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Welcome to module twelve of database management systems, in this module we will talk

about  the  formal  relational  query  languages.  In  the  last  couple  of  modules  we have

discussed about SQL at length introducing it dealing with the intermediate level of SQL

features, and then exposing to some of the advanced features as well. The foundational

mathematical  model  of  SQL the query  languages  are  to  be discussed in  this  present

module.

(Refer Slide Time: 01:04)

So, this is what we had done in the last module.
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In the current 1 we will work to understand the formal query languages.

(Refer Slide Time: 01:19)

Primarily through relational algebra, and then we will also take a look into some of the

calculus  aspects tuple relational  calculus,  and domain relational  calculus  and we will

show by example the equivalence between the algebra and the 2 calculus.
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So, formal relational query languages are of 3 types 1 is known as relational algebra this

is procedural in nature. So, we specify what operations need to be done to achieve the

result  and  the  whole  formulation  is  based  on  set  algebra.  The  second  formal  query

language is tuple relational calculus which is non procedural and is based on predicate

calculus. The third one the domain relational calculus is a minor variant of the people

relational calculus is and is also non procedural and predicate calculus based.

(Refer Slide Time: 02:35)

So, we start with the relational algebra in the relational algebra.
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It was created by Edgar F Codd at IBM in 1970. So, you can see that it is quite an old

formulation it is a procedural language it has six operators we have taken a quick view of

these earlier in this module we will look at them at length. The select project union set

difference Cartesian product and rename, we will also look at few derived operations like

intersection and division which can be expressed in terms of these basic operators. And

each one of these operators can take 1 or 2 relations as input and they produce 1 relation

as a result.
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So, we start with the select operation which you know has a notation sigma subscript p is

a predicate it is called the selection predicate and within parentheses we have a relation r

on which this predicate applies. So, it is defined as a set where you collect all the tuples

all the rows designated by t and you specify that t belongs to the relation. So, it already

exists in that relation and it satisfies the particular selection predicate.

So, any tuple that satisfies this predicate is included in the result any that does not satisfy

is excluded from the result,  p here particularly is a propositional calculus formula or

expression.  Where we have different  terms that are connected by conjunction or and

disjunction or negation or not, and each term by itself could be something like this it is

an attribute operator and an attribute where operators are different comparisons operators

1 of the any six or a term could be an attribute operator a constant.

So, given that we can write any expression, which is a predicate and applying that we

can select the tuples from the relation r which satisfy this predicate. So, here we show an

simple example instructor is a relation department name is an attribute within course

physics is a constant or literal. So, this selection show will select all the tuples where the

attribute department name is equal to physics and all the others will be eliminated for

reference  I  have  also  quoted  here  the  example  that  we  had  shown  at  the  time  of

introducing relational algebra.

So,  you can see that  here we have a more complex propositional  term propositional

formula where there are 2 terms, the a should equal b and d should be greater than 5. So,

in the selection result both of these conditions must be satisfied by all the tuples which

feature here. So, this is the first operation that relational algebra has the select operation.
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Next we move on to the second operation which is a project operation where a relation

can be projected in terms of a number of attributes. So, pi is the notation r again is the

relation and the subscript at A 1, A 2, A k, are key attribute names k has to be at least 1

and these attributes will be retained in the relation.

So, the result is defined as the relation of k columns by erasing all the columns of r

which  are  not  listed  amongst  this  a  2  k.  Naturally, if  you erase  some columns it  is

possible that 2 rows that were distinct in those columns, but are identical in A 1 to A k

feature in the relation since every relation is a set no distinct no 2 copies of the same

people are allowed. So, the duplicate rows will be removed from the result remind you

this is in contrast to what sql does by default where duplicates or multi sets are allowed

by default here we are talking about the formal relational algebra where it is purely set

theoretic.

So,  duplicate  rows  on  projection  will  be  removed  from the  result.  So,  we  have  an

example from the instructor relation we had seen earlier we are projecting id name and

salary. So, we are removing the department name, which also exists in the same relation

and as a reference you can see the example that we had seen earlier while introducing the

relational algebra where projection is done from 3 columns ABC into 2 columns A and

C, and this results in at least results in 2 rows which are identical and therefore, in the

final result 1 of those the duplicate 1 is removed.
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Moving on that the third operation is quite simple it is set theoretic union. So, our union s

where r and s are 2 relations our set of peoples which either belong to r or belongs to s,

or belongs to both, the condition is you can take union if both these relations have the

same  additive  and  the  order  of  the  attributes  must  satisfy  that  every  corresponding

attribute must have compatible domains. So, if we I talked about the second column of r,

and if we talk about the second column of s they must be of the same type and this must

hold for all columns that the union forms that is all columns of r as well as s , otherwise

this operation is not defined.

