Database Management System
Prof. Partha Pratim Das
Department of Computer Science & Engineering
Indian Institute of Technology, Kharagpur

Lecture - 18
Relational Database Design (Contd.)

Welcome to module 18 of Database Management Systems. We have been discussing

about relational database design. This is a part 3 of that.

(Refer Slide Time: 00:30)

PPD

Module Recap

je=

+ Decomposition Using Functional Dependencies
* Functional Dependency Thaory

SWAYAM: NPFTEL-MOC MOOTs Instructer: Prof. P P Das. IIT Kharagear. Jan-Apr. 2018

N R R E-F N A

Dutabixse System Concepts - 6* Edition 163 Silbérschats, Korth shd Sudarihan

In the last module, we discussed about the Notion of functional dependency and

decomposition based on that in an elementary level and certain bit of its theory.



(Refer Slide Time: 00:39)

I'a
.
]

Module Objectives
« To Learn Algorithms for Properties of Functional Dependencies
+ To Understand the Characterizations for Lossless Join Decomposilion
* To Understand the Characterizations for Dependency Preservation

“FPT e eus e LBD

EWAYAM: NFTEL-MOC MOGTs Instrucion: Prof. P P Das. IIT Kharagear. Jan-Apr. 2018

Daiabase System Concepts - §* Edition 63 EBilberschatr, Korih and Sudarshan

In this current module, we learnt different algorithms that use the functional
dependencies and can make conclusions about the design or make changes to the design.
We will also try to understand the characterization for lossless, join decomposition and

the notion of deter dependency preservation.

(Refer Slide Time: 01:06)

~
&

Module Outline

o=,

m Algorithms for Functional Dependencies
® Lossless Join Decomposition

8 Dependency Preservalion

B R A A

EWAYAM: NFTEL-MOC MOGTs Irstructor: Prof. PP Das. IIT Kharagear. Jan-Apr. 2018

Daiabiuse Sysiem Conceps - § Edition 4 CBilberschatr, Korih and Sudarshan

Therefore, this module will have these three topics algorithms for functional

dependencies, lossless join decomposition and dependency preservation.



(Refer Slide Time: 01:15)

Example of Attribute Set Closure

* R=(ABCGHI

» F={A->B
A-C
CG—H
CG=|

B H}
(A6
1. result = AG
2 result=ABCG (A-CandA-B)
3. result = ABCGH (CG - Hand CGc AGBC)
4. result = ABCGHI {CG = |and CG c AGBCH)
* |s AG a candidate key?
Is AG a super key?
Does AG - R? ==1s (AG)' 2R
Is any subset of AG a superkey?
Does A = R7==1s (A)'2R

Does G = R?==15 (G)'2R
i CBiltsrschaiz, Kerth and Sudarshan

So, first we start with the algorithms and I quickly reproduce what we had ended in the

£ swAYAM: NPTEL-MOC MOGEs lestructor: Prof. P P Das. IT Kharagear. Jan-8pr, 2018

last module in terms of computing the closure of a set of attributes. So, if we have a
relation having these attributes and a set of functional dependencies, then for a given
subset of attributes, in this case AG we can iteratively compute the closure set when no

further changes can be done, and with using that we can make different conclusions.

For example, if our question is whether AG can be a candidate key, we would first like to
check whether it is a super key that is whether its closure has all the attributes of art and
we would like to check if we have taken a subset of AG. If we take just as a attribute A or

attribute G whether the closure of that will actually work as a key or not.



(Refer Slide Time: 02:12)

Uses of Attribute Closure

o

There are several uses of the attribute closure algonithm:
v Testing for superkey:
v Totestif uis a superkey, we compute o* and check if a* contains all atfributes of R
v Testing functional dependencies
+ To check if a functional dependency « = [} holds (or, in other words, is in F*), just check if
ca’
+ That s, we compute «* by using attribute closure, and then check if it contains .
+ |8 @ simple and cheap test, and very useful
v Computing closure of F

+ Foreachy g R, we find the closure *, and for each S  v*, we output a functional
dependency y — 5.

|E EWAYAM: NFTEL-MOC MOGTs Instructor: Prof. PP Das. IIT Kharagear. Jan-Apr. 2018

167 CBilbsrschatz, Kerh and Sudarshan

So, this algorithm of attribute closure turns out to be a very powerful one, where as we

have just seen it can be used for checking super keys, the candidate keys, primary, non-
primary attributes and so on. It can be used for checking functional dependencies. For
example, let us suppose that if we have to check that whether if a particular functional
dependency alpha determines beta holds, then rather in other words whether alpha
determines beta is in the closure of the set of functional dependencies F, then all that we
need to do is to compute alpha plus that is a closure of the set of attributes on the left
hand side of the dependency and check if beta is a subset of that. If beta is a subset of
that, then I know that alpha determines beta actually holds.

So, in this manner it can also be used to compute the closure of the whole set of
functional dependencies F. So, if I mean at least at A, rudimentary level we can think of
that. If we take any subset of the set of attributes and find the closure and then, all
attributes that belong to that closure set are actually functionally dependent and

therefore, those functional dependencies will exist.



