
Database Management System
Prof. Partha Pratim Das

Department of Computer Science & Engineering
Indian Institute of Technology, Kharagpur

Lecture - 18
Relational Database Design (Contd.)

Welcome to module 18 of Database Management Systems. We have been discussing

about relational database design. This is a part 3 of that.

(Refer Slide Time: 00:30)

In the last module, we discussed about the Notion of functional dependency and

decomposition based on that in an elementary level and certain bit of its theory.

(Refer Slide Time: 00:39)

In this current module, we learnt different algorithms that use the functional

dependencies and can make conclusions about the design or make changes to the design.

We will also try to understand the characterization for lossless, join decomposition and

the notion of deter dependency preservation.

(Refer Slide Time: 01:06)

Therefore, this module will have these three topics algorithms for functional

dependencies, lossless join decomposition and dependency preservation.

(Refer Slide Time: 01:15)

So, first we start with the algorithms and I quickly reproduce what we had ended in the

last module in terms of computing the closure of a set of attributes. So, if we have a

relation having these attributes and a set of functional dependencies, then for a given

subset of attributes, in this case AG we can iteratively compute the closure set when no

further changes can be done, and with using that we can make different conclusions.

For example, if our question is whether AG can be a candidate key, we would first like to

check whether it is a super key that is whether its closure has all the attributes of art and

we would like to check if we have taken a subset of AG. If we take just as a attribute A or

attribute G whether the closure of that will actually work as a key or not.

(Refer Slide Time: 02:12)

So, this algorithm of attribute closure turns out to be a very powerful one, where as we

have just seen it can be used for checking super keys, the candidate keys, primary, non-

primary attributes and so on. It can be used for checking functional dependencies. For

example, let us suppose that if we have to check that whether if a particular functional

dependency alpha determines beta holds, then rather in other words whether alpha

determines beta is in the closure of the set of functional dependencies F, then all that we

need to do is to compute alpha plus that is a closure of the set of attributes on the left

hand side of the dependency and check if beta is a subset of that. If beta is a subset of

that, then I know that alpha determines beta actually holds.

So, in this manner it can also be used to compute the closure of the whole set of

functional dependencies F. So, if I mean at least at A, rudimentary level we can think of

that. If we take any subset of the set of attributes and find the closure and then, all

attributes that belong to that closure set are actually functionally dependent and

therefore, those functional dependencies will exist.

(Refer Slide Time: 03:42)

Now, we move forward from there and talk about what is known as a canonical cover. A

set of functional dependencies may have a number of redundant dependencies also. So,

we need to understand that because there are lot of dependencies which can be inferred

from a certain set of dependencies, for example if you look into this set, you will easily

understand that in this whole set if I actually have just this, we will be able to by

transitivity, we will be able to conclude about A determining C. So, in that way ACA

determining C is a redundant dependency.

So, here I am just showing you some examples. For example, say I have a set of

functional dependencies as this set and I want to know whether I can replace it by a

simpler set here where this particular attribute on the right hand side of this dependency

may be extraneous. So, if I have to do that, then what we need to perform is, we need to

show that given the set of functional dependencies, the original set whether this can

imply this set that is from this set of functional dependencies, whether I can logically

conclude the simplified set.

So, using the rules we will need to do that I have worked that out here under the forward

scheme and we would also need to establish that if I have the simplified set, then can I go

to the original set that was given. So, if the simplified set also logically implies the

original set, then we can say that these are in a way equivalent and therefore, I would like

to use a simpler set.

So, there is another example following here where I have another set given, where if we

look into this, I would like to check whether I can get rid of this C on the left hand side

and as it stands, we can actually do that and here in this whole process, I have shown it in

terms of using the Armstrongs Axioms how you can prove this, but what we can do to

systematize this whole process, we can again make use of the notion of closure of

attributes and compute whether these two sets are equivalent, whether simplification can

be done. So, we will say a cover is canonical. If it is in a sense minimal and still

equivalent to the original set of dependencies and we will formally introduce what is

minimal.

