
Database Management System
Prof. Partha Pratim Das

Department of Computer Science & Engineering
Indian Institute of Technology, Kharagpur

Lecture - 17
Relational Database Design (Contd.)

Welcome to the Module 17 of Database Management Systems. From the last module, we

are discussing Relational Database Design. So, this is second in the series of 5 modules

which we will discuss this.

(Refer Slide Time: 00:31)

We have already seen basic features of good relational design. We have studied about

first normal form atomic domains and got introduced to functional dependencies.



(Refer Slide Time: 00:43)

So, we will develop further on that to see how decompositions into good design can be

done by making use of the notion of functional dependencies and we will more formally

introduce the theory of functional dependencies.

(Refer Slide Time: 00:57)

So, that is all that we discuss in this.



(Refer Slide Time: 01:00)

So, decomposition using functional dependencies is the first thing that we look at.

(Refer Slide Time: 01:04)

The  first  normal  form of  relations  which  were  studied,  we  look  at  its  Boyce-Codd

Normal Form. So, normal forms are kind of set of properties which is satisfied by a

relational schema and if they are satisfied, then we have certain guarantees in terms of

what  can  or  cannot  happen  in  that  relational  schema  design.  So,  Boyce-Codd  is  a

simplest kind of beyond 1NF is a simplest kind of normal form and a relational schema

is  said  to  be  in  Boyce-Codd  normal  form  if  with  respect  to  a  set  of  functional



dependencies, all functional dependencies in the closure. So, in respect of F, we compute

F  plus  which  is  a  closure  and  if  I  have  a  dependency  alpha  determines  beta,  then

naturally alpha will have to be a subset of R beta will have to be a subset of R, but what

is important is every functional dependency in the closure set must either be trivial that is

right hand side is a superset of the left hand side or the left hand side set alpha must be

super  key.  So,  only  those  kind  of  functional  dependencies  are  possible.  No  other

functional dependencies are possible. If that is satisfied by the relational schema R, then

it is said to be in the Boyce-Codd normal form.

(Refer Slide Time: 02:39)

So, if we look at inst department schema of the combined relations we saw last time,

then we will know that certainly this is not in Boyce-Codd Normal Form because this

functional dependency holds in this schema where it is neither a trivial dependency and

nor department name is a super key. So, this is not in BCNF.



(Refer Slide Time: 03:10)

So, if a relational scheme is not in BCNF, then the question naturally is can I make it into

BCNF so then that process is the process of decomposition. So, what you do? You divide

the set of attributes into two or more at sets of attributes. So, here let us say that we have

a relational  schema which has a non-trivial  dependency alpha determines  beta where

alpha is not a super key. So, with respect to this functional dependency, the relational

schema is not in BCNF, then we can decompose R by two sets. One is alpha union beta

take the union of these two attribute sets and remove beta minus alpha from R, take the

difference of beta minus alpha and remove that from R. The resulting pair of relations,

relational schemas will be in Boyce-Codd Normal Form with respect to this particular

functional dependency.

So, let us see an example. So, if alpha is department name beta is a pair of attribute

building and budget, we have department name functionally determines building budget.

So,  alpha determines  beta  and we have  already seen that  it  does  not  hold.  It  is  not

satisfied by the inst department. So, you replace it by taking alpha union beta. So, alpha

union beta is this set of relational this relational schema and you do R minus beta R

minus difference of beta  minus alpha beta  minus alpha.  Naturally  if  this  is  beta and

alpha, then beta minus alpha is necessary building budget because if the department does

not occur in beta.



So, this set is building budget and if I remove it from R which means that id, name,

salary and department name are retained, but building and budget gets removed. So, I get

another  relational  schema  which  has  these  four  names  and  it  holds  the  functional

dependency id determinant. So, even now if I look into this schema R1 and this schema

R2, there are different dependencies that hold on R1 and with respect to that dependency

R1 is in BCNF because department name is the super key, is the primary key and with

respect to this dependency, R2 is in BCNF because id is the key.

