about the name of the customer, ID of the customer, it is account possibly the other ID
the mobile number and so on. So, the fact that these the fields need to be present for
describing a customer, forms a customer schema. Whereas, when we talk about a specific
schema of account that the customer holds with a bank, then we need the account
number, account type, interest rate, minimum balance, the current balance and so on.
These are the fields of information that we need; and we need to know what is the type
of every such field, and all those and those kind of information from the schema

information.

And again in line with the abstractions of physical logical and view as we did, schema
also can be at a logical schema which is corresponding to the logical level of abstraction.
And we may also have a physical schema which tells actually how the data is physically
organized in the database, what are the different database files, how they are indexed and

SO On.

So, all these information which we can say is kind of a metadata information. This is not
actually that it is not the customer schema is not saying who the customers are, the
account schema is not saying, what are the accounts, what is their balance. But it is
saying that if a customer needs to be defined; then what is the information that you need
to know, what is the information that you need to manage. If an account need to be
described then what is the different fields that are important. So, this schematic or this

metadata is called the schema of a database.

(Refer Slide Time: 09:25)

Schemas and Instances

4

i + Instance

i The actual content of the database at a particular point in time

z Analogous lo the value of a variable

E Customer Instanca

& Name Customer ID Account# Aadhaar ID Mablle #

! Pavan Laha 6728 917322 182710288372 9830100291

E Lata Kala 8012 827183 918291204829 7189203928

i Nand Prabhu 6617 372012 127837201021 88092021802

i Account Instance

E Account# Account Type Interest Rate Min, Bal. Balance
p17322 Savings 4.0% 5000 812

g 372012 Current 0.0% 0 291820

! 827183 Term Deposit B8.75% 10000 100000

E B E RS R A EES R

Daisbwss Dystem Concepts - §* Ediien (1] Biarnchare, Karth e Sudarshan

Now, based on this schema specific instances of databases happen, instances when you
actually have populated different records according to the schema. Now, naturally once
the schema is fixed, your records will need to have values in all of those fields that the
schema has; and every value must be of the type that the particular field is specified with.
So, I have just shown here certain sample instance of customer schema, where you can
see three customers with their name, customer ID, account number, other ID, and mobile
number, these are all fictitious data of course, but this is just to give you an idea of how

this customer instance would look like.

Similarly, we have shown what is a accounts instance, so you can see that there is a some
kind of a relationship that you can see between these instances. For example, the first
customer ID on the customer instance can be seen as a first [am sorry the first account
ID in the customer instance can be seen as a first entry first record in the account
instance and so on. So, when we actually populate the schema with different records and

this is what keeps on changing.

So, certainly when we do operations on the database, then certainly very regularly new
records will get added, some records might get deleted from this instance, and fields of
certain records may keep on changing. For example, in an accounts instance very
regularly whenever a transaction is done, the account balance will get changed; maybe at

a certain time the bank might decide to change the interest rate for a certain type of

account then the interest rate field will get changed, new customers may come into the
customer instance and so on. So, instances keep on regularly being updated manipulated

added deleted updated, but the schema remains unchanged.

So, change of the schema is very rare in a database and needs to be done only when the
database is designed or when it is being upgraded. Because once you change the schema,
it changes the way you look at the whole world, you look at the whole database scenario.
So, if you are changing the schema at a logical level, then naturally the your view will
also get affected, because you are using these schemas to decide how you would like to
present a transaction application to the user or for a balance check application to the user

and so on.

(Refer Slide Time: 12:22)

.;;..! Schemas and Instances

+ Physical Data Independence - the ability to modify the physical schema
without changing the logical schema

Analogous lo independence of Interface’ and 'Implementation’ in
Object-Orented Systams
Applications depand on the logical schema
In general, the interfaces batween the various lavels and components
should be well defined so that changes In some parts do nol serlously
influence others.

£ SwaTAM NPTEL-NOC MOOCS Insrucior: Prod P P Des. BT Aharsger. Aan-Sp. 20718

But, of course, what do we would want is between the physical schema and the logical
schema we normally would want certain independence. What it means is the logical
schema is what you need to deal with, because it is linked with the view that you have at
a higher level of abstraction. On the other end, the logical schema is based on the
physical schema; physical schema is how you are actually organizing the information in

terms of the binary files the database files.