So, as an example we show that to find all courses taught in fall 2009 semester, this is a

this  is  the query where we do a selection to  find all  tuples which are taught,  which

represent  courses  taught  in  fall  2009  semester,  from  the  section  relation  we  do  a

projection to get the ids of those courses only. And the second row tells you the courses

that are taught in the spring 2010 semester, and we do a union to get courses that are

taught either in fall 2009 semester, or in spring 2010 semester, or both. This is how the

union is performed and this is the earlier example repeated here.



(Refer Slide Time: 10:54)

 set difference is again just simple difference of sets r minus s where a tuple belongs to r

and it does not belong to s. So, you remove all the tuples belonging to s that exist in r to

get  r  minus  s  again  they  must  have  the  compatibility  of  having the  same arity  and

attribute corresponding attribute  domains  must be compatible  ,  this  is  an example  to

show to find all courses taught in fall 2009, but not in spring 2010.

So, as opposed to union in the last slide you do a set difference to get this result. So, this

is how you can use set theoretic operation to get different relational results this is also the

result from the earlier example.
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Set intersection can be supported is supported, but it is not a basic operation because as it

is defined by all tuples which belong to both r and s. It can actually be computed by

applying set difference twice and certainly for set intersection also the same assumption

about arity and compatibility of types hold and this is the earlier example.

(Refer Slide Time: 12:20)

Next is Cartesian product, where we take 2 relations and for the Cartesian product we

make we juxtapose 1 relation with the other. So, t is a relation from is a tuple from r q is

a tuple from s and we put them side by side to get a tq rho in the Cartesian product r



cross s,  which basically  means that  you compute all  possible combinations  of pupils

from r and of s. It is assumed that the attributes of r and s are disjoint that is a schema of

r intersection schema of s is null.

If the attributes are not disjoint then we must use renaming which we will soon see, and

here is an example that we had shown earlier of r and s computing r process, Cartesian

product is a very useful operation particularly for computing join as we have seen in sql

already.

(Refer Slide Time: 13:36)

Rename operation basically allows you to rename some expression attribute into another.

So, the operator is rho and you have an expression to which you give the name x and that

is how the renaming of you can have multiple attributes of x as well.



(Refer Slide Time: 13:58)

Division is  a is  another  operator  in relational  algebra that can be applied between 2

relations, but it is a derived operation. So, it says that if I have, so let me just show you

by, by a little bit of sketch that if I have 2 relations which are which has a set of attributes

z and s which is a set of attribute x, such that actually the set z is a superset of x. So, z

has more attribute the relation r has more attributes.

So, if you take the difference of attributes between z and x and call it y then we are

interested what happens on these remaining set of attributes y..
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So,  this  is  what,  we have  this  is  my  x  set  of  attributes  this  is  where  x  occurs  this

difference is y this whole set is z. Now in this what we want is we want to in the output

we want a relation having only the y attribute such that for every tuple in that relation if I

consider all the tuples of s then their cross product must be a part of r.

So, for every tuple here if there are say 4 tuples here, a tuple here must have all these 4

tuples along with it in the result. If it does not have any 1 or more of them then that tuple

will not feature in the final result.

(Refer Slide Time: 15:58)

So, the result of a division is a relation TY that include tuple t if ruples tr that is the part

of the tuple the tuple that appear in r and on that on the y part the difference part it

matches. So, that you have that tr x is equal to t s where t s actually exist in s.

This must happen for all tuples in s, so division is a very good interesting operator which

is often required for coding different queries. So, it is a derived operation.
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Let us take an example, let us say this is this is the relation r and this is a relation s and I

am trying to compute r divided by s.

So, what I  want is over the attributes of this  is  therefore,  x this  is x this attribute  y

attribute set y. So, all over x all the values that I have, I must have those values in the

relation r, if I do then the attribute the particular tuple matching on the attribute y goes

onto the result. So, alpha goes onto the result because you have both alpha a alpha 1 as

well as alpha 2 in the set r, in the relation r.
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Beta 1 is there and beta 2 is also there, so beta also goes into the relation alpha goes in

because 1 is there 2 is also there, but gamma will not go in because I have gamma 1, but

I do not have a tuple gamma 2 in r if I had gamma 2 in r that will go in the result.

