Database Management System
Prof. Partha Pratim Das
Department of Computer Science & Engineering
Indian Institute of Technology, Kharagpur

Lecture - 11
Advanced SQL

Welcome to module eleven of database management system. This will be on advanced

SQL.
(Refer Slide Time: 00:31)

FPD

Week 02 Recap

+ Module 06: Introduction to SQL/ + Module 09: Intermediate SQL/1
History of SQL Join Expressions
Data Definition Language (DDL) Views
Basic Query Structure (DML) Transactions

+ Module 07: Introduction to SQL/2 + Module 10: Intermediate SQL/2
Additional Basic Operations Integrity Constraints
Set Operations SQL Data Types and Schemas
Null Values Authorization

Aggregale Functions

+ Module 08: Introduction to SQL/3
Nested Subqueries
Modification of the Database

WAYAM: NPTEL-NOC MOOCs Instructor: Prof. P P Das, IT Kharagpur. Jan-Apr, 2018

s

Database System Concepts - &* Edition

B N SN R AN]

Before we start let me quickly recap what we did last week in the five modules. Last
week we totally spent on discussing first the introductory features of SQL how to create
data and how to write basic queries, and we studied about all different kinds of SQL
operations at theoretic operation, handling of null values aggregation, nested queries and
so on. And then we did an intermediate level of SQL query formation in terms of joint
expression, views and integrities different kinds of SQL data types and importantly

authorization.

(Refer Slide Time: 01:24)

FPD

Module Outline

i

* Accessing SQL From a Programming Language
= Functions and Procedural Constructs
= Triggers

SWAYAM: NPTEL-NOC MOOCs Instructor: Prof. P P Das_ T Kharagpur. Jan-Aps, 2018

| —— B

In the context, in this context, we now take up some more of the SQL features which are
somewhat advanced. And we will try to understand how SQL can be used from a
programming language, and familiarize with functions and procedures in SQL. This will
violate some of the basic premises that we started with in saying that SQL is a
declarative language only because as you understand functions procedure as procedural
language features we will see how to handle those, and we will take a look into another

important feature of Krieger’s.

(Refer Slide Time: 02:07)

PPD

- *Accessing SQL From a

Programming Language
*Functions and Procedural
Constructs

*Triggers

ACCESSING SQL FROM A
PROGRAMMING LANGUAGE

SWAYAM: NPTEL-NOC MOOCs Instructor: Prof. P P Das, IIT Kharagpur. Jan-Aps, 2018

ER R SN RN AR R]

Database Sysiem Concepts - 8% Edition

First with accessing SQL so, this is the module outline accessing SQL from a

programming language.
(Refer Slide Time: 02:11)

PPD

¥ert Native Language<-> Query Language

1 A \ yd i \

3 \ /] v \
% / .CProgram . [SQL Query "
2 Functions (1 Table Names
£ | Variables b Attribules | | Datadase J
¥ Nt —A ’ Schema £+
a \ / T\ Tables /
:g 7| Connection \ Query /’

Library AN Processor

Database System Concepts - & Ediion
o

So, this is just kind of an abstract view that you can think of that what we have been
doing so far naturally there is a database which has primarily two things schema and
tables. Of course, there are many other things there are index, there is authorization that

triggers and all that, but there is a database which stores everything.

And so far we have been dealing with only this part of the information that I can write
certain SQL query to define table, using table names, attributes and certain logic and that
goes through certain query processor works on the database to get me either create the
desired effect. Either that is creating table instances or creating index or extracting
certain relation values, defining some views and so on. So, all these have to happen

through an SQL interface. So, this has to happen through an SQL interface.

So, whatever system we are using whether you are using mySQL, Postgres, Oracle,
Cybers SQL server whatever you using that has some interface through which these SQL
queries can be executed, so that is kind of a standalone complete system. But, in general,
we will have lot of more requirements in terms of the application. For example, the
application might require some graphics, SQL does not have support for graphics;
application might require certain numerical algorithms to be executed might require

some geometric computations to be done poly intersection of polygons to be computed

and so on and so forth. It might require some network programming and so on. So, there
is a need to do all these and certainly these are best done in terms of certain native
language that could be C, ¢ plus plus, java, ¢ sharp, visual basic, python any of the native

languages which has support for a variety of different tasks.