Now, certainly you want that logical schema not to change because if it changes then at a
view level all your applications will have to change. But it is quite possible that your

physical schema the way you have organizing files and so on might need a change,

because maybe it is just that you had designed the database for 10,000 records and you
already have 9000 records and you would like to expand it to maybe 1,00,000 records.

And the physical this system needs to be different you may need to reorganize the files
and so on, you may need to index it in a different way and all this, but you would like to
do that change in the physical level without requiring any change at a logical schema. So,
this property of a database schema is very required which we say is a physical data
independence or the ability to change the physical schema without actually affecting the
logical schema or the view level. So, that will be a critical factor that will have to keep in

mind.

(Refer Slide Time: 14:16)

sLavils of Abstraction
+Schema & Instance
«Data Models

DDL & DML

SQL

*Database Dasign

5

DATA MODELS

E Swavas METEL-SOC MOCCS Msmraaor: Prof. P P Des. 1T KRars g Jan-apr. 2078

So, next is data models.

(Refer Slide Time: 14:20)

-y
- Data Models

« A collection of tools for describing
Data
Data relationships
Data semantics
Data constraints
* Relational model (we focus in this course)
« Enlity-Relationship data model (mainly for database design)
« Object-based data models (Object-oriented and Object-relational)
« Semi-struciured data model (XML)

« Other older models;

Network model
Hierarchical model

F SWATAM NETELMWOC MOOCS Istrasue: Prof. & F Des. 7T Khamsgmer. Sam-apr. 208

b.?l-@'“("‘"-' e

arschats, Korih sed Sudsrshan

Data models are a collection of tools that describe the data because we are talking about
a database system. So, certainly the main focus here is to be able to model that it to be
able to represent the data, so that talks about relationships between data, it talks about the
meaning of the data the data semantics, it talks about data constraints. For example, it is
an account balance, we just refer to account balance in the account schema in the
instance, now, the question is will can the account balance be negative, the answer is yes

Or no.

If the bank mandates that I can only withdraw as much money up to which I have
deposited, then account balance cannot be negative, but if the bank is giving me the
facility to overdraft then I may be able to draw more money than I have actually
deposited. So, my account balance might note negative. In some banks it could be that
the bank says that well there is a minimum balance. So, minimum balance is 5,000. So,
which means that my account balance cannot go below five thousand rupees the bank
will not allow those transactions. So, these are examples of different constraints that
might exist in the real world, and therefore, will be required in terms of the data model

representation.

So, there are several data models that exist today. The most widely used the most popular
and most powerful in terms of a certain section of database applications which we are

commonly interested in is a relational model and that is what we focus in this course. We

will have a major discourse in terms of the relational model and lot of things will be
developed based on that. But it is not easy to directly design a database in terms of the
relational model, because you first need to understand the real world in which the design

is happening.

So, we normally start with a less formal model known as the entity-relationship data
model or an ER model, ER diagram, these are commonly called. So, if you recall your
knowledge about object oriented systems, and if you happen to know uml, you already
know about ER models and corresponding class diagrams that that result. So, we will
talk briefly about your model and show you how to do modelling on the real world in
terms of the ER diagrams. But, then they are not actually models which the database
systems directly used they are subsequently converted to some relational or other model

and which the database systems will use.

Next is a object-based data models. You all would be knowing familiar with the fact that
objects give a better power to represent the system which objects are not like simple
strings or numbers or characters like that, they are encapsulated concept of an entity
which can be manipulated in a certain way. So, like in the real world, you have several
objects, it would have been nice to have similar objects in the databases. So, quite a few
database system have been designed used which are object-based database systems. So,
there are models for those. However, we will do little of that in this course, because it is

little bit advanced in notion.

The other model, which has become very popular is called the semi-structured data
model. It is primarily in terms of XML. I am sure all of you would be familiar with the
basics of XML, which is extensible mark up language in which you can create use tags
and use different mark ups to describe the data. You can say this is the field and this is
the value kind of. And this is become a very nice way to represent the data. And XML or
the semi-structured models are particularly useful today to exchange data between

different systems.