(Refer Slide Time: 03:42)

Canonical Cover

dom,

+  Sets of functional dependencies may have redundant dependencies that can be inferred from the
others

For example: A— Cis redundantin: {A—B8, B—C A=C}
Parts of a functional dependency may be redundant

Eg.:onRHS: {A—B, B-C, A- CD} canbe simplified to
{A=+B, B=C, A-D}

In the forward: (1) A= CD A= CandA =D ({2)A=B8, BaC2AC
In the reverse: (1)A—+B, B C2A-C{2JJA-CA-D2A-CD

Eg:onlHS: {A—B, B-C, AC - D} can be simplified to
{A>B, B»C, A-D}

In the forward: (1) A =8, B-C2A-C2A-AC(JA-SAC AC-D2A-D
In the reverse: A -+ D P AC D

«  Intuitively, a canonical cover of F is a “minimal’ set of functional dependencies equivalent to F,
having no redundant dependencies or redundant parts of dependencies

EWAYAM: NFTEL-MOC MOOTs Isstructor: Frof. PP Das. IIT Kharagear. Jan-Apr. 2018

B R A

Daiabise Sysiem Concepds - § Edition i Cfilberschatz, Korih and Sudarshan ‘

Now, we move forward from there and talk about what is known as a canonical cover. A
set of functional dependencies may have a number of redundant dependencies also. So,
we need to understand that because there are lot of dependencies which can be inferred
from a certain set of dependencies, for example if you look into this set, you will easily
understand that in this whole set if I actually have just this, we will be able to by
transitivity, we will be able to conclude about A determining C. So, in that way ACA

determining C is a redundant dependency.

So, here I am just showing you some examples. For example, say I have a set of
functional dependencies as this set and I want to know whether I can replace it by a
simpler set here where this particular attribute on the right hand side of this dependency
may be extraneous. So, if I have to do that, then what we need to perform is, we need to
show that given the set of functional dependencies, the original set whether this can
imply this set that is from this set of functional dependencies, whether I can logically

conclude the simplified set.

So, using the rules we will need to do that I have worked that out here under the forward
scheme and we would also need to establish that if I have the simplified set, then can I go
to the original set that was given. So, if the simplified set also logically implies the
original set, then we can say that these are in a way equivalent and therefore, I would like

to use a simpler set.



So, there is another example following here where I have another set given, where if we
look into this, I would like to check whether I can get rid of this C on the left hand side
and as it stands, we can actually do that and here in this whole process, I have shown it in
terms of using the Armstrongs Axioms how you can prove this, but what we can do to
systematize this whole process, we can again make use of the notion of closure of
attributes and compute whether these two sets are equivalent, whether simplification can
be done. So, we will say a cover is canonical. If it is in a sense minimal and still
equivalent to the original set of dependencies and we will formally introduce what is

minimal.

(Refer Slide Time: 06:44)

PPD

Canonical Cover: RHS

—

B {A-B B-C A-COl 2{A-B B-C A-D)
(JA-CD2A-»CandA-D(2)A-B, B-C2A-C
A+=ABCD

B {AsB BoC A-Di2{A-8B B-C A=CD
A=B B=sC2A=C
AsC A=aD2ASCD
A+=ABCD

NS B SN E- N BN

SWAYAM: NPTEL-MOC MOOTs Instructor: Prof. P P Das. IIT Kharagear. Jan-Apr. 2018

Dutabixse System Concepts - 6* Edition 163 Silbérschats, Koth shd Sudarihan

Before that let us just look at the same examples again. So, we are trying to show the
forward direction in the first case and the reverse direction in the first case, but the only
difference that I wanted to highlight is in terms of showing that you do not need to really
explore on the Armstrongs Axioms, but what you can do is, you can simply take the left
hand side attribute and compute it closure and see whether the right hand side is
included. That is basically testing for whether the given functional dependency is

actually implied.



(Refer Slide Time: 07:19)

Canonical Cover: LHS

E:

i

B {AB B-=C AC-DO12{A-B B-C A=D
A=B B4+C2A-CPA-AC
A=AC AC=-D2A-D
+ A+=ABCD
8 (AB BC A-DjF{A-B B-C AC-D)
c AsDPAC-D
AC+=ABCD

£ swaAYAM: NPTEL-MOC MOGEs lnstructor: Prof. P P Das. IT Kharagear. Jan-Apr, 2018

810 Cfilberschatz, Korih and Sudarshan

Similar things can be done to simplify the left hand side also. So, this is the other

example that a short and I am just showing you that how you conclude this based on the

closure of attributes algorithm.

(Refer Slide Time: 07:32)

Extraneous Attributes

-y

= Consider a set F of functional dependencies and the functional dependency « = fiin F
Altribute A is extraneous in . if A € a
and F logically implies (F = {x = f}) v {( = A) = f}.
. Aftribute Ais extraneousinfifA=p — " 0
and the set of functional dependencies A TV
(F ={a = ) w {o ={f = A)} logically implies F. s

| SWAYAM: NPTEL-MOC MOOCs Instructor: Prof. P P Das. IIT Kharagear. Jan-Apr. 2018

So, now I can formally define these possible removals. So, if [ can remove an attribute as

I have shown I can remove it from the right hand side or I can remove it from the left
hand side. So, if an attribute can be removed, then it is called extraneous. So, if I have a

functional dependency, let us say alpha functionally determines beta and I have an



attribute A which belongs to alpha, then we can check whether it is possible to remove A
from alpha. So, to test that what we do is, we form a new set by removing the original
functional dependency and adding the new functional dependency where the left hand
side does not have that A and if F logically implies this, then certainly we can conclude

that A on the left hand side of the functional dependency was extraneous.

Similar thing can be done for checking if there is an extraneous attribute on the right
hand side of a dependency and in this case, naturally what we will need to do is, we will
need to work out the simpler set and then check whether F is implied by that because as
you can understand that if you are making the left hand, if you are removing an attribute

from the left hand side, then you are making your precondition softer.

So, you need to see whether that is implied by the original set and on the other hand, if
you are removing something on the right hand side, then you are making your
consequence simpler. So, you need to understand whether that set implies the original

set.

(Refer Slide Time: 09:27)

Extraneous Attributes

+ Consider a set F of functional dependencies and the functional dependency « — fiin F.