(Refer Slide Time: 06:44)

Before that let us just look at the same examples again. So, we are trying to show the

forward direction in the first case and the reverse direction in the first case, but the only

difference that I wanted to highlight is in terms of showing that you do not need to really

explore on the Armstrongs Axioms, but what you can do is, you can simply take the left

hand side attribute and compute it closure and see whether the right hand side is

included. That is basically testing for whether the given functional dependency is

actually implied.

(Refer Slide Time: 07:19)

Similar things can be done to simplify the left hand side also. So, this is the other

example that a short and I am just showing you that how you conclude this based on the

closure of attributes algorithm.

(Refer Slide Time: 07:32)

So, now I can formally define these possible removals. So, if I can remove an attribute as

I have shown I can remove it from the right hand side or I can remove it from the left

hand side. So, if an attribute can be removed, then it is called extraneous. So, if I have a

functional dependency, let us say alpha functionally determines beta and I have an

attribute A which belongs to alpha, then we can check whether it is possible to remove A

from alpha. So, to test that what we do is, we form a new set by removing the original

functional dependency and adding the new functional dependency where the left hand

side does not have that A and if F logically implies this, then certainly we can conclude

that A on the left hand side of the functional dependency was extraneous.

Similar thing can be done for checking if there is an extraneous attribute on the right

hand side of a dependency and in this case, naturally what we will need to do is, we will

need to work out the simpler set and then check whether F is implied by that because as

you can understand that if you are making the left hand, if you are removing an attribute

from the left hand side, then you are making your precondition softer.

So, you need to see whether that is implied by the original set and on the other hand, if

you are removing something on the right hand side, then you are making your

consequence simpler. So, you need to understand whether that set implies the original

set.

(Refer Slide Time: 09:27)

So, if you look into that and obviously, the other directions of this implication is not

necessary to be proven because that will automatically follow because in the first case

when I am removing an attribute, extraneous attribute from the left hand side of a

functional dependency, naturally the set that I get that will always imply the original set

because it is always possible to add additional attributes on the left hand side and so on.

So, here are some examples worked out. So, here where I show that given a set AC and

AB determining CB is actually extraneous because as you can see if I remove B, then I

get A determining C which is originally already there in the set. You can establish that by

computing the closure of the attribute set.

Another example where you are trying to see an extraneous attribute on the right hand

side; so in this example, C on the right hand side of the set AB determining CD is

extraneous because it can be inferred even after because AB determining C can be

inferred even after deleting this C from the right hand side.

(Refer Slide Time: 10:42)

So, these are using this notion. We can formalize a test for whether an attribute is

extraneous. So, this is the formal steps of the step are given here, but I am sure you have

already understood through the example.

(Refer Slide Time: 10:58)

So, given this A canonical cover of a set of functional dependencies F, it is denoted by

FC will mean that it is a set which is equivalent to F which means F will logically imply

all dependencies in FC and FC will logically imply all dependencies in F.

No functional dependency in FC will contain any extraneous attribute. So, all of them

will be required attributes and each left hand side of the functional dependency in FC

must be unique. So, it is a minimal set of functional dependencies. Please note on these

two core points. A cover is canonical if it is a minimal set and it is an irreducible set.

So, neither you can remove any dependancy nor you can remove any extraneous attribute

from this dependency set. So, here is the algorithm. So, I am not going through the steps

of the algorithm. You can go through that and convince yourself that it indeed computes

the canonical cover and practice more on that.

(Refer Slide Time: 12:07)

So, here I have shown an example where we want to compute the canonical cover here.

So, first since all left hand sides have to be unique, so first we combine two, these two

into in terms of A determining BC. So, it becomes a simpler set. So, A determining B is

removed, then I would check for A being extraneous in AB determining C and we find

that it indeed is extraneous.

So, because B determining C is already there, you can do the formal test in terms of the

closure. So, the set gets even simpler. I will check if C is extraneous in A determining

BC. I find that it indeed is and again you can use transitivity to get here or can use

attribute closure and finally, I get that the set of the original set F is covered by a

canonical set where just you have A determining B and B determining C.

So, this set is logically implied by the original set and this set can logically imply the

original set and we will often use the canonical cover for simplicity and for ease of

application.