I may be using a my SQL kind of database system, my friend may be using an oracle
system, and we need to exchange data tables between these two, these two systems will
represent the data in the in physical schema which are not may not be compatible. So, we

can represent both of them in terms of XML models convert the data. So, I convert the

data into XML, give it to my friend and my friend can import from that XML into the
database. So, it is a XML is a data model which is frequently used in terms of data

exchanges.

Then there are several other models like the network model, hierarchical model which
used to be very popular in the early days of database systems before relational model
came into force. They still exist in terms of the some of the databases. And some of the
newer emerging big data databases actually we have started using this old concept in a

new way again. So, this is a overall set of data model.

(Refer Slide Time: 19:58)

Relational Model

4

E * Allthe data is stored in various tables
i « Example of tabular data in the relational mode Columns
g 1D Hanie dept_name | saliry
§ nn Einstein hysics 95000 |+—— Rows
i 12121 Wu Finance 90000
L 32343 El Said History BO000 |
5 45565 Katz Comp, Sel, | 75000 I
E 985 Kim Elec. Eng. B0000 /
' 76766 Crlck Blology 72000 | |
10101 Seinlvasan | Comp, Sel, | 65000 | |
LLLLR] Califier! History 62000 ,"
83821 Brandt Comp, 5cl, | 92000 /
15151 Mozart Music 10000
33156 Gold Physics B7000 /
E 76543 Singh Financy #0000 |*
i {a) The instructor table
i
Datatsian fyssem i i i Alikarsthais Korth wed Audenshan

So, here I am just showing an example of a relational model data which is simply looks
like a table. So, you can see that on top row in the blue are the names of the different
fields which describe the schema. It says that it has an ID, it has a name, it has a
departments name, it has salary. They are trying to describe a particular instructor, and
then a whole lot of records rows in that table, which are every row individually is a
particular data entry or a record. So, columns are attributes, and rows are records that the

relational model described.

(Refer Slide Time: 20:40)

A Sample Relational Database

4] sy il _piane salury
an Einstein Physics W
121 Wi Minanie W00
12M3 Kl Sald Histary Ll
43568 Ktz Comp. S, | 75000
UEMS Kim Elec, Eng B0
TaT6h Crick iy 72000
1) Srinivasan | Comp. S B
S4RA3 Califier History B20000
R P L. Bk, W)
18181 Mozart Musie 40000
15 Laald Mhysies Labil)
LK) Singgh Pinany 000

() Tha imstricior wlbile

degt_pianet | it | il

Comp, Sa, | Taylor | 100000
Hisligy Watson | 90000
000
L LLLE]

1] 1 30000
Painter 00
Walson OO0

(1) T departiniat tabil

A TARE NP TEL 0T MODCS ISmrsmer Frod © P Des. 5T POMgnn. Jen-Ape. 20T

Dsisiing Syssem Concepls - 7* Eddon LA Hilarethats. Rarih s Budarshan

Some more of that the instructor table along with the department table. So, the table
below describes details of a department, so that has its own schema and the individual
records. We have of course seen similar instances already in terms of the customer and

accounts instance that we have just discussed a couple of while ago.

(Refer Slide Time: 21:03)

PO

sLevels of Abstraction
sSchema & Instance
*Data Models

+*DDL & DML

S0L

+Database Design

DDL AND DML

pRe e gagste. 00

SWATAMT NP TEL-SOC MOOCS MSTuctoe Prof @ P Des. T KRarsgeor. Sam-ape. 208

Disimimen Dywiens Concepis - §* Eddson LAl Siareiaiz. Rorih nd Bugarshan

Let me introduce these two terms DDL and DML.

(Refer Slide Time: 21:10)

4

Data Definition Language (DDL)

» Specification nolation for defining the database schema
Example: create table instructor (
0 char(g),
name varchar(20),
dapt_name varchar(20)
salary numeric(8 2))
» DDL compller generates a set of table templates stored in a data dictionary
+ Data dictionary containg metadata (i.o., data about data)
Database schema
Integrity constraints
+ Primary key (1D uniquely identifies instructors)
Authorization
+ Who can access whal

ST AMT NP TEL-MOC MOOCS BSIecior Prof P P Des. T KRarsgpear. Jan-Apr. 28

Draiadss Sywsens Conoepss - §* Eades Rl iketrarhan Korth e uiasiien

DDL talks about data definition language. So, what the concept wise what we are trying
to say is certainly we have a schema and we have instance. So, we need certain language
constructs to be able to define a schema and certain other language constructs to be able
to manipulate the data in that schema or they are basically manipulate the instances. So,
DDL is the language or part of the language which is used to define and manipulate the
schema of a database that is why schema is a way to define a database. So, it is called a

data definition language.

