
Database Management System
Prof. Partha Pratim Das

Department of Computer Science & Engineering
Indian Institute of Technology, Kharagpur

Lecture - 16
Relational Database Design

Welcome to Module 16 of Database Management Systems till the last module which

closed with the third week.

(Refer Slide Time: 00:31)

Specifically in the third week, we talked about certain advanced features of SQL and the

formal query language in terms of relational and algebra and calculi and then, we talked

in a depth in terms of the entity relationship model, the first basic conceptual level

representation of the real world that we can do in terms of designing a system.

Now, our next task would be to take it to more proper complete relational database

design and this will have a lot of theory at different levels that we need to understand.

We will slowly develop that and this discussion will span 5 modules that is we will take

the whole week to complete.

(Refer Slide Time: 01:25)

So, the objective of the current module, the first of the Relational Design Module is to

identify features of good relational design having done the year module. We have yeah

we do the year model, we have the entity sets relationships, we convert them to schema.

We have seen how to do that and immediately we have some design, but the question is,

is it a good design. So, we will discuss about what are the features of a good design and

then, we will introduce the formal definition of what is first normal form and we will

introduce a very critical concept of relational database design, the functional

dependencies.

(Refer Slide Time: 02:07)

These are the module outline for that.

(Refer Slide Time: 02:10)

So, to start with the features of good relational design, let us take an example.

(Refer Slide Time: 02:13)

Suppose we have seen the instructor, relation instructor entity set as a relation. You have

seen the department relation. Now, let us consider that if these two were not two separate

relations, if they were all kept in a common relation that is all the attributes are kept in

the common relation, so earlier if you recall that your instructor relation was this and

your department relation was this much. So, if we keep everything together, of course we

are calling it inst dept, but please keep in mind this is not the same inst dept that we

discussed in terms of the ER model. This is just putting these two together.

Now, the question is if you look into this data carefully, for example if you look into this

particular row, if you look into this particular row and if you look into this particular row,

these are rows of instructors who all belong to computer science. Now, earlier we were

representing the information of instructor only in this part. So, we just knew that it is

computer science and we represent the information of department in this part. So, given a

department name say computer science, we knew, where is it located, the building and

what budget it has. Now, when we are combined, we will see that naturally since

computer science is located in the tailor building, we know that it has a budget of say

100,000. So, all of these records will have this information repeated.

So, this is not a very good situation. This is not a good situation because this kind of

situation is typically in database is known as redundancy, that is you have the same data

in multiple places. So, what is the consequence of redundancy? For example, there could

be different kinds of anomaly when you have redundancy. What is an anomaly? An

anomaly is the possibility of certain data getting inconsistent. For example, let us say

computer science department moves from tailor building to painter building. Now, what

will have to happen if it moves to painter building? Then, I will need to remove this,

make it a painter, make this value painter. I have to also do this, make this painter. I have

to also do this, make this painter. So, if I have a change, then I will have to make the

change at multiple entries. Think about the earlier situation where I just had these three

in my department relation, then naturally computer centered only one row and therefore,

this change, this update could be done at only one place.

So, it is not only that if while doing this in case of this redundancy, I have to do this

multiple times. It also has the difficulty that if I forget to update any one of them or more

of them, then I have inconsistent data. Similarly, if I want to insert a new value, I will

have to do that for all this redundant information. If I have to delete say for some reason

let say the university decides to wind up the Physics department, then I have to delete all

these rows which have physics as an entry and the consequence of that is the department

is deleted, but as a consequence of that I will delete the whole row and therefore, I will

not only remove the department, but I will also remove the corresponding instructor who

was enrolled for that department.

So, this kind of redundancy can lead to different kinds of anomalies in a database design.

On the other hand, if you look at, well why I am complicating the whole situation? We

have already had a good design in terms of where these anomalies were, not their

department, were separate instructor was separate. In that case, the situation is that to

answer some of the queries, I may have to do a very expensive joint operation. For

example, if I want to know if Einstein wants to know what is the budget of his

department that cannot be found out from the earlier instructor database, instructor

relation which had only these fields.

So, I have to pick up Einstein from here, do a join based on the department name, depth

name with the department table department relation and then only, I will be able to find

out that an Einstein belongs to Physics. Physics has a budget of 70000. So, Einstein's

department has a budget 70000. So, there is a tradeoff between how much if data

information you make redundant and lead to different anomalous situations or how much

data you optimize in the representation, but get into the possible situation of having a

higher cost in terms of answering your queries.

(Refer Slide Time: 07:49)

So, this is one of the core design issues that we will start with. So, let us look into some

more.