(Refer Slide Time: 13:32)

Naturally this is strongly using the underlying concept of equivalence of two sets of

functional dependencies F and G. They are equivalent if there closures are equal or in

other words, if F covers G and G covers F, that is F logically implies G and G logically

implies F. So, this table shows you at different conditions where you can conclude

whether F and G are equivalent sets of functional dependencies. So, they will have to,

both covers have to be true for the sets to be equivalent.

(Refer Slide Time: 14:09)

Next what I have done is, we have put a number of practice problems for various kind of

things that you can do with functional dependencies. The first set of problems. Find in

first set of problems you have to find if a given functional dependency is implied from a

set of functional dependencies. So, there are three problems where three sets of

functional dependencies are given and you are given to check one or more functional

dependencies if it is implied from that set. So, use the attribute closure and the algorithm

that we have discussed to practice these problems and become master of that.

(Refer Slide Time: 14:54)

You can also check if you can find candidate key using the functional dependencies. The

sets are given. Your task would be to find the candidate keys.

You can also use the algorithms to find super keys for a given set of functional

dependencies. So, do practice these problems.

You can find prime and non-prime attributes using functional dependencies. Prime

attributes are attributes that belong to any candidate key, not necessarily the same

candidate key. All attributes that belong to some candidate key, you take a set together

and you call them as a prime attribute and non prime attributes are those that do not

belong to any candidate key at all. So, here your task is to find the prime and non-prime

attributes using the sets of functional dependencies given.

(Refer Slide Time: 15:50)

You can check for equivalents for a pair of sets of functional dependencies. There are

couple of problems given on that. So, please try them out.

(Refer Slide Time: 16:01)

For here for the different sets, you have to compute the minimal cover or the irreducible

set or canonical cover of the set of functional dependencies.

So, please practice on this problem, so that you become comfortable with using this

algorithms for dealing easily with the functional dependency sets of functional

dependencies, individual functional dependencies and so on. So, after this week is closed

and your assignments are also done, then we will publish the solutions for these practice

problems as well next let me take up a little characterization of the concept that we had

introduced earlier in terms of the lossless join decomposition.

(Refer Slide Time: 16:48)

So, in the lossless join decomposition, the problem is say that you have a relational

scheme R and you are trying to divide that into two relational schemes R1 and R2. So,

both R1 and R2 are having a set of attributes and R naturally has a set of attributes which

is a union of the attributes of R1 and R2, then is it possible that if I take a relation,

project it on the attributes of R1 and on the attributes of R2, the two relations that we get.

If I take a natural join of that, do I get back R?

If I do, then I say that I have a lossless join. If I do not, then I have lost some information

due to this projection and recomputation of the original relation based using the natural

join. This requirement of lossless join decomposition is determined if at least one of the

following dependencies exist in the closure set of F which this is saying that if I do R1

intersection R2, that is A attributes which are common. You will recall that when we do

natural join, it is this set of attributes which take part because these set of attributes will

help you compute the join between projection on R1 and the projection of R2.

So, if this intersection set of attributes uniquely determines R1 or it uniquely determines

R2, that is if the intersection set of attributes is a super key either in R1 or in R2 or both

then, we say that the lost layer, the join will be a lossless join. Note that this is a

sufficient condition which means that there could be some instances where this property

is not satisfied yet the join is lossless, but we need guarantees for our design. So, we

make use of the fact that if one of these conditions are satisfied, then it is a sufficient

condition to say that the join will must, join will necessarily be lossless.

(Refer Slide Time: 19:10)

So, here I give you a quick example to show the idea. So, we have a supplier relationship

here which has five attributes. Here is an instance of that and we know that these are the

dependencies that hold the supplier number determines the supplier name and the

supplier city and supplier number and product number together determines the quantity

and we decompose them in this manner, we put a supplier relationship where we have

the number, name, city and quantity of supplier and then, we have parts relation where

we just have a product name and the quantity.

So, this is the projected supplier relation instance. This is a projected parts relation

instance and then, we take a natural join to reconstruct. So, we are taking a natural join to

reconstruct and we get this relationship. Now, our desire was that we must get back the

original relation, but if you compare, you will find that this is not the case here. We have

one tuple here and we have another tuple here. I have specifically highlighted them in

red which were not there in the original relation.