So, you can define that [will am going to have a table called instructor which will have
four different fields, each having certain types of data. So, it says that the ID will be a
five character data; the name would we would have a variable length, because you
cannot say that the name will be of a fixed length, but it will be a variable length that is
what varchar is, but the length will not exceed 20. And similarly, salary will be a numeric

data with up going up to 8 figures, and having a decimal part having two parts.

So, this way of defining the schema in terms of the different attributes and their types or
columns in the table or trying to define the structure of that table is a main issue of the
data definition language. So, the data definition language compiler who generates a set of
tables in the data dictionary, where the data dictionary basically contains metadata as I
said the schema is nothing but a metadata about the database tables. So, which will have

the database schema, it will have different integrity constraints, it could say that well the

account balance cannot be negative or account balance cannot be less than the minimum
balance. So, these are different integrity constraints. It could say that this is the primary
key, we will talk more in more depth in terms of what is key. And it could also specify
the authorization as to who is allowed to access which part of the data and so on, so that

is these all are part of the schema definition and forms the DDL of the language.

(Refer Slide Time: 23:36)

z Data Manipulation Language (DML)

« Language for accessing and manipulating the data organized
by the appropriate data model

DML also known as query language
« Two classes of languages

Pure - used for proving properties about computational
power and for optimization

+ Relational Algebra (we focus in this course)
» Tuple relational calculus
+ Domain relational calculus
Commerclal - used In commercial syslems
+ SQL s the most widely used commercial language

T SwWATAN NP TEL-0C MOOCS nsrector Prod P P e 5T Shargour. Asn-Sp. 7078

In contrast, the data manipulation language is a language for accessing and manipulating
the data organized. So, it is for access, update, addition of new records, deletion of
existing records and so on. And very commonly we will refer to the data manipulation
language as a query language, because this is what you want to know what exists in the
database. So, the query language will be designed, they are designed primarily in one of
the two ways. One group of languages is known as a pure language, they are more
mathematical in nature. They have a formal basis that can you can prove that whatever

do you do in these languages are correct, and will give you the correct result.

So, they are different languages based on the relational model, they are called relational
algebra, tuple relational calculus, domain relational calculus and so on. Of these three,
we will in this course deal only with relational algebra. There are mathematical proof
which show that whatever you can do in relational algebra you can do it in tuple
relational calculus and vice versa. Similarly, whatever you can do in relational algebra,

you can do in domain relational calculations and so on. In one sense that these languages

are equally powerful; the same thing can be done in any one of them, but we will just
take the simplest of them and study here in terms of the relational algebra, but these are
more mathematical representations are not easy to write as a program. So, normally we
will use certain commercial query language which is called SQL for most of our

applications and we will do the coding in that.

(Refer Slide Time: 25:19)

en SQL

-

+ The most widely used commercial language
+ SQL is NOT a Turing machine equivalent language

« Tobe able to compute complex functions SQL is usually
embedded in some highar-level language

+ Application programs generally access databases through one of
Language extensions to allow embedded SQL

Application program interface (e.g., ODBC/DBC) which allow
SOL queries to be sent to a database

E OWATAM MPTEL-SOC MOOCS Msmrecsor Prof. P Des. [T KRarsger. Jan-Ags. 2078

B

So, SQL which is a most widely used commercial language and mind you this is not a
Turing equivalent language which means that everything that can be that need to be
computed cannot be computed in SQL, there are certain computations which SQL cannot
do. It is a limitation; it is a restricted language. So, often SQL is used in conjunction with
some common high-level programming language like C or C plus plus and so on. So,
whatever is there can be done in SQL in terms of data manipulation will be done in terms
of the relational model, but there could be additional logic that needs to be built in, in
terms of the high level language. So, application programs are typically written through
them. So, we can do this through a process of embedding that is put in SQL as a part of a
C program or use certain libraries which can actually take a query from C, and fire it on

the SQL database.