So, I can see that the original combined relational schema was not in BCNF with respect

to  this  functional  dependency, but when I  do this  decomposition,  I  get  two schemas

which are each in BCNF normal form. So, this is the basic process and we will  see

depending on the normal form and different notions of functional dependencies, we will

see how these conversions can be done, but this is a basic approach of converting a

schema into a normal form.

(Refer Slide Time: 06:24)

Now, the question is if the constraints including the functional dependencies if we look

at, then functional dependencies will have to be checked on different instance. Now, in

general  it  is  difficult  to check a functional  dependency alpha determining beta if  the

attributes alpha and the attributes of beta or the attributes of beta are distributed between

multiple relations because naturally how do I check if they are true, how do I check that

two tuples which match on alpha is indeed matching on beta unless I perform a costly



join operation. So, there objective is to be able to come to designs where it is sufficient to

test only those dependencies on individual relations of the decomposition and with that I

must be able to ensure that all functional dependencies hold. So, it is a very interesting

situation.

So, we are saying that we will decompose, get into a number of relational schema. Every

schema  will  have  a  number  of  dependencies,  functional  dependencies  and  those

functional dependencies if they involve only the attributes of that relational schema, they

can be tested very easily and if these functional dependencies together mean ensure that

all  functional  dependencies  hold  that  is  if  the  closure  of  this  set  of  functional

dependencies is same as the closure of the earlier set, the original set, then we say that

the  decomposition  that  we  have  achieved  is  dependency  preserving  because  I  can

actually effectively compute.

This  is  dependency  preserving  because  I  can  effectively  compute  whether  every

dependency is satisfied by checking on every individual relation, but the unfortunate part

of the reality is that it is not always possible to achieve a Boyce-Codd Normal Form

Decomposition which also preserves the dependencies. See if there are in some cases

will be able to do like the example we saw just now the instructor and department, but it

is not always possible. So, we usually need another weaker form, normal form which is

known as a third normal form and we will subsequently look into those.

(Refer Slide Time: 09:09)



A third normal form is again a relational schema is there and for all attribute,  for all

dependencies that belong to the closure of the functional dependencies, this following

conditions must hold either alpha, determines beta is trivial which is a condition which

BCNF or alpha is a super key of R which is also a condition that we say an effort or each

attribute in beta  minus alpha that is  right hand side difference.  The left  hand side is

contained in a candidate key for R. It is not very obvious as to why we need that. That

will unfold slowly. This is the condition we did not have in BCNF. So, naturally you can

see that based on the first two conditions, you can always say that if a relational schema

is in BCNF, it necessarily is in 3NF, but not that if.

There could be some schema which is in 3 NF because of the third condition where there

exists a functional dependency. So, that beta minus alpha is contained in a candidate key

for R, but it is not in the BCNF form and also you can note that the attributes of that are

contained in beta minus alpha must be in some candidate key, not necessarily in the same

candidate key. If they exist in some candidate key, then itself 3 NF condition will get

satisfied. So, if a relation is in BCNF, it is in 3NF. We have already seen that. So, third

condition minimally relaxes BCNF to ensure that we have a dependency preservation.

We will see this more later. So, I am just introducing the concept of a relaxed normal

form here.

(Refer Slide Time: 11:11)



So, what is a goal of this normalization is if tosummarize let R be a relational scheme, F

is a set of functional dependencies, we need to decide whether the relational scheme R is

in a good form which means that it should not have unnecessary redundancy. It should be

impossible to acquire information by doing lossless join. So, in case it is not in good

form.  We can convert  it  by decomposition  into  N relational  schema,  such that  each

schema is in good form. The decomposition has a lossless join, so that I can get back the

original  relation  from  this  and  preferably  the  decomposition  should  preserve  that

dependencies. So, that is what we will target henceforth.

(Refer Slide Time: 12:08)

So, when we do that let us quickly evaluate as to we have seen BCNF. So, how good

really BCNF is. So, if I have something in BCNF should I really be very happy always.

So, let us look at a relational schema. This is an information relating the idea of a person,

the name of the child and the phone number and naturally the person, the instructor may

have more than one phone and may have multiple children. So, this is a possible instance

that you can see though all of these belong to the same instructor. He has naturally you

can see that two children and there are this is here, this is here.