(Refer Slide Time: 18:13)

So, if I can say it again the whole of the relation s must happen over the x attributes of r,

consider these 2 together. If that happens then the attributes on y the tuples would be

chosen and that is how we get the result having alpha and beta.
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Let us look at 1 more example, so this is got r has 5 attributes this has x as 2. So, this is

this is 2 attributes x, these are 3 attributes y and what I have to look for is those tuples in

r where the values over y would be same and I should be able to get the whole table of x

over whole table of the relation s over the x attributes. So, if we look at here this is a 1, b

1, a 1, b 1, here these are identical.

So, this particular tuple will go into the result if I look in here this tuple will go into the

result, but if I consider this tuple beta a gamma which has a 1 over d, but beta a gamma

does not have b 1 it has b 3, so it will not go into the result. So, if you conceptually look

at that is the reason this is called a division. So, you get this here you get this here. So,

this is like the way we divide that this is the whole and wherever it goes in if the tuples

that are identical on the white set of attributes we will collect them into the final result.

(Refer Slide Time: 20:30)

So, this is the diffusion operation which by which we can compute the students who have

taken both a and b courses instructor 1 will be found out from this division operation.
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 so formally speaking a basic expression in relational algebra consists either of a relation

in the database, which is a instance or a constant relation which does not change which is

given. And then we have six operations of union set difference cross product, selection

projection, and renaming that can give us all sorts of different relational algebra formula

and also the derived operations and whatever we have seen of sql can be expressed in

terms of this relational algebra formula.
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Now, relational algebra is not something totally unique the same thing can be done in

terms of other formulations also.

(Refer Slide Time: 21:41)

A second formulation which is also used is known as tuple relational calculus, which is

non-procedural  relational  algebra  was  procedural  because  you are  actually  doing the

explaining what the operations or you are detailing out what the operations are in tuple

relational calculus you are specify what the condition is you are specifying what this

condition is.

So, those tuples which satisfy this condition form the relation, so p is a predicate. So,

whatever t satisfies the predicate are included and if a is an attribute then t A will denote

the value of the tuple on attribute A, A could be a single attribute it could be A set of

attributes also and t is a relation that belongs to r, ps as I said it  is a its a predicate

calculus formula.
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So, it could be a set of attributes or constants this I am just included for your help if in

case you have become rusted with predicate calculus you can refer to the a predicate

calculus as a set of attributes and constant. It has set of comparison operators the six of

them, there are a set of connectives these are all same as the propositional calculus there

is implication which says if x is true then y is true if x is false then the whole thing is true

vacuously..

And what makes it primarily predicate calculus is a fact that it has existential quantifier,

which says that the formula there exists t belongs to r Qt holds if I can find at least 1

tuple t which satisfies Q t.

Similarly, there is a universal quantifier where I will say that for all t belongs to r Q t is

true if for all tuples of r t satisfies Q t. So, this in tuple relational calculus all conditions

all predicates are formula of this kind and with that we can represent any.
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Relational  set  in full  there is  a  word of caution  because it  is  possible  to write  tuple

relational  calculus  expression  that  can  potentially  generate  infinite  relations.  Now,

infinite relations are naturally not representable for example, if I write simply this that r

is  a  relation  and I  write  this  predicate  that  not  of  t  belongs  to  r,  which  is  basically

complement set of r now a complement set of r potentially may be infinite if the domain

is infinite..

So,  such expressions  tuple  relational  expressions  are  not  acceptable  as  a  part  of  the

design. So, whenever we want to do this we would like to guard this by putting some

additional condition and we have to make sure that any expression that we have in tuple

relational calculus is a safe expression, in the sense that it does give me finite number of

tuples in the relation.
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A third formalism that exists that is used is known as domain relational calculus.
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Which is also non procedural and equivalent in power to tuple relational calculus again,

which is very similar to tuple relational calculus the only difference being if you just

recall tuple relational calculus. We are writing collection of tuples t such that Pt that is

the predicate P is satisfied by t here, instead of writing a tuple variable t we write expand

it out in terms of all its components..



So, we write the values of the different components of t over different n attributes and

write it as a n tuple and so here instead of having 1 variable t we have n variable x 1 to

xn and therefore, the predicate is formed of this n variables where x 1 to xn are represent

the different domain values, domain variables and that leads to the reason for the name

domain relational calculus.