They have come in because when I did the join naturally, the join had to be performed on

this common attribute quantity and based on that value. So, Nick 5 Nick NY, then we

have 10 5 Nick NY 10, this entry and we have two entries of 10 and 10 here. So, the

combination of this with this where the product number is 20 is actually not present in

the original instance of the relation and that is what shows up here a similar one exists

here.

So, we get extra tuples and mind you though we are actually getting extra tuple, we will

say that this join is lossy because if you get extra tuple, then you are losing information,

you are losing correctness. So, being lossy is actually losing correctness. So, even though

we have more tuples, we say that this is a lossy join and you can now go back and

analyze it. The common attribute QTY is not a super key either in this or in this. So, R1

intersection R2 implying R1 or implying R2 does not hold. So, it does not and in

addition it also does not preserve this functional dependency because these are not, no

more determined.

Now, let us see it. So, we saw a case where the join decomposition that we did and then,

the subsequent join that we performed did not prove to be a lossless join. We lost

information. So, let us take a look as to can we actually do a decomposition which will

be lossless where we will not lose information.

(Refer Slide Time: 22:29)

 So, I take the same example the supplier, but the decomposition, the same set of

dependencies also, but the decomposition is different. Now, we have name number, name

and city in one supplier relation and supplier name, number, product number and

quantity in the other parts relation and then, we again go back and perform the join.

Now, we find that from the original relation, this was the original relation, this is the

projected supplier relation, these are projected parts relation and this is the natural join of

these two relations. So, this is the natural join of these two relations and we find that they

exactly match with the original relation.

So, we have not lost any information we get it back. So, we say that the join is lossless

and the reason we could guarantee that is because if you look into the set of functional

dependencies, you will find that S number, the supplier number is a key in the supplier

relationship because it functionally determines S name as well as S city. So, R1

intersection R2 functionally determining R1 is true here and therefore, it actually gives

you a lossless join.

It also preserves all the dependencies because if you look into these dependencies, you

can check for this dependency. In this relation, you can check for this dependency also in

this relation and you can check for this dependency in also in the parts relation which is

something which we were not able to do in the last decomposition that we have.

(Refer Slide Time: 24:33)

So, naturally this is a type of decomposition that we will prefer. So, here we have I have

given some more examples which you can practice and I show that given a very simple

schema having three attributes and two dependencies, one decomposition into AB and

BC is lossless join decomposition whereas, the other one AB and AC is a lossy

decomposotion.

(Refer Slide Time: 24:57)

I have given a number of practice problems on lossless join, so that you can practice and

become master of these kind of algorithm. Finally, let me quickly go over the

dependency preservation concept.

(Refer Slide Time: 25:17)

Dependency preservation is if you have a relation which you have decomposed into n

different relations, so if you decompose a relation into a number of relations, then

naturally all functional dependencies you cannot check on all the relations because a

dependency may involve attributes all of which may not be present in a particular

decomposed relation that you have. It may be distributed amongst different..

So, when you do this decomposition, for every relation you get a new set of subset of

functional dependencies. So, the decomposed relation R i the ith relation will have a set

of dependencies F i which is a subset of the original set F and involves only the attributes

which exist in R i. So, the decomposition will be said to be dependency preserving if I

can take the union of all these functional dependencies, what is projected on R 1, on R 2

and R n, F 1, F 2, F n. If we can take union of and if we take F, they must be equivalent

sets which we know the requirement.

So, equivalence mean that their covers will have to be equal. If it is not, then some there

will be at least one dependency which you will not be able to check in any one of the

projected relations and to be able to check that, you will have to compute the natural join

and that is as we know is a very expensive process and we would not be able to do that

on a regular basis.

(Refer Slide Time: 27:12)

So, here I have written down the algorithm to test if a decomposition actually preserves

the dependency or not. So, I will not go through the steps. I will leave that for you to

understand, but what I will do, I will just show you a simple set of worked out example

and reason on that.