So, this is here and this is here. So, there are two different phone numbers. So, naturally

you have four possible combinations that you need to look at.



(Refer Slide Time: 13:08)

So, now there is no non-trivial functional dependency in this relation. So, since there is

no non-trivial functional dependency, this relation naturally is in BCNF form because

that is the existence of non trivial dependency is what makes a schema not conform to

the BCNF form. So, there is no such. So, this is in BCNF form and now, if you look at,

but what did we see the key thing that we saw if we just go back, the key thing that we

saw that there is ample redundancy of data, the same data is entered multiple times.

So,  the consequence of that  could  be insertion  anomaly. If  we want  to  add a  phone

number to the same instructor, then we need to add two tuple because the instructor also

has two children. If the instructor and three children will need to add three and unless

this is maintained always, then we will have difficulty.



(Refer Slide Time: 14:15)

So, the redundancy consequences anomaly that we are getting into, so it could be better

to decompose this to say that I make this orthogonal; I keep the child information with id

and I keep the phone number information in the id separately. So, if I do that, then I can

decompose it in this manner and if I decompose that, this have just shown that if you are

dividing that table in two parts. So, naturally these are not required, neither are these

required. So, these are the entries that I get and you can convince yourself that you can

actually do a lossless join to get back the information.

So, BCNF not necessarily give you good designs and we will see later on that there are

other normal forms which can be used to improve on BCNF.



(Refer Slide Time: 15:05)

Now, let us for formally getting into how do we convert decompose relation into a third

normal  form and how we assess  that  we need to  understand more  of  the functional

dependencies.

(Refer Slide Time: 15:20)

So,  we  will  consider  now  a  little  bit  of  formal  theory  on  them  and  then,  develop

algorithms that can generate lossless join decomposition into BCNF and 3 NF and we

will also create algorithm to test if decomposition preserves the dependency.



(Refer Slide Time: 15:39)

So,  just  quickly  to  recap we have already introduced the closure set  of  a  functional

dependencies. It is all dependencies that are logically implied by it. Now, the question

certainly is how do I give a set? How do I compute this closer set?

(Refer Slide Time: 15:57)

So, to do this we make use of three rules known by Armstrongs Axiom named after the

person who first observed them. So, the first rule is reflexivity which says that if beta is a

subset of alpha, then alpha determines beta. Always alpha functionally determines beta.

So, this is basically reflexivity you can see is a different way of saying specifying about



trivial dependencies. Next comes important thing augmentation which says that if alpha

determines beta, then gamma alpha where gamma is some set of attributes in R.

Then, gamma alpha will functionally determine gamma beta which is very easy to see

because alpha determines beta means two tuples who match on alpha will necessarily

match on beta.  Now, if that happens and whatever is gamma if  two tuples match on

gamma and alpha, then certainly they will match and gamma and beta because alpha

determines beta tells me that they will match on beta and gamma is the same set of

attributes. So, augmentation also is easy. Then, we have transitivity which we earlier saw

also  if  alpha  determines  beta  and  beta  determines  gamma,  then  obviously  alpha

determines gamma.

So, these are the foundational rules observed which can be made used to compute the

closure of the set of functional dependencies. Now, these rules as they say this is more

for you know understanding the theory better. These rules are sound as well as complete.

Soundness mean that if I use these rules repeatedly in a set of dependencies,  then it

generates functional dependencies all of which actually hold. So, it will never generate a

functional  dependency which is not correct,  which will not hold and the second it  is

complete  which  means  that  if  I  keep  on  using  these  rules,  then  all  functional

dependencies that can at all hold will eventually get generated.

(Refer Slide Time: 18:06)



So, that is a very strong result and that is what leads to say the following example. So,

when  we  are  trying  to  compute  the  functional,  the  closure  of  the  function  set  of

functional  dependencies  here.  So,  there  are  six  attributes  in  the  set.  There  are  six

different  functional  dependencies  and we identify  some members  of the closure.  For

example, we can see that A functionally determines B and B functionally determine H.