(Refer Slide Time: 26:26)

*Data Models
DDL & DML

S0L

«Database Design

DATABASE DESIGN

TP TAMT NP TEL-MOC MOOCS BSmeeion: Prof P P Des. 0T Rarsgmer Sas-ape. 28

Daiabans Dyssens Concepts - i Edilan [

sLavals of Abstraction
sSchema & Instance

Birachais. Korth s Sudaishan

So, we will see how to do this in the course of time.aspect.

(Refer Slide Time: 26:32)

L]
i
i_ + Logical Design - Deciding on the database schema

Database Design

The pracess of designing the general structure of the database:

Database design requires that we find a "good” collection of
relation schemas

5 Business decision
! + What attributes should we record in the database?
E Computer Science decision

« What relation schemas should we have and how
should the atiributes be distributed among the
various relation schemas?

H « Physical Design - Deciding on the physical layout of the
E database
!

L N

Dutabissd Gyatem Concepss - 5 Edmen mn

AR

Siarwihaln Kort el Sudarvhen

Coming to the database design this is a process through which the databases need to be

designed. And certainly the first part of the design is the logical design where you want

you need to identify what are the schemas and you know what are the constraints that

apply, what is authorization required. And first set of decisions those are related to the

business as we say. Business means it is basically comes from the domain. So, it is if |

am doing a university database, the business decisions will come in terms of you know I

have courses, students, instructors, and the instructor teach courses, can an instructor
teach multiple courses, can a course be taught by multiple instructors these kind of

business decisions are critical for the database design.

And then there is a whole set of computer science decision or the data based decisions to
decide as to if this is the kind of business information that you want to keep in the
database, then what is the kind of relation, what is the kind of schemas that we should
use what are should be the attributes, which attribute should be of what type what should
be strain, what should be numbers and so on. So, these are formed the basis of the
physical logical design. And of course, we then need a physical design which decides on
the physical layout of the data, what are the different database files, how they should be

indexed and so on.

(Refer Slide Time: 27:53)

i v Database Design (Cont.)
ﬁ « s there any problem with this relation?
i D Hame salary | dept name | building | badget
g 22122 | Einstein 05000 | Physics Watson 70000
12121 | Wu 90000 | Finance Painter | 120000
& 32343 | El Said 60000 | History Painter | 50000
E 45565 | Katz 75000 | Comp. Sei. | Taylor | 100000
b 98345 | Kim 80000 | Elec. Eng Taylor 5000
i 76766 | Crick 72000 | Biology | Watson | 90000
i 10101 | Srinivasan| 65000 | Comp. Scl. | Taylor | 100000
; 58583 | Califieri | 62000 | History Painter 50000
#3821 | Brandt 9000 | Comp.5ci | Taylor 100000
é 15151 | Mozart 40000 | Music Packard | 80000
3356 | Gold 87000 | Physics Watson | 70000
E 76543 | Singh 80000 | Finance Painter | 120000
1
|

ifteerns iz Worth wed Budaishan

So, here we are showing an example table. So, it has multiple fields. It shows the
instructors expanded form of the instructor table you saw earlier. It is expanded with the
departments name and the building in which it is housed. So, if you look carefully that
this certainly comes from the business decision that you need to know the department to
which an instructor belongs and certainly you need to know the building in which that
that department exists. So, knowing the department of the instructor and the building of

where that department is are critical, but the question is this a good design, is this so we

will discuss as to when why this is a good, this may not be a good design to represent the

data.

(Refer Slide Time: 28:41)

PO

H

Module Summary

« Familiarized with the basic notions and terminclogy of database
management syslems

« |ntroduced the role of data models and languages
« Infroduced the approaches to database design

AT AM N TEL-AOC MOCCS MSTuior Prof P P Des. 1T KRharsgar. Jan-apr. 2018

PP AT LED

Datatiaes fyshiin Concigts §* Bl LR Biarebals Rann el Butanhsi

So, in this module, we have taken you through the basic notions and terminology of
database management systems, highlighting primarily the levels of abstraction, the
schema an instance, the basic data models the languages that you need DDL, DML and
the commercial SQL language. And we have also tried to give you a glimpse of the
approach that is required in terms of the database design. We will elaborate on this more

in the second part of our introduction to DBMS which will be taken up in module 3.