(Refer Slide Time: 07:54)

Of these examples, let us say we look into another combined combination of schema.

Suppose section is a relation which have the sections of a course which give the section

id semester year and say section class is another relation which tell me for a section id,

what is the building and room number where it is located. So, if we have this kind of

relations combined into a common relation, then I have all of these coming from the

section and this and these coming from the section class, but we can see that there is no

repetition or redundant information in this case.

So, it is note that combining schemas is necessarily always bad in terms of repetition or

in terms of redundancy. So, different situations will have to be assessed.

(Refer Slide Time: 08:57)

So, if we want to look at the other side that if we just as I said that if we make the

schema smaller, so that we avoid redundancy and then, what we see that 12 from the

combined inst dept relationship that we saw. So, let me just show you once more. So, this

is if we look at the inst dept, then in this we can we know that from the earlier

information about the department relationship that department name is a key, is a

primary key of the relation which has department name, building and budget. What is the

consequence of being a primary key? If it is a primary key, then no two records can

match on the department name and be different in terms of the building and the budget.

If two records are there which have the same department name, they must be identical.

So, they are distinguishable completely by that. So, let us see what is the consequence of

this. So, we are saying that we write it as a rule that if there is a schema department,

name, building, budget, then department name would be a candidate key and we write

this observation that if two records match on the department name, they must match on

the building and budget and very loosely, we will come to the formal definition. Very

loosely we call this the functional dependency. We say that the building and budget is

functionally dependent on the department name and that is a situation where we can split

this inst dept and create a smaller relationship because department name is not a

candidate key in the inst dept. It does not decide the records of inst dept uniquely.

So, since it does not, so when the values of this key, this attribute department name is

duplicated or triplicated, the values of the building and budget are repeated and we have

the redundancy. So, this is a situation, very common situation which is indicative of the

fact that we need a decomposition into smaller , but at the same time we can also

observe, I mean let us take a different example. If we are thinking that decomposition is

the panacea of solving these kind of redundancy and related problems, then let us try to

see a different relationship employee which has id, name, street, city, salary and we want

to make it smaller and want to make two relations id and name and name, city street,

salary.

So, if we do that, then how do we get the salary for a particular id? We will naturally

have to join these two relations in terms of the common attribute name. We have seen

that in the query and the question is when I do this joint, do I get back the original

information or I lose some information.

(Refer Slide Time: 12:42)

Look at an example. So, here is an example of the combined instance and I have two

different ids, but incidentally the names are same. The names of these two distinct

employees are same. So, when I decompose, I get this relation which shows id and name.

I get this relation which is against the name shows this, but when I try to join them by

national joint, I not only get the combination of this with this which is what I need, but I

also get this combination. So, if I say this is what I get as well in terms of natural joint,

this is what I get as well in terms of the natural join which are really not there in the

original relation.

So, you can see that in the natural join, I get four records, I get four rows whereas, in the

original one I had only two rows. So, I get some entries which are actually erroneous.

These are not there in the database. So, this is when this happens. We say that we have

loss of information and such joints are said to be lossy joins. So, when we decompose,

we need to make sure that our joins are lossless in nature; otherwise that is not a good

design.

(Refer Slide Time: 14:08)

So, you can see this is again a hypothetical example which shows three attributes in

relation having three attributes. You have decomposed it into two relations having two

attributes each and we have shown an instance and in this case, it shows that when I take

the join, the original information I am sorry, wait.

When I take the join, the original information is completely retrieved. I get back the

same table and when that happens, I say that the join is lossless. So, what we need to

understand is on one side there is a need to decompose relations into smaller relations to

reduce redundancy and while we do that, we will also have to keep this in mind that the

smaller relations must be composable through certain natural join procedure to the

original relation, and I must get back that original relation, otherwise I have a lossy joint

which is not acceptable. Also, the decomposition will have the costs of doing natural join

every time I want to answer those queries.

(Refer Slide Time: 15:35)

The next that we look at is the way the relationships are categorized as first normal form.

(Refer Slide Time: 15:45)

We consider that the domains of attributes are atomic if they are indivisible. So, anything

that is a number string and so on is considered to be atomic and we say a relational

schema is in its first normal form if the domains of all attributes are atomic and all

attributes single value, there is no multi value attribute. If these conditions are satisfied,

then we will say that every relate that relational schema is in its first normal form. So, we

will slowly understand the purpose of defining such normal forms, but let us initially

understand the definition. So, if we have attributes which are composite in nature,

naturally my relationship, my relational schema is not in first normal form if we have

attributes which are multiple valued, it is not so.