Atfribute A is extraneous ina ifA e a
and F logically implies (F = {z = p}) w {( = A) = f}.

Atfribute A s extraneous in i if A = [}
and the set of functional dependencies
(F ={u = ) w {o =(p = A)} logically implies F.

= Note: Implication in the opposite direction is trivial in each of the cases above, since a “stronger”
functional dependency always implies a weaker cne

+ Example: Given F= (A - C AB— C}

Bis extraneous in AB - C because {A — C, AB - C} logically implies A — C (l.e. the result of
dropping B from AB - C).

A+=ACin{A = C AB - C}

+ Example: Given F={A - C, AB - CD}
Cis extraneous in AB — CD since AB — C can be inferred even after deleting C
AB+= ABCDin{A = C,AB =D}

E]
Dutabixse System Concepts - 6% Edition 18.11 C8ilbérachats, Korth shd Sudarshan

So, if you look into that and obviously, the other directions of this implication is not

WAYAM: NPTEL-MOC MOOCS lestructor: Prof. P P Das. IIT Kharagear. Jan-Apr. 7018

necessary to be proven because that will automatically follow because in the first case
when | am removing an attribute, extraneous attribute from the left hand side of a
functional dependency, naturally the set that I get that will always imply the original set

because it is always possible to add additional attributes on the left hand side and so on.



So, here are some examples worked out. So, here where I show that given a set AC and
AB determining CB is actually extraneous because as you can see if I remove B, then I
get A determining C which is originally already there in the set. You can establish that by

computing the closure of the attribute set.

Another example where you are trying to see an extraneous attribute on the right hand
side; so in this example, C on the right hand side of the set AB determining CD is
extraneous because it can be inferred even after because AB determining C can be

inferred even after deleting this C from the right hand side.

(Refer Slide Time: 10:42)

Testing if an Attribute is Extraneous

=

+ Consider a set F of functional dependencies and the functional dependency « — fiin F.
+ Totestif atribute A € « is extraneous in a

Compute ({u} - A)* using the dependencies in F

Check that ({) - A)* contains [, if it does, A is extranecus in
+ Totestif attribute A < [ is extraneous in [}

Compute «” using only the dependencies in
F'=(F ={a =P} {o =k -A4),

Check fhat «* contains A; if it does, A is extraneous in

WAYAM: NFTEL-MOC MOOCs Instructoe: Prof. P P Das. IT Kharageur. Jan-Apr. 7018

[ m
Daiabise Sysiem Concepds - § Edition 1612 EBilberschatz, Korih and Sudarshan

So, these are using this notion. We can formalize a test for whether an attribute is

extraneous. So, this is the formal steps of the step are given here, but I am sure you have

already understood through the example.



(Refer Slide Time: 10:58)

FFD

Canonical Cover

.,

= Acanonical cover for F is a sel of dependencies F_such that * Minimal Sets of
. o L Functional
F Icgpal\y @phgs all dependenm.es ".1 F, and Dependencies
F.logically implies all dependencies in F, and « Irreducible Set of

‘ . : : Functional
No functional dependency in F, contains an extraneous attribute, and it

Dependencies
Each left side of functional dependency in F is unique

= To compute a canonical cover for F:
repeat
Use the union rule to replace any dependencies in F
y = i and o, — i, with oy = B s
Find a functional dependency « — ff with an
extraneous atiribute either in w or in i
/* Note: test for extraneous atiributes done using F, not F*/
If an extraneous attribute is found, delete it from a — f§
until F does not change

= Note: Union rule may become applicable after some extraneous atiributes have been delsted, so
it has fo be re-applied

[ m
Daiabuse Sysiem Concepds - § Edition 1611 Cfilberschatz. Korih and Sudarshan

So, given this A canonical cover of a set of functional dependencies F, it is denoted by

WAYAM: NFTEL-MOC MOOCs Instructse: Prof. PP Das. IT Kharageur. Jan-Apr. 7018

FC will mean that it is a set which is equivalent to F which means F will logically imply

all dependencies in FC and FC will logically imply all dependencies in F.

No functional dependency in FC will contain any extraneous attribute. So, all of them
will be required attributes and each left hand side of the functional dependency in FC
must be unique. So, it is a minimal set of functional dependencies. Please note on these

two core points. A cover is canonical if it is a minimal set and it is an irreducible set.

So, neither you can remove any dependancy nor you can remove any extraneous attribute
from this dependency set. So, here is the algorithm. So, I am not going through the steps
of the algorithm. You can go through that and convince yourself that it indeed computes

the canonical cover and practice more on that.



(Refer Slide Time: 12:07)

Computing a Canonical Cover

+ R=(ABC)
F={A-BC
BsC
A=B
AB - C}
+ Combine A BCand A > Binto A — BC
Setisnow{d - BC,B—C AB— C)
+ AisexraneousinAB— C
Check if the result of deleting A from AB = C is implied by the other
dependencies
Yes: infact, B = Cis already present!
Selis now {A - BC, B C}
+ Cisextraneous in A= BC
Check if A= Cis logically implied by A — B and the other dependencies
« Yes: using transifivity on A - B and 8- C.

i,

Can use attribute closure of A in more complex cases

1644 CSiltrschaiz, Kerth and Sudarshan

So, here I have shown an example where we want to compute the canonical cover here.

The canonical cover is: A-=B
B=C

£ swAYAM: NPTEL-MOC MOGEs lnstructor: Prof. P P Das. IT Kharagear. Jan-8pr, 2018

So, first since all left hand sides have to be unique, so first we combine two, these two
into in terms of A determining BC. So, it becomes a simpler set. So, A determining B is
removed, then I would check for A being extraneous in AB determining C and we find

that it indeed is extraneous.