(Refer Slide Time: 04:20)

FPD

Native Language <= Query Language

I/\

=Cngram | | -~ | | SQL Query
Functions Fality Table Names

Variables Y -} Attributes | Datadase
N— 1 X Schema

Tables

Das. T Kharagpur. Jan-Ape, 2018

B

—{Connection--— s = Query ;
/| Library Processor—+— , "h
= N | P A !

Y

A

‘PR AEL LS U

Database System Concepts - 6 Edition
sou

So, what is critical is can we make a bridge between these two that is can we take the
advantages of the SQL domain and the advantages of the normal imperative procedural
programming domain together. That is I can do some graphic representation and then
certainly go to the database extract some information and then present it in the graphics
and vice versa. For example, whenever we access say gmail, we get to see them in terms
of an html presentation which is some kind of a graphics rendering, but the all the mail

entry certainly come from some database.

So, somewhere there is a connection by which when I say get my inbox mails and
somewhere the information goes over from this to the SQL query up to the database and
the result is brought back to me. I see that in the html page here, but here there must be
certain mail database, where all these information exists. So, what I am trying to come at
is it is critical that the application programs or you know high level programming normal
programming languages native languages should be able to interface with SQL. And
what we discuss here is two different mechanisms for this interfacing. The first one is

using a connection library and this is what I will specifically show you.

(Refer Slide Time: 05:50)

Accessing SQL From a Programming Language

= API (application-program interface) for a program to interact with a
database server

* Application makes calls to

Connect with-the database server V%

Send.SQL commands to the detabase server "

Fetch tuples of result one-by-one inte'iprngram variables/)
+ Various tools: 3 g
JDBC (Java Database Connectivity) works with Java

ODBC (Open Database Connactivity) works with C, C++, C#,
Visual Basic, and Python

Other API's such as ADO.NET sit on top of ODBC
Embedded SQL

H
]
i
!
H
g
:
H
E
e
H
o
o
H
3
§
g
g
g
1
s
8
I}
3

e 8 PR e AEs SO T

So, for if you are using a connection library then you have a set of APIs application
programming interfaces these are basically functions in that library. So, that with that
application can connect to the database because certainly the database is somewhere else
is a different server. And send an SQL command to the database server so that you can
say that this is what I want. And then a result is computed the result of that computation
the table the can be brought back those tuples can be brought back to the application
program. Mind you when we are here when you are sending the information in terms of
the database server, we are talking SQL command, we are talking about attributes tables

of the SQL space.

Whereas, when I want it in the program I want it in terms of program variables. So, there
has to be certain correspondence made between them. There are a variety of tools
available which allow you to do this JDBC is common very commonly known which is
specific for java. We have an open database connectivity APIs which has different
versions for different languages these are the common languages that it is used with. And
as we will see later on that there is another mechanism for doing the same thing called

the embedded SQL, we will come to that later.

(Refer Slide Time: 07:15)
JDBC
JDBC is a Java AP| for communicating with database systems

supporting SQL

+ JDBC supports a variety of features for querying and updating data,
and for retrieving query results.

JDBC also supports metadata retrieval, such as querying about
relations present in the database and the names and types of
relation atfributes

= Model for communicating with the database:
Open a connection
Create a "statement” object

Execute queries using the Statement abject fo send queries and
feteh results

=
H
§
i
i
H
§
5
i
o
.
i
§
£
£
2

Exception mechanism to handle errors

e PR E AT SO B

So, JDBC is a java API, I will not go into details here if you know java you should be
able to quickly look up. So, it is a it communicates with the database by opening a
connection creating what java calls a statement object and executes the query using the
statement objects and that is used to send the query as well as to get back the result. So,
java is object oriented as you know so statement object is used as a as an encapsulation
which travels between the java program and the SQL query processor. And since the
query gets back the result since the query gets back there is that kind of there is

exception mechanism to handle errors which is common for java.