So, transitivity clearly shows that A will functionally determine H, very clear. So, in the

closure that must be there.

Similarly, we can see that A functionally determines C. Now, if we augment it with G,

that is put G on both sides, then AG functionally determines CG and we know that CG

functionally determines I. So, if we combine these two by transitivity, then we can get a

new functional dependency which has AG functionally determines I. So, in this manner

you  can  do  the  next  one  also  and  you  can  try  to  infer  several  other  functional

dependencies that can be inferred by different applications of the Armstrong’s axiom, the

three rules in any multiple different ways.

(Refer Slide Time: 19:36)

So, to get the closure what we need to do is, now very simple is certainly we will have a

repetitive  algorithm to  get  the  closure.  The first  algorithm will  start  with  the  set  of

functional  dependencies  that  we have.  So,  the  closure must  include  the given set  of

functional dependencies. So, F plus must have F. So, let us start with initial value of F

plus  as  F, then for every functional  dependency is  F plus.  This is  what  we keep on



repeating. Look at the outer loop, every functional dependency that we have. F plus now

will apply reflexivity and augmentation and add the resulting functional dependency in F

plus.  It  is  possible  that  the  same  functional  dependency  gets  generated  and  added

multiple times does not matter. F plus is a set. It will naturally eliminate duplicates.

Then,  for  each pair  of  functional  dependencies  because  reflexivity  and augmentation

applies  to  one  functional  dependency  only, but  transitivity  applies  to  two functional

dependencies. So, for every pair of functional dependencies, we check whether they can

be  combined  by  transitivity.  If  they  do,  then  the  transitive  closure  of  the  transitive

functional dependency that arise out of that is also added to F plus and mind you more

and more functional dependencies you add, there are more and more opportunities to

apply the Armstrongs Axiom rules and newer functional dependencies will continue to

get added, but eventually you reach a point where F plus does not change any further and

when  that  is  achieved,  we  know  that  the  functional,  the  closure  of  the  functional

dependencies have been obtained and that is our final set.

(Refer Slide Time: 21:32)

We can also observe that based on the rules of Armstrong, the Armstrongs Axioms we

can also generate lot of derived rules. Some of those are shown here. For example, if A

determines,  if  alpha determines  beta  holds and if  alpha determines  gamma,  that  also

holds, then alpha determines beta and gamma together. This is called the union set. So, if

there are two functional dependencies which are the same left hand side set of attribute,



then  we  can  take  the  union  of  their  right  hand  side  attributes  and  that  functional

dependency will hold obviously, it is trivial to prove this.

If alpha determines beta gamma, then alpha determines beta holds and alpha determines

gamma holds. This is called decomposition. So, kind of the other side of the union which

also is trivial because alpha determines beta; Gamma says if two tuples match on alpha,

they match on beta as well as gamma attributes. So, obviously you take the first part, you

get alpha determines beta. You take the second part of the observation, you get alpha

determines gamma. So, that is a composition rule. The third is interesting. It is called the

pseudo transitivity which says that alpha determines beta if that holds and gamma beta

determines  delta  if  that  holds,  then  alpha  gamma  will  determine  delta  which  is  not

difficult to get because if this holds, then I can augment gamma on both sides. I get beta

gamma and then, I have given beta gamma determines delta. So, if I combine these two

in terms of transitivity, I get alpha gamma determining delta.

So, this is called pseudo transitivity because here you are adding another attribute in the

transitivity. So, often times it becomes easier to make use of these additional rules to

quickly get to the closer set.

(Refer Slide Time: 23:45)

So, given a set of attributes we also compute the closure of a set of attributes. This is a

second concept we have seen how to give the set of functional dependencies, how to

compute the closure of the functional dependencies. Now, we are given a set of attributes



and we want to define the closure of this set of functional, this set of attributes under the

set of functional dependencies and as the closure of functional dependencies F is denoted

by F plus, the closure of a set of attributes alpha under F is denoted by alpha plus. So,

this set of closure attributes of alpha is a set of attributes that are functionally determined

by alpha under F. So, all set of attributes that are functionally determined by alpha under

the set of functional dependencies is member of alpha plus.