So, because B determining C is already there, you can do the formal test in terms of the
closure. So, the set gets even simpler. I will check if C is extraneous in A determining
BC. I find that it indeed is and again you can use transitivity to get here or can use
attribute closure and finally, I get that the set of the original set F is covered by a

canonical set where just you have A determining B and B determining C.

So, this set is logically implied by the original set and this set can logically imply the
original set and we will often use the canonical cover for simplicity and for ease of

application.



(Refer Slide Time: 13:32)

g Equivalence of Sets of Functional Dependencies

m LetF & G are two functional dependency sets.
These two sets F & G are equivalent if F* = G*

Equivalence means that every functional dependency in F can be inferred from G, and every
functional dependency in G an be inferred from F

& F and G are equal only if

F covers G: Means that all functional dependency of G are logically numbers of functional
dependency set F=F2G.

» Goovers F: Means that all functional dependency of F are logically members of functional
dependency set G=G2F

FCoversG True True False False

GCoversF True False True False

Result F=G F2G G2F NoComparison

1815 C8ilberschaiz, Korih and Sudarshan

Naturally this is strongly using the underlying concept of equivalence of two sets of

£ swAYAM: NPTEL-MOC MOGEs lestructor: Prof. P P Das. IT Kharagear. Jan-8pr. 2018

functional dependencies F and G. They are equivalent if there closures are equal or in
other words, if F covers G and G covers F, that is F logically implies G and G logically
implies F. So, this table shows you at different conditions where you can conclude
whether F and G are equivalent sets of functional dependencies. So, they will have to,

both covers have to be true for the sets to be equivalent.

(Refer Slide Time: 14:09)

FPD

i

Practice Problems on Functional Dependencies

# Find if a given functional dependency is implied from a set of Functional Dependencies:
For: A— BC,CD - E E— C,D — AEH, ABH - BD, DH - BC
Check: BCD —+H
Check: AED—C
For: AB —CD,AF -~ D,DE~F,C~G F~EG—A
Check: CF — DF
Check: BG —E
Check: AF - G
Check; AB — EF
For. A—BC,B—E CD—EF
Check: AD — F

‘Sounce: ip Fwww edugrabs comimembershipdest-for-funchional-dependg

L e

SWAYAM: NPFTEL-MOC MOOTs lnstructor: Prof. P P Das. IIT Kharagear. Jan-Apr. 2018

Dalabixsé System Concepts - 8 Edition 16.16 C8ilberachats, Korh shd Sudarshan



Next what I have done is, we have put a number of practice problems for various kind of
things that you can do with functional dependencies. The first set of problems. Find in
first set of problems you have to find if a given functional dependency is implied from a
set of functional dependencies. So, there are three problems where three sets of
functional dependencies are given and you are given to check one or more functional
dependencies if it is implied from that set. So, use the attribute closure and the algorithm

that we have discussed to practice these problems and become master of that.

(Refer Slide Time: 14:54)

FFD

Practice Problems on Functional Dependencies
u Find Super Key using Functional Dependencies:
Relational Schema R(ABCDE). Functional dependencies: AB — C, DE - B, CD — E
Relational Schema R{ABCDE). Funclional dependencies: AB —C,C — D, B —EA

£ swaAYAM: NPTEL-MOC MOGEs lnatructor: Prof. P P Das. IT Kharagear. Jan-Apr. 2018

‘Saurca: hagrilwanw sdugratss commiwAo-ind-super.key.from.Aunctianalde;
1618 Biltsrschatz, Kerth and Sudarshan

You can also check if you can find candidate key using the functional dependencies. The

sets are given. Your task would be to find the candidate keys.

You can also use the algorithms to find super keys for a given set of functional

dependencies. So, do practice these problems.



FFD

4

Practice Problems on Functional Dependencies

® Find Prime and Non Prime Attributes using Functional Dependencies:
R{ABCDEF) having FDs {AB—C, C—D, D—E, F—B, E~F}
R{ABCDEF) having FDs {AB — C,C — DE,E —+F,C — B}
R(ABCDEFGHIJ) having FDs {AB — C, A — DE,B — F F — GH, D — lJ}
R(ABDLPT) having FDs (B — PT,A =D, T — L}
R{ABCDEFGH) having FDs {E — G, AB - C AC - B AD—EB — D BC — A}
R(ABCDE) having FDs {A -+ BC,CD - E,B — D, E — A}
R(ABCDEH) having FDs {A —B,BC —D,E—C,D — A}

+ Prime Attributes - Atfribute set that belongs to any candidate key are called Prime Attributes
+ s union of all the candidate key atiribute: {CK1 U CK2 UCK3 U ...}
+ |f Prime atfribute determined by other attribute set, then more than one candidate key is possible
+ For example, If A s Candidate Key, and X—A, then, X is also Candidate Key .
+ Non Prime Attribute - Aftribute set does not belongs to any candidate key are called Non Prime Attributes

Source: it e EUQTabs COMErmE. and-non-prime.atri
@
Daiabise Sysiem Concepls - § Edition 1813 8ilberschaiz, Kerth and Sudarshan

You can find prime and non-prime attributes using functional dependencies. Prime

WAYAM: NPTEL-MOC MOOCs Instructoe: Prof. P P Das. IT Kharageur. Jan-Apr., 7018

attributes are attributes that belong to any candidate key, not necessarily the same
candidate key. All attributes that belong to some candidate key, you take a set together
and you call them as a prime attribute and non prime attributes are those that do not
belong to any candidate key at all. So, here your task is to find the prime and non-prime

attributes using the sets of functional dependencies given.