(Refer Slide Time: 16:44)

So, if we say that we have possible values are like this, then if we just treat them as

strings, then the corresponding relational schema is in first normal form, but if we say

that from this string we can extract the first two characters which is CS which tells me

what is a department. The next four characters gives me a number, the serial number of

the particular student in the role. Then I am not actually using an atomic domain because

my domain needs to be interpreted separately than just being a value. So, these are not

parts of what can be a first normal form.

(Refer Slide Time: 17:28)

So, I have given some examples of what is not and what is first normal form. So, this is

an example where at the telephone number field exists and there can be multiple

telephone numbers. So, this is not in first normal form because the telephone number

itself is composite because it has different components and also, you can have multiple

telephone number. So, this relation is not in the first normal form.

(Refer Slide Time: 17:54)

What you can do? You can separate out these phone numbers into two different

attributes; Telephone number 1 and 2. Even then it is not exactly in first normal form

because you do not know in which order they should be handled. If you have to search

for a telephone number, then you will have to search multiple attributes which are

conceptually same and then, the question is why only two attributes. Cannot anybody

have 3 phone numbers, 7 phone numbers and so on. So, this is really not a good option.

(Refer Slide Time: 18:26)

So, the other way could be that for every telephone number, you introduce a separate

row. Once you do that you already know you have redundancy and you have possibilities

of varied kinds of anomalies that could happen.

(Refer Slide Time: 18:40)

So, one way it could be achieved is we follow the principle that we had seen in ER

modelling that this multivalued dependency can be represented in terms of a separate

relation where against the customer id we just keep the telephone number. So, we can

keep multiple of them and we take that out from the customer name. So, one to many

relationship between the parent and the child, between the customer name and telephone

number, every customer may have more than one telephone number is possible and that

makes it 2 NF relation, first normal form relation and we will later on see that it also is 2

NF and 3 NF, but that is a future story.

(Refer Slide Time: 19:29)

Now, finally we come to the core of what the mathematical formulation which dictates

much of the data base, relational database design is known as functional dependencies.

(Refer Slide Time: 19:47)

I just talked about little bit of that while talking about department name building and

budget. Now, to decide whether a particular relation is good or rather a particular

relational scheme is good, we need to check against certain measures and if it is not

good, we need to decompose it into a set of relations such that these conditions satisfy

that every, each one of these, R 1 R 2 R n. So, I mean if you have you know got rusted,

then it is basically R i is a set of attributes because it is a relational schema. A relational

schema is a set of attributes.

So, naturally R will be the union of all of these, R i the total set of attributes. So, instead

of keeping all the information into one relation in one table, we are basically

decomposing it into n different schemas.

(Refer Slide Time: 20:42)

So, what we need to guarantee is each one of these relation R 1, R 2, R n is in good form.

How do I get back the original relation? Original relation that was represented by all that

attributes enough is to take a lossless join. This would take a join and that this

decomposition must give me a lossless join. So, to ensure that; we make use of two key

ideas more foundationally; functional dependencies and then, multivalued dependencies.

(Refer Slide Time: 21:20)

A functional dependency is a constraint on the set of legal relation. So, mind you it is a

constraint on the schema and once that constraint is defined, it must hold for all relations

that the schema satisfied. So, here we need that the value of certain set of attributes

uniquely determined the value of another set of attributes. So, I know the value of three

attributes, I should be able to say that the values of the other four attributes would be

fixed. So, you have already seen this notion in terms of key or super key. You have seen

that similar type of concept exists where we said a key is a set of attributes, so that if the

values of two rows are identical over these set of attributes, then the two peoples, the two

rows must be totally identical.

So, key is something which does a similar thing as a functional dependency, but is more

specific. Functional dependencies are generalization.

(Refer Slide Time: 22:30)

So, let us formally define that let R be a relational schema which means that it is a set of

attributes and let us say alpha and beta are two subsets of R, then we write this and note

this notation. Alpha is a set of attributes; beta is another set of attributes. Both are subset

of the same R and we say alpha functionally determines beta that is if I know the value

of a tuple over the attributes of alpha, then the values of that tuple over the attributes of

beta would be fixed or in other words, they say that if I have two tuples t 1 and t 2 and

their values over the set of alpha attributes are same, then necessarily their values over

the set of beta attributes must be same and mind you this is something which is a design

constraint. It is not just an incidental property. It is not just the fact that a particular

instance of a schema satisfies this, but when you say this is a functional dependency, we

need all possible past, present and future instances of the schema must satisfy this.