So, the following simple algorithm can compute the closure naturally. Initially let us say

the result is the final closure set. So, initially we can say that result can be initialized with

alpha because certainly the whole of alpha would necessarily belong to alpha plus by the

reflexivity condition, then for each functional dependency beta determining gamma, we

check if beta is a subset of the result. If beta is a subset of the current set of attributes that

form result which mean that alpha functionally determines beta, it will have to because

result is the set of all attributes that alpha functionally determines. So, if beta is a subset

of the result, then necessarily alpha functionally determines beta is a consequence of this

and  we  know  that  this  is  their  beta  functionally  determines  gamma  combined  by

transitivity.

So,  I  know  alpha  functionally  determines  gamma.  If  function  alpha  functionally

determines gamma, then it must get into the result and this is exactly what the statement

is saying that take result and add alpha, add gamma, the set of attributes gamma to the

result. How long should you do that? Naturally you will do that as long as over a full

iteration of functional dependencies in F, if there is no change to the result, then you

know that all future iterations will have no change. So, you reach a fixed point and you

declare that the closure of the set of attributes have been obtained.



(Refer Slide Time: 26:44)

Now, this  closure information  is  very interesting  and we just  show an example  here

based on the same set of attributes and same set of functional dependencies.

So, we are trying to find the closure of the set of attributes AG. So, AG plus initially it

will be AG. Now, since A functionally determines C, so given that I can say that C will

get included in this set in the same iteration. If I look at A functionally determines B, so

B will get included in this set. So, after this first iterative loop I will have the result as

ABCG. If ABCG is there and I am looking at the next iteration, then CG functionally

determines H. So, H comes into the set because CG is a subset of that I comes into the

set because CG functional determines I and at this point, it eventually ends in this case.

In this particular example, you can see that all attributes have got included. So, you can

see that it immediately gives you another information as a byproduct of the closure that

closure of AG is all attributes which mean that AG is a key. It has to be a key because

AG functionally determines all attributes now.

So,  what  is  the  meaning  of  AG plus  being  this?  So,  if  the  meaning  of  this  is  AG

functionally  determines  the  set  of  attribute  ABCGHI,  right,  so  we will  see  that  this

closure set has a lot of valuable information in this.



(Refer Slide Time: 28:31)

So,  we can say that  AG is  a  candidate  key and because  of  this,  we can  also check

whether AG is a super key or not. All that we need to do is drop some member from AG,

we drop G and check whether a functional determines R which means we check whether

A plus  is  equal  to  R or  not.  We check  we  drop a  from a  g  and  check  whether  G

functionally determines R which means G plus has to be equal to R and by that we can

easily determine whether the set of attributes is a key or not.

(Refer Slide Time: 29:14)



So, there are several ways. The attribute closure can be used as we have just seen. It

helps  you  determine  whether  something  is  a  super  key.  We can  check  for  testing

functional dependencies because if we have to check whether a functional dependency

alpha determines beta hold, all that we will have to do is to compute the closure of the set

of attributes alpha that is alpha plus and check whether beta is a subset of that. If it is,

then certainly holds. If it is not, then it does not hold. So, it is simple and useful test that

can be made use of.

So, it can also be used in computing the closure of F that for example, for every subset

gamma of R, if we find gamma plus that is a closure of the set of attributes of gamma

and then, for each subset of gamma plus, we know that there is a functional dependency

gamma determining S which is just is the same statement being made in you know or in

different forms and the closure of attributes is a very nice concept which help you play

around in this multiple ways and we will see subsequently many of the algorithms for

normalization.

(Refer Slide Time: 30:35)

How they make effective use of this closure set,  notion of both closure of functional

dependencies and in very practical implementation algorithms, the closure of attributes.

So, to summarize this module, we have discussed issues for, issues in the good design in

the context of functional dependencies and in the process, we have also extended the



theory of functional dependencies and we will continue it this in the next module to get

more insight into the algorithms that actually work with the functional dependencies.