(Refer Slide Time: 15:50)

-ﬂ!l Practice Problems on Functional Dependencies

® Check the Equivalence of a Pair of Sets of Functional Dependencies:
Consider the two sets F and G with their FDs as below :
F:A-CAC—DE —+ADE —H
G:A—CD E—AH
Consider the two sets P and Q with their FDs as below :
P:A-B AB-CD —ACE
Q:A—BC D—AE

WAYAM: NPTEL-MOC MOOCs Iestruetoe: Prof. P P Das. IT Kharagear. Jan-Apr, 2018

Source: hitp:/iwww ecugbs comlequivalence-cf sets-of funclional-dependenc
]
Databixsé System Concepts - 6 Edition 1620 C8ilberachats, Korth shd Sudarshan

You can check for equivalents for a pair of sets of functional dependencies. There are

couple of problems given on that. So, please try them out.



(Refer Slide Time: 16:01)

FFD

Practice Problems on Functional Dependencies

i,

u Find the Minimal Cover or Irreducible Sets or Canonical Cover of a Set of Functional
Dependencies:

AB—CD,BC—D
ABCD - E,E—DAC—DA—B

£ swAYAM: NPTEL-MOC MOGEs lnstructor: Prof. P P Das. IT Kharagear. Jan-8pr, 2018

Source; hip: it E0UQrahs ComiquEstions.co-minmseover
163 Biltrschaiz, Kerth and Sudarshan

For here for the different sets, you have to compute the minimal cover or the irreducible

set or canonical cover of the set of functional dependencies.

So, please practice on this problem, so that you become comfortable with using this
algorithms for dealing easily with the functional dependency sets of functional
dependencies, individual functional dependencies and so on. So, after this week is closed
and your assignments are also done, then we will publish the solutions for these practice
problems as well next let me take up a little characterization of the concept that we had

introduced earlier in terms of the lossless join decomposition.



(Refer Slide Time: 16:48)

Lossless-join Decomposition

« Forthe case of R = (R,, R;), we require that for all possible relations r on schema R
r= lleV)Nlle(r)
« A decomposition of R into R, and R, is lossless join if at least one of the following dependencies is in F*:
RinRy =Ry
RinRy2 R,

» The above funclional dependencies are a sufficient condition for lossless join decomposition; the
dependencies are a necessary condition only if all constraints are functional dependencies

To Identify whather a decomposilion is lossy or losslass, it must salisfy the following conditions
« R, UR,=R

+ Ry NR, ¥ ®and

* Ry MR, =R, orR, NR; —R;

@ m
Duiabise Sysiem Concepts - § Edition 161 CBilberschatr, Korih and Sudarshan

So, in the lossless join decomposition, the problem is say that you have a relational

WAYAM: NFTEL-MOC MOOCs Iestructoe: Prof. P P Das. IT Kharageur. Jan-Apr, 7018

scheme R and you are trying to divide that into two relational schemes R1 and R2. So,
both R1 and R2 are having a set of attributes and R naturally has a set of attributes which
is a union of the attributes of R1 and R2, then is it possible that if I take a relation,
project it on the attributes of R1 and on the attributes of R2, the two relations that we get.
If I take a natural join of that, do I get back R?

If I do, then I say that I have a lossless join. If I do not, then I have lost some information
due to this projection and recomputation of the original relation based using the natural
join. This requirement of lossless join decomposition is determined if at least one of the
following dependencies exist in the closure set of F which this is saying that if I do R1
intersection R2, that is A attributes which are common. You will recall that when we do
natural join, it is this set of attributes which take part because these set of attributes will

help you compute the join between projection on R1 and the projection of R2.

So, if this intersection set of attributes uniquely determines R1 or it uniquely determines
R2, that is if the intersection set of attributes is a super key either in R1 or in R2 or both
then, we say that the lost layer, the join will be a lossless join. Note that this is a
sufficient condition which means that there could be some instances where this property

is not satisfied yet the join is lossless, but we need guarantees for our design. So, we



make use of the fact that if one of these conditions are satisfied, then it is a sufficient

condition to say that the join will must, join will necessarily be lossless.

(Refer Slide Time: 19:10)

g Example

= Consider Supplier_Parts schema: Supplier_Parts(S#, Sname, City, P#, Qty)~ '
« Having dependencies: S# — Sname, S# — City, (54, P#) — Qty «

= Decompose as: Supplier(S#, Sname, City, Qty]e’Partslﬂm}

« Take Natural Join to reconstruct: Supplier | Parts s

Sname  City Pi Oty S# Spame City Oty P# Oty 8§ Spame  City P Oty

3 Smith London 301 200 3 Smith Lomdon 20 301 20 3 Smith London 301 20
5 Nk NY 500 50 5 Nick NY 50 500 A& 5 Nick _NY 500 50
2 Steve Boston 20 10 2 Sweve Hoston 10 f éﬂ 10 (5 Nick NY 0 ¥ 10
S Nk NY 400 40 5 Nk NY 40/ 40 4 2 See Bwon 2010
5 Nick NY 300 10 5 Nick NY I.ﬂ? il llll 5 Nick NY 400 40
+ We get extra tuples! Join is Lossy! 3 Nk NY 301 10

«  Common attribute Qty is not a superkey in Supplier or in Parts 2 Steve Boston 300 10

SWAYAM: NPFTEL-MOC MOOTs Instructor: Prof. P P Das. IIT Kharagear. Jan-Apr. 2018

= Does not preserve (S#,P#) er_"

SO DHp.hwwn OGBS SOmIGARY-HN-BEereaibon
B b - as

i
3

So, here I give you a quick example to show the idea. So, we have a supplier relationship
here which has five attributes. Here is an instance of that and we know that these are the
dependencies that hold the supplier number determines the supplier name and the
supplier city and supplier number and product number together determines the quantity
and we decompose them in this manner, we put a supplier relationship where we have
the number, name, city and quantity of supplier and then, we have parts relation where

we just have a product name and the quantity.