(Refer Slide Time: 24:03)

So, consider this if you take a relation, a schema with an instance as given here between

two attributes a and b, then we can say at least given this instance not we still do not

know what happens in the whole schema for all instances, but on this instance we can

say that functionally determines b does not hold because between the first and the second

record, the value of a is same one, but the value of we are different 4 and 5, but we can

certainly say that on this instance at least we functionally determines holds because

whenever the value if we take any two tuples, their value over b does not at all match. If

they does not match, then naturally there is no question of what happens to the value of

the tuple over the set of attributes a. So, we will say that b functionally determining a

holds in this instance.

(Refer Slide Time: 25:01)

So, given this definition of functional dependency, now we can have a formal definition

of what the super key is. Super key is naturally a subset of attributes which functionally

determines the whole set and a candidate key is a super key which is minimal which

means that k is a candidate key. If the two conditions have to satisfy this condition say

there is a super key that it functionally determines all the attributes and the other

condition says minimality that there is no subset alpha of k, such that alpha functionally

determines r if there exists a subset alpha of k, the proper subset alpha of k. So, that

alpha functionally determines r, then k would not be a candidate key. We will have to

check for alpha. So, these two; what we had stated earlier in qualitative terms and now

mathematically established. So, we can say that there are different functional

dependencies. For example, in stepped combined relation if we look at, then we know

that department name functionally determines building functionally.

So, these are functional dependencies that must hold, but certainly we would not expect

department name to functionally determine salary. That would be too much, right. So,

functional dependencies are facts about the real world that we try to understand from the

real world and then, represent in terms of the functional dependency formulation in the

database.

(Refer Slide Time: 26:41)

So, we can use functional dependencies to test relations if they are valid under the set of

functional dependencies. So, there could be multiple functional dependencies in the set

and if a relation we are using small r here just to remind you that a relation means that a

particular instance is legal under a set of functional dependencies. We will say that r

satisfies that and if we have that it holds F will be satisfied by all possible instances of a

relational schema capital R, then we say F holds on R.

So, a relation satisfies a functional set of functional dependencies and a relational

schema for a relational schema, the functional depend set of functional dependencies

holds on that schema which means that for all possible past, present and future instances

relations, the relations will satisfy the functional dependencies. So, we have for example

id. We know id functionally determines name that if the id is distinct, then the name has

to be distinct, but we may find that instance where name functionally determines id. So,

we can say that names functionally determines id is satisfied by a particular instance

where it so happens that there is no two rows where the name is identical, but we cannot,

may not be able to infer that as this dependency holding on the relational scheme as a

whole because tomorrow we can get another entry, so that two rows might match on the

name, but could still be distinct entries not matching on id.

(Refer Slide Time: 28:46)

So, that is how this will have to be looked at in specificity. We say that a functional

dependency is trivial if the left hand side is a superset of the right hand side. So, if I have

a bigger set of attributes on the left hand side id and name, then obviously id and name

will functionally determine id, id and name will functionally determine name, name will

functionally determine name. So, if you just think about because in a functional

dependency the left hand side attributes that tuples have to match on the left hand side

attribute and if they do, then they must match on the right hand side attribute. So, if the

right hand side set of attributes is a subset of the left hand side, then obviously the

functional dependency will be vacuously true and these are called trivial dependencies.

(Refer Slide Time: 29:33)

So, in the next couple of slides, I have shown few examples of functional dependencies

of different tables. Here student id functionally determines semesters which mean that

we are trying to model that a student cannot be at the same time in two semesters, then

student id and lecture together functionally determines who is TA and so on and you can

see for this particular relation student id and lecture, pair also happens to be the

candidate key.

(Refer Slide Time: 30:05)

These are another example. So, these are just go through them, try to convince yourself

that these functional dependencies are very genuinely real world situations that can be

modeled in this way.

(Refer Slide Time: 30:19)

Given a set of functional dependencies, we can actually compute a closure. For example,

if A functionally determines B and B functionally determines C, then we can infer that A

functionally determined because if two peoples match on, A determines b says that they

match on B. Now, if B functionally determines C also holds, then if match on B, they

match on C. So, if the match on A, then necessarily they may have to match on C. So,

this is called the logical implication of a set of functional dependencies and we will see

more of this later, but if we take all functional dependencies of a given set F, that are

logically implied from this set F. We said that is a closure set and we represent that by F

plus.

So, F plus necessarily is a superset of F. So, here in that above example, this is F and this

is F plus.

(Refer Slide Time: 31:00)

So, we will continue more on the theory of functional dependencies, but let us conclude

this module by summarizing that we have identified the features of good relational

designs tradeoff between decomposition and lossless join properties that we need. We are

familiarized with the first normal form and atomic domains and we have introduced the

notion of functional dependencies on which we will build up more and try to get zero on

very concrete strategies for good results.