(Refer Slide Time: 08:00)

7+ ODBC

+ Open DataBase Connectivity (ODBC) standard

standard for application program to communicate with a
database server

application program interface (API) to
open a connection with a database,
+ send queries and updates,
get back results
+ Applications such as GUI, spreadsheets, etc. can use ODBC

DC MOOCs Instructor: Prof. P P Das_ IIT Kharagpur. Jan-Aps, 2018

‘PR ANl LD D

Database System Concepts - 6% Edition
T

What you the see in contrast does a similar thing, but since it is to cater for different
languages it has got a softer model it has got less powerful model. It is a standard
application program to communicate with database server. So, again it has to open a
connection to the database, send queries and updates and get back results. So, these are
these are the three basic things, these three other three basic things that certainly needs to
be done if I want to easily work across the application programming domain and the
database programming domain. So, applications such as GUI, spreadsheet, etcetera can

use ODBC.

(Refer Slide Time: 08:39)

FPD

ODBC - Python Example

import pyodbc
A ;]rhle code uses a co t('DSN=8QLS;UID=test0l; PND=test0l")
ala source 50 0
named “SQLS" curso create table rvtest (coll int, col2 float,

from the odbe.ini g

file to connect and \"
issue a query.

* |tcreates atable, *hile T
inserts data using
literal and
parameterized
statements and
fetches the data (‘.I:FSC.'.P.I\E'.H.

curs ecl

rvtest values(l, 10.0,

as. NT Kharagpur. Jan-Aps, 2018

or: Prof. PP D

print (row)

felate from rvtest") &/ -
e("insert into rvtest values (7, 2, 1", 2,%
» |

t * from rvtest®)\E

print (row)
Source: hitps /idzone comiarticles tutorial-connecting-to-odoc-data-sources-with-pyth

WAYAM: NPTEL-NOC MOOCS Instrisct

s

Database System Concepts - 6 Edition 11.40
5w

So, yeah I am just quickly showing you an example we will talk about application
programming mode in a in a later module. So, this is a python example. So, python for
this the ODBC for python is known as py by ODBC library. So, you need to import that.
And then using that you can connect. So, if you have to connect you have to say which
database who is the user, what is the password, because authentication needs to happen.
So, SQLS is a database here and with this user with this password is connecting you that
is successful you get a conn object and on the conn object you have something what is
known as a cursor. Cursor is nothing but if you think about it is it is kind of a pointer. So,

it can be used to point to either a row or a whole query or a table.

So, you get back a cursor object. So, then this is if you look into this part, this part is
nothing but a pure SQL query. So, you take that as a string and pass it on to the execute

method of cursor. So, what it does is, so this is this has done the first task which is
connecting to the database. Now, you are basically putting the query to the database in
terms of doing saying that this execute. Similarly, so if that will get executed, so the table
is created naturally there is no result to get if you have created a table. Now, you do an
insert. So, again this particular record, you can see that within this double quote, this

whole insert syntax you take that as a string and just give it to execute as a parameter.

In the third, that you do is do a select. So, you have done this we have inserted a record,
created a table inserted a record in that and then now you are doing a select. So, certainly
we expect one record to come back. So, these are the SQL executions and then your get
back result. So, cursor has another method which is known as fetch one. So, what it will
do that if your result table has multiple entries, then the cursor will if will be will start

with the first row and fetch one will bring the whole of this first row as a row vector.

So, it will bring in as all the components as one as a python string. And then you check
whether it is empty or not, if it is empty then the I mean there is nothing to bring back, so
you are done. So, you break otherwise you simply print the row, so you are printing
there. And then you go back again this is while true. So, what happens is the cursor will
advance to the next row and get you the next row. Again you do the same thing go back
it will come back to the same, but once you get an empty result, you know that there is

nothing more to proceed and you break.

So, this is what is illustrated then there are some more this particular record is deleted,
then again another record is inserted. And another select is done. So, this is how a native
program here in this case python can interact with the database and do any of the SQL
tasks that we were doing earlier with SQL interface, now we can be done from the
python, so that is a basic ODBC mechanism. I particularly chose python to just give you
a different flavour, you can we will have assignments on doing it for C and using jdbc on

java as well.

(Refer Slide Time: 12:19)

FPD

Native Language <= Query Language

y
V.