So, this is the projected supplier relation instance. This is a projected parts relation
instance and then, we take a natural join to reconstruct. So, we are taking a natural join to
reconstruct and we get this relationship. Now, our desire was that we must get back the
original relation, but if you compare, you will find that this is not the case here. We have
one tuple here and we have another tuple here. I have specifically highlighted them in

red which were not there in the original relation.

They have come in because when I did the join naturally, the join had to be performed on
this common attribute quantity and based on that value. So, Nick 5 Nick NY, then we
have 10 5 Nick NY 10, this entry and we have two entries of 10 and 10 here. So, the

combination of this with this where the product number is 20 is actually not present in



the original instance of the relation and that is what shows up here a similar one exists

here.

So, we get extra tuples and mind you though we are actually getting extra tuple, we will
say that this join is lossy because if you get extra tuple, then you are losing information,
you are losing correctness. So, being lossy is actually losing correctness. So, even though
we have more tuples, we say that this is a lossy join and you can now go back and
analyze it. The common attribute QTY is not a super key either in this or in this. So, R1
intersection R2 implying R1 or implying R2 does not hold. So, it does not and in
addition it also does not preserve this functional dependency because these are not, no

more determined.

Now, let us see it. So, we saw a case where the join decomposition that we did and then,
the subsequent join that we performed did not prove to be a lossless join. We lost
information. So, let us take a look as to can we actually do a decomposition which will

be lossless where we will not lose information.

(Refer Slide Time: 22:29)

g Example

Consider Supplier_Parts schema: Supplier_Parts(S#, Sname, City, P#, Qty)
+ Having dependencies: S# — Sname (S — City| (54, P#) - Qty,

= Decompose as; Supplier(S#, Snan:lu'. City): Parts(S#_P#, Qty),

« Take Natural Join to reconstruct: Supplier ;.| Parts

S Smame City P Qty S# Smame City 8% P¥ Qty S# Sname City Pé Qty
3 Smih  London 301 200 3 Smih Londom 3 301 20 3 Smih  Londen 301 20
5 Nk NY 500 50 5 Nick NY 5 500 50 5 Nk NY 500 50

Steve  Boston 20 10 2 Sieve Boston 2 20 10 2 Sieve Boston 20 10
5 Nick NY 400 40 5 Nick NY 5 400 40 5 Nk NY 400 40
5 Nk NY 301 10 5 Nick NY 5 301 10 5 Nk NY 0110

We get back the original relation. Join is Lossless.
= Common attribute S# is a superkey in Supplier
= Preserves all dependencies

Source: hitp /v adugrats :m\‘dcc-auc‘c-m-md-swwnmm

te | P — s S S G|

SWAYAM: NPFTEL-MOC MOOTs Instructor: Prof. P P Das. IIT Kharagear. Jan-Apr. 2018
>

i
i

So, I take the same example the supplier, but the decomposition, the same set of
dependencies also, but the decomposition is different. Now, we have name number, name
and city in one supplier relation and supplier name, number, product number and

quantity in the other parts relation and then, we again go back and perform the join.



Now, we find that from the original relation, this was the original relation, this is the
projected supplier relation, these are projected parts relation and this is the natural join of
these two relations. So, this is the natural join of these two relations and we find that they

exactly match with the original relation.

So, we have not lost any information we get it back. So, we say that the join is lossless
and the reason we could guarantee that is because if you look into the set of functional
dependencies, you will find that S number, the supplier number is a key in the supplier
relationship because it functionally determines S name as well as S city. So, R1
intersection R2 functionally determining R1 is true here and therefore, it actually gives

you a lossless join.

It also preserves all the dependencies because if you look into these dependencies, you
can check for this dependency. In this relation, you can check for this dependency also in
this relation and you can check for this dependency in also in the parts relation which is

something which we were not able to do in the last decomposition that we have.

(Refer Slide Time: 24:33)

Example

=

* R=(ABC)
F=(A-+BEB~C)

Can be decomposed in two different ways
* Ry=(AB) R,=(BC
Lossless-join decomposition:
R, nR;={B)and B -+ BC
Dependency preserving
* R=(AB. R=(AC)
Lossless-join decomposition:
Ry Ry={A}and A - AB

Mot dependency preserving
(cannot check B — C without computing R; 14 Ry)

16.% CSilbérachatr, Korth shd Sudarshan

So, naturally this is a type of decomposition that we will prefer. So, here we have I have

| £ swaAYAM: NPTEL-MOE MOGEs lestructor: Prof. P P Das. IT Kharagear. Jan-Apr, 2018

given some more examples which you can practice and I show that given a very simple
schema having three attributes and two dependencies, one decomposition into AB and
BC is lossless join decomposition whereas, the other one AB and AC is a lossy

decomposotion.