(Refer Slide Time: 26:28)

Now, of the 3 formalisms that we have seen we will not go into direct mathematical

proofs, but in the next couple of slides, I just show that they are equivalent in nature.

What means that if I can write an expression in relational algebra then it is possible to

write  an  equivalent  expression  in  tuple  relational  calculus  and  in  domain  relational

calculus and vice versa..

So, if I can write an expression in any 1 of these formalisms then there are equivalent

expressions  in  the  other  2  formalisms  as  well  which  is  probably  very  easy  to  see

between,  tuple  relational  calculus  and  domain  relational  calculus  because  1  is  just

representing the whole tuple as a single variable whereas, the other is representing it in

terms of n domain variables.

So, their equivalence is pretty much very similar the fact that your predicate calculus

formula has to change, but it is not, so obvious for the equivalence between relational

algebra and the calculi.
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So,  we  just  show  a  few  examples  of  the  basic  operations  for  example,  say  select

operation. So, I am just not showing the proof, I am just giving you some example cases

to show through a relation r has 2 attributes A, B this is what you wanted to write in

relational algebra that you want to collect all tuples where B is equal to 17.

Naturally in tuple relational calculus you can easily write the first condition is you are

doing it  on r. So,  t  must belong to r and your condition is  B should be 17. So, this

predicate will represent the same set or the same relation as in tuple calculus in domain

calculus there are 2 components a and b. So, you have to say component taken together

must belong to r and the component b must be equal to 17.

So,  you  can  see  that  it  is  pretty  straightforward  to  see  the  equivalence  between  a

relational algebra expression involving select and the corresponding tuple calculus  or

domain calculus expressions this is through an example,  but you can certainly easily

generalize this as a proof.
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Similarly, for projection if we do a projection on a then all that we are trying to do is we

are trying to create a new relation where only the a attribute exists. So, in the tuple t the a

attribute exists and if I have projected and got this tuple t then in my original relation r

there must be some tuple p such that on the attribute a they match they are same.

So, it is the same thing in relational algebra we said that keep a and erase everything else

here we are saying that if we have been able to get a tuple t which has a value t a then

there must be a tuple p in r, which has the same value over the same attribute. So, this

condition is equivalent representative of the projection, and the same thing can be written

in domain calculus you can go through it carefully and convince yourself.
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You can combine this as in the relational algebra as well as in tuple calculus. So, here

you apply 1 relation 1 operation and then the other 1 selection then projection here you

are combining this is part of projection this is also part of projection, but this condition

has come from the selection and get a total predicate calculus predicate which will give

you the tuple calculus expression for this combined expression of relational algebra ,

domain calculus will certainly happen in a similar manner.
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Union certainly straightforward, so you can do it yourself.
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Set difference is again very straight forward because that is. In fact, in set theoretically

whatever operations we have their relational algebraic definition itself is a tuple calculus

formula you can expand them out and write in the domain calculus as well.
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Intersection plays out in the same way tuples that belong to both r and s.
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Cartesian product is a little bit more involved because all that you are saying here is if I

have a Cartesian product then if that product has a tuple t. Then there must be a tuple p in

the relation r the left relation there must be a tuple q in the in s the right relation. So, that

the final tuple t matches p on the a attributes the b attributes that is attributes of relation r

and the components of t matches the tuple q in the attributes of s.

If all these conditions happen together then naturally this tuple t is a valid tuple for the

Cartesian product. So, you could take examples and work this out and convince yourself

that these are really equivalent.
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We can define a natural joint in a similar way, which I will leave it as an exercise for you

to convince yourself that this relational algebra expression for natural joint indeed has

similar equivalents in tuple and domain calculi.
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Division we just showed as a derived operation, we have not showed how in relational

algebra you can write division using the other operations. I will leave that as an exercise

as well, but here what I show is in tuple calculus how you can write division using the

quantifiers.



Here you can see that here for the first time we do need to use the universal quantifier to

make sure that while I divide that the whole of the table of s must be available against

the part of the tuple part of the y attributes as we said that will be collected in the result.
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So,  to  summarize  we  have  discussed  primarily  the  relational  algebra  with  some

examples,  we have introduced the tuple relational and domain relational calculus and

through a set of examples. We have shown that we have illustrated that the algebra and

the  calculi  are  equivalent  and  I  would  request  you  to  work  out  more  examples  to

understand the equivalence,  or if you are really enthused please try out proving their

equivalence formally as well.