[C Program \
/ Functions

Variables”™ - \ 3 f)
SQL Query W
Table Narnes Datadase

Altrib | Schema
3{'2) Tables

Query
Processor

e “rP R aaddo 0D

Now, I am come I will come back to the same interaction issue, but this time you can see
that I am using a different diagram. The database is the same; this part is the same; the
query processing is same, but instead of having a connection library, now I have put the
SQL query itself as a part of the native program, the C program. So, this is what is called
embedding.

So, you say I embed I put the SQL as a part of C, but naturally SQL is not C. So, we need
to put certain additional syntax in C, so that I can directly write SQL as a part of the C
program. I am talking about C, again just as an example if this is true for other several

other languages which can be used as used for embedding SQL within them.

(Refer Slide Time: 13:09)

Embedded SQL

+ The SQL standard defines embeddings of SQL in a variety of
programming languages such as C, C++, Java, Fortran, and PL/1

+ Alanguage to which SQL queries are embedded is referred to as a
host language, and the SQL structures permitted in the host
language comprise embedded SQL

+ The basic form of these languages follows that of the System R
embedding of SQL into PL/1

+ EXEC SQL statement is used to identify embedded SQL request to
the preprocessor

EXEC SQL <embedded SQL statement >;
Note: this varies by language:

In some languages, like COBOL, the semicolon is replaced with
END-EXEC

In Java embeddinguses #SQL{....};

i
:
i
:
h
&
2
§
0
3

B BN R A A e]

Database System Concepts - 6% Edilion
uire

So, this is called the embedded SQL, it works for C, C plus plus, java fortran etcetera.
And the language native language in which your embedding is called the is known as a
host language. And basic form of these languages allow that the are come from the
System R. So, what is important is this particular statement EXEC-SQL. This EXEC-
SQL written inside the body of a C program will tell the C compiler that this part is not
C; this part is actually embedded SQL.

And it will be treated differently; it will be compiled by the SQL compiler within the C
compiler, so that is the basic structure, so EXEC-SQL. And then you put the pure SQL
statement the embedded SQL statement. So, let us go forward and see some of this, there

are different syntax for different native language embedding.

(Refer Slide Time: 14:11)

o
R
i
i
i
g
§
2
g
=
Fi
H
a
o
o
3
[+
H
£
i
H
g
i
8
g
)

Embedded SQL (Cont.)

+ Before executing any SQL statements, the program must first connect
to the database. This is done using:

EXEC-SQL connect to server user user-name using password;

Here, server identifies the server to which a connection is to be
established

+ Variables of the host language can be used within embedded SQL
statements. They are preceded by a colon (;) to distinguish from
SQL variables (e.g., :credit_amount)

Variables used as above must be declared within DECLARE section,
as illustrated below. The syntax for declaring the variables, however,
follows the usual host language syntax

EXEC-SQL BEGIN DECLARE SECTION |
int credit-amount ; /
EXEC-SQL END DECLARE SECTION; I-)_

‘PP AEL LS 0N

Database System Concepts - &% Edition

So, to be able to connect you say EXEC-SQL and connect to server username using
password. So, we saw similar things in terms of ODBC based connection these three
information needs to be specified which database server, who is the user, what is the
password. So, here you say that in this form. And this particular statement you can write
as a part of the C program. Now, naturally the question here is in the in the earlier case
when we are using the connection library, your results came back through the cursor
which you then could deal because the cursors are necessarily objects in your native

language. So, in python the cursor was a particular object in the pyodbc library.

But now you have embedded the SQL in terms of your ¢ program. So, naturally the
results or whatever you are doing in C which needs to have a communication with the
SQL statement need to be differentiated from the SQL names themselves. So, any native
language variable that needs to be treated in SQL will be marked with a colon preceding
it. So, credit amount of this a colon credit amount, so it becomes a SQL variable
provided credit amount itself is a C variable, so that is the basic you know connection

mechanics. There are far more details in that, but I am just giving you the glimpse.

Now, any region where you write the SQL, you can write it as exact SQL begin declare
section, and END declare section this is where you specify what are the different what
are the different C variables C declarations that need to be used for this SQL definition. I

will just show you an example soon so that.

(Refer Slide Time: 16:15)

H
§
i
H
H
§
5
i
o
o
H
i
i
§
§

Embedded SQL (Cont.)