(Refer Slide Time: 24:57)

-3_. Practice Problems on Lossless Join

m Check if the decomposition of R into D is lossless:
R(ABC). F ={A— B, A— C}. D=R,({AB), R;(BC)
R(ABCDEF). F={A—B,B~C,C— D, E—F}. D =R,(AB), R,(BCD), R;(DEF)
R(ABCDEF): F = {A — B, C — DE, AC — F}. D = R,(BE), R,{ACDEF)
R(ABCDEG). F= {AB—C ,AC — B,AD —~E B—D,BC—~AE-G)
D1 =R,(AB), R,(BC), Ry(ABDE), R,(EG)
02 = R,(ABC), R5(ACDE), Ry(ADG)
R(ABCDEFGHIJ). F = {AB - C,B —F, D —|J, A - DE, F — GH}
D1=R,(ABC), R,{ADE), Ry(BF), R,(FGH) R+(DIJ)
D2 = R,(ABCDE), R;(BFGH), R;(DL)
03 = R (ABCD), Ry(DE), Ry(BF), R4(FGH),Rs(DI)

Bource: hiig:fwve adugras somiquesions-co-ssiess-jsin
1837 CBilbarschatz, Karih and Sudarshan

I have given a number of practice problems on lossless join, so that you can practice and

£ swAYAM: NPTEL-MOC MOGEs lnstructor: Prof. P P Das. IT Kharagear. Jan-Apr. 2018

become master of these kind of algorithm. Finally, let me quickly go over the

dependency preservation concept.

(Refer Slide Time: 25:17)

Dependency Preservation

e

Let F, be the set of dependencies F * that include only attributes in R,
« A decomposition is dependency preserving, if
(FiuFu . wF ) =F*

« Ifitis not, then checking updates for violation of functional dependencies may require
computing joins, which is expensive

Lef R be the original relational schema having FD set F. Let R, and R; having FD set F, and F, respectively,
are the decomposed sub-relations of R. The decomposition of R is said fo be preserving if
* F, UF,  F {Dacomposition Praserving Dependancy}

* IfF, UF, c F {Decomposition NOT Preserving Dependency} and
* F, UF; 3 F {this is not possible}

EWAYAM: NFTEL-MOC MOGTs Instructor: Prof. PP Das. IIT Kharagear. Jan-Apr. 2018

[ Y- - e
Dependency preservation is if you have a relation which you have decomposed into n
different relations, so if you decompose a relation into a number of relations, then

naturally all functional dependencies you cannot check on all the relations because a



dependency may involve attributes all of which may not be present in a particular

decomposed relation that you have. It may be distributed amongst different..

So, when you do this decomposition, for every relation you get a new set of subset of
functional dependencies. So, the decomposed relation R 1 the ith relation will have a set
of dependencies F 1 which is a subset of the original set F and involves only the attributes
which exist in R 1. So, the decomposition will be said to be dependency preserving if I
can take the union of all these functional dependencies, what is projected on R 1, on R 2
and R n, F 1, F 2, F n. If we can take union of and if we take F, they must be equivalent

sets which we know the requirement.

So, equivalence mean that their covers will have to be equal. If it is not, then some there
will be at least one dependency which you will not be able to check in any one of the
projected relations and to be able to check that, you will have to compute the natural join
and that is as we know is a very expensive process and we would not be able to do that

on a regular basis.

(Refer Slide Time: 27:12)

Testing for Dependency Preservation

=

= Tocheck if a dependency « — [ is preserved in a decomposition of R inte Ry, Ry, ..., R, we apply
the following test (with atiribute closure done with respeci to F)
result=u
while (changes fo resulf) do
for each R, in the decomposition
t=(result n R)* r R,
result = resulf wt
If re:sult contains all attributes in f, then the functional dependency a — i is preserved.
= We apply the test on all dependencies in F to check if a decomposition is dependency preserving

» This procedure takes polynomial time, instead of the exponential time required to compute F* and
(FiuFu . uR)

WAYAM: NPTEL-MOC MOOCS Iestructor: Prof. P P Das. IIT Kharagear. Jan-Apr. 7018

I
@
Dutabirse System Concepts - 6% Edition 163 C8ilbérachats, Korth shd Sudashan

So, here I have written down the algorithm to test if a decomposition actually preserves

the dependency or not. So, I will not go through the steps. I will leave that for you to
understand, but what I will do, I will just show you a simple set of worked out example

and reason on that.



(Refer Slide Time: 27:34)

g Example

= R(ABCDEF):
* F={A-BCD, A—EF BC—AD, BC—E, BC—F, B—F, D-E}
+ D ={ABCD, BF, DE}

= On projections:
ABCD (R1) BF (R2) DE (R3)

A-BCD

Beap o7 F [OE

v
= Need to check for: A~BCD, A—EF, BE—AD, BC—~E,BC—F, B—F D—E
* (BC)#/F1 = ABCD. (ABCD)+/F2 = ABCDF. (ABCDF}+[F3 = ABCDEF. Preserves BC—E, BC—F
« (A}/F1=ABCD. (ABCD)+/F2 = ABCDF. (ABCDF)+/F3 = ABCDEF. Preserves ASEF

g SWAYAM: NFTEL-MOC MOGCs Instructor: Praf. PP Das. IIT Kharagear. Jan-Apr. 2018

So, I show you two different methods of doing this. So, here we have a set of attributes

given the dependencies that work in that and a particular decomposition. So, given the
set of attributes and the decomposition if we project, now if we project the set of
functional dependencies and these are the sets that we get. So, on R1, we have two
dependencies on R2, we have three dependence, one dependency and r 3 we have one

dependency again.

So, if we now think about the union of these and the closure for that, then we can see that
these four dependencies which occur here and therefore, I have struck them off in this
set. These four dependencies can be checked directly on the projected relations. So, that
leaves us with three dependencies in the original set which cannot be checked on any one
of R1 R2 or R3. For example, if you consider BC determining E, then B exist on R1 and
C also exist on R1, but E is not there. So, you cannot check that dependency on R1, you
cannot check that on R2 because C and E do not exist and you cannot check them on R3,

check it on R3,because none of them actually exist.