(Refer Slide Time: 27:34)

So, I show you two different methods of doing this. So, here we have a set of attributes

given the dependencies that work in that and a particular decomposition. So, given the

set of attributes and the decomposition if we project, now if we project the set of

functional dependencies and these are the sets that we get. So, on R1, we have two

dependencies on R2, we have three dependence, one dependency and r 3 we have one

dependency again.

So, if we now think about the union of these and the closure for that, then we can see that

these four dependencies which occur here and therefore, I have struck them off in this

set. These four dependencies can be checked directly on the projected relations. So, that

leaves us with three dependencies in the original set which cannot be checked on any one

of R1 R2 or R3. For example, if you consider BC determining E, then B exist on R1 and

C also exist on R1, but E is not there. So, you cannot check that dependency on R1, you

cannot check that on R2 because C and E do not exist and you cannot check them on R3,

check it on R3,because none of them actually exist.

So, what we will need for the dependency preservation to hold is the dependencies which

are already existing four dependencies that are struck off if they collectively can

logically imply these dependencies, so that they can be checked. Then, we will be able to

say that this is dependency preserving. So, what you do is something very simple. You

want to say, you want to check whether this is preserved. So, we start with the left hand

side and compute the closure. The only difference you compute the closure first with the

set of functional dependencies projected on R1, that is F1, the set closure set that you get,

you take that and compute its closure with respect to the second set of functional

dependencies F2.

The closure that you get, you take that and you compute the closure with respect to the

third set of functional dependencies which is on R3 and that is your final closure set. So,

this closure set includes the right hand side attribute E. So, we can conclude that BC

indeed functionally will determine E and that relationship will be preserved because we

have starting from BC. We have seen that in every projected relation what all implied

functional dependencies that can be checked which is what the meaning of the closure

set of attributes R and since that set eventually has E, we will know that this can be, this

will be preserved.

This set also has F. So, the other one will also be preserved. So, this is preserved, this is

preserved to check whether this dependency is preserved. We need to again repeat the

process and find whether EF belongs to the final closure set which it does and therefore,

we conclude that this decomposition is dependency preserving.

(Refer Slide Time: 31:04)

With the same example I will just show you a little different way of ah doing the same

exercise. I have not written down the algorithm for this in longhand, but the example

should be quite illustrative. So, we are what you do when you project, you check if some

dependency has multiple attributes on the left hand, on the right hand side, then you

write them in a separately decomposed manner. So, A implies determines BCD is written

in terms of three dependencies. A implies B, B implies C and C implies D. So, you make

sure that all dependencies are written in a form where the right hand side has a single

attribute, then you compute what is known as the reverse functional dependencies that is

you take the right hand side and compute whether the right hand side can imply the left

hand side.

So, I will just show you one. So, in case the right hand side here is B, you have AB on

the right hand side. So, you compute the closure with respect to F. The original set, not

the projected set of D and you get BF. So, you know that this inverse, this reverse

functional dependency which is AB functionally determines A which is the reverse

dependency cannot be inferred and you do this for each of the right hand side single

attribute and check if some, if the reverse dependencies can be inferred or not.

The interesting case occurs here where if you try to do the closure of A, you actually find

that A determines BC which is a reverse of this functional dependency can be inferred,

but you do not consider that as a violation because it is you already have A determining

B and A determining C. So, that logically implies that A determines BC. So, it is not a

new violation that is getting imposed.

So, with this your test for reverse functional dependencies is passed and then, you finally

check for whether the three dependencies which are not part of the projected set of

dependencies, you take the closure of the left hand side with respect to in this case.

Again the original set of functional dependencies, not the projected one and check if the

right hand side belongs there. If they do, then combined with these two strategies you say

that the set of functional dependencies are preserved under this decomposition.

So, this is the process to follow. You can follow any one of the two approaches to solve.

(Refer Slide Time: 34:01)

So, given some practice problems on dependency preservation which you should practice

on to.

(Refer Slide Time: 34:06)

Summarize we have studied the algorithms for properties of functional dependencies and

we have understood the characterization and determination algorithm for lossless join

decomposition and for dependency preservation in a decomposition. In the coming

module, we will make use of these and discuss about how to improve these designs of

relational schemas through the use of different normal forms.