So, what we will need for the dependency preservation to hold is the dependencies which
are already existing four dependencies that are struck off if they collectively can
logically imply these dependencies, so that they can be checked. Then, we will be able to
say that this is dependency preserving. So, what you do is something very simple. You

want to say, you want to check whether this is preserved. So, we start with the left hand



side and compute the closure. The only difference you compute the closure first with the
set of functional dependencies projected on R1, that is F1, the set closure set that you get,
you take that and compute its closure with respect to the second set of functional

dependencies F2.

The closure that you get, you take that and you compute the closure with respect to the
third set of functional dependencies which is on R3 and that is your final closure set. So,
this closure set includes the right hand side attribute E. So, we can conclude that BC
indeed functionally will determine E and that relationship will be preserved because we
have starting from BC. We have seen that in every projected relation what all implied
functional dependencies that can be checked which is what the meaning of the closure
set of attributes R and since that set eventually has E, we will know that this can be, this

will be preserved.

This set also has F. So, the other one will also be preserved. So, this is preserved, this is
preserved to check whether this dependency is preserved. We need to again repeat the
process and find whether EF belongs to the final closure set which it does and therefore,

we conclude that this decomposition is dependency preserving.

(Refer Slide Time: 31:04)

g Example

+ R(ABCDEF) F = {A—BCD, A—EF, BC—AD, BC—E, BC—F, BF, D~E). D = {ABCD, BF, DE}
* Onprojections: ABCD (R1) BF (R2) DE (R3)
A—+BA-CA—-DBC—+ABC—-D B—+F D-—E

* Infer reverse FD's:
B+/F =BF: B — A cannot be inferred
CHF =C:C — Acannot be inferred
D+/F =DE: D — A and D — BC cannot be inferred
A+/F = ABCDEF: A — BC can be inferred, butitis equalto A—+Band A — C
F+F = F: F — B cannot be inferred
E+/F = E: E — D cannot be inferred
» Need o check for: A=BCD, A .-EF‘ BC—AD, BC—E, BC—F, B—F D—E
(BC)+IE= ABCDEF. Preserves BC—E, BC—F

:n;+:|‘_ ABCDEF. Preserves A—EF m
(9 g e LT e

With the same example I will just show you a little different way of ah doing the same

EWAYAM: NFTEL-MOC MOGTs Instructon: Frof. PP Das. IIT Kharagewr. Jan-Apr. 2018

exercise. I have not written down the algorithm for this in longhand, but the example

should be quite illustrative. So, we are what you do when you project, you check if some



dependency has multiple attributes on the left hand, on the right hand side, then you
write them in a separately decomposed manner. So, A implies determines BCD is written
in terms of three dependencies. A implies B, B implies C and C implies D. So, you make
sure that all dependencies are written in a form where the right hand side has a single
attribute, then you compute what is known as the reverse functional dependencies that is
you take the right hand side and compute whether the right hand side can imply the left
hand side.

So, I will just show you one. So, in case the right hand side here is B, you have AB on
the right hand side. So, you compute the closure with respect to F. The original set, not
the projected set of D and you get BF. So, you know that this inverse, this reverse
functional dependency which is AB functionally determines A which is the reverse
dependency cannot be inferred and you do this for each of the right hand side single

attribute and check if some, if the reverse dependencies can be inferred or not.

The interesting case occurs here where if you try to do the closure of A, you actually find
that A determines BC which is a reverse of this functional dependency can be inferred,
but you do not consider that as a violation because it is you already have A determining
B and A determining C. So, that logically implies that A determines BC. So, it is not a

new violation that is getting imposed.

So, with this your test for reverse functional dependencies is passed and then, you finally
check for whether the three dependencies which are not part of the projected set of
dependencies, you take the closure of the left hand side with respect to in this case.
Again the original set of functional dependencies, not the projected one and check if the
right hand side belongs there. If they do, then combined with these two strategies you say

that the set of functional dependencies are preserved under this decomposition.

So, this is the process to follow. You can follow any one of the two approaches to solve.



(Refer Slide Time: 34:01)

=4 Practice Problems on Dependency Preservation

8 Check whether the decomposition of R into D s preserving dependency:
R(ABCD).F={A—B,B—C,C—D D— A} D={AB BC CD}
R(ABCDEF): F={AB - CD,C - D D—E, E —F}. b ={AB, CDE, EF}
R{ABCDEG): F = {AB — C,AC B, BC A AD - E,B — D, E - G}. D = {ABC, ACDE, ADG}
R(ABCD):F={A—~B,B~C C-D,D-B}.b={AB,BC, BD}
R(ABCDE): F = {A — BC, CD — E, B — D, E —» A}. D = {ABCE, BD}

Sourca: iy ol e presaning L R Sl

EWAYAM: NFTEL-MOC MOGTs Iestruetor: Fraf. PP Das. IIT Kharageer. Jan-Apr. 2018

Daiabase System Concepts - §* Edition L5 filberschatz, Korih and Sudarshan

So, given some practice problems on dependency preservation which you should practice

on to.

(Refer Slide Time: 34:06)

Module Summary

I

+ Studied Algorithms for Properties of Functional Dependencies
« Understood the Characterization for and Determination of Lossless Join

* Understood the Characterization for and Determination of Dependency Preservation

WAYAM: NPTEL-MOC MOOCS Iestructor: Prof. P P Das. IIT Kharagear. Jan-Apr. 7018

@ m
Dalabixsé System Concepts - 6 Edition 164 C8ilberachats, Korth shd Sudarshan

Summarize we have studied the algorithms for properties of functional dependencies and

we have understood the characterization and determination algorithm for lossless join
decomposition and for dependency preservation in a decomposition. In the coming
module, we will make use of these and discuss about how to improve these designs of

relational schemas through the use of different normal forms.