* Towrite an embedded SQL query, we use the
declare c cursor for <SQL query>
statement. The variable ¢ is used to identify the query
= Example:

From within a host language, find the 1D and name of
students who have completed more than the number of
credits stored in variable credit_amount in the host langue
Specify the query in SQL as follows: W
EXEC saQL "‘.‘
, declare ¢ cursor for J
\ “select /D, name o |
) from student N\
|, where tot_cred >('cred1!_amoum)
END_EXEC N 4

R R R R

Database System Concepts - 6% Edition
worw

Similar to the ODBC style, you have a you will declare a cursor. So, this is to write the
embedded SQL, you use declared ¢ cursor for such and such SQL queries, so then that C,
variable C will become your handle in the in the C language to be able to answer handle
the query results. So, here is an example. So, you can see that credit amount is a variable

in the host language.

So, you are using it in SQL with colon credit amount which says that it is this host
language variable. So, that you can set a particular credit amount and go with that. And
this is the query, and you have set a cursor on that which you can make use of in the

exact SQL.

(Refer Slide Time: 17:14)

]
-4
|
:
:
s
o
%
£
§
3

Embedded SQL (Cont.)

= Example:

From within a host language, find the ID and name of
students who have completed more than the number of
credits stored in variable credit_amount in the host langue

Specify the query in SQL as follows:
EXEC SQL
declare ¢ cursor for
select ID, name
from student
where tot_cred > :credit_amount
END_EXEC

The variable ¢ (used in the cursor declaration) is used to
identify the query

L e B e

Database System Concepts - 6% Edition

So, let us this is the example continued.

(Refer Slide Time: 17:18)

Embedded SQL (Cont.)

* The open statement for our example is as follows:
EXEC SQL openc;

This statement causes the database system to execute the query
and to save the results within a temporary relation. The query uses
the value of the host-language variable credit-amount at the time the
open statement is executed.

The fetch statement causes the values of one tuple in the query
result to be placed on host language variables.

EXEC SQL fetch c into :si, :sn END_EXEC

MOOCs Instructor: Prof. P P Das, T Kharagpur. Jan-Apr, 2018

Repeated calls to fetch get successive tuples in the query result

FPREPQEL SO EY

Database System Concepts - 6% Edition

Let us look at other features. You can once you have set a query you can actually execute
that by the open statement. So, you say EXEC-SQL open c, the cursor. So, that will
execute the query that you have associated with that cursor. And then once that has been

done, then you can fetch the results into that cursor one by one; one tuple at a time.

(Refer Slide Time: 17:47)

Embedded SQL (Cont.)

« Avariable called SQLSTATE in the SQL communication area
(SQLCA) gets set to ‘02000 to indicate no more data is available

The close statement causes the database system to delete the
temporary relation that holds the result of the query.

EXEC SQL close c;

Note: above details vary with language. For example, the Java
embedding defines Java iterators to step through result tuples.

DC MOOCs Instructor: Prof. P P Das_ T Kharagpur. Jan-Aps, 2018

Database System Concepts - 6% Edition

R R A e R

Once you are done with all that then you simply close.

(Refer Slide Time: 17:52)

PPD

— Embedded SQL - C Example

= The program prompts the user for an order number, retrieves the
customer number, salesperson, and status of the order, and displays
the retrieved information on the screen

« The statement used to return the data is a singleton SELECT
statement; that is, it returns only a single row of data. Therefore, the
code example does not declare or use cursors

Source: hitps:/idocs mictosoh comien-us/sqiodocireferencelembedded-sq-axample

SWAYAM: NPTEL-NOC MOOCs Instructor: Prof. P P Das_ T Kharagpur. Jan-Apr, 2018

i o e e LR R L R

So, let us look at a example. This is a program which will which prompts the user for an
order number, and retrieves the customer number I mean given an order number it will
retrieve the customer number, salesperson, status of the order and it will display that as
the retrieved information on the screen. So, here is a C program. It starts on here with the
main. So, you can see that this says that EXEC-SQL include, SQLCA, SQLCA is the

communication area. So, there is a there is a exchanges going on between the ¢ program

and SQL program. So, the area that is used by both for this transaction is known as

SQLCA.

Then you have the declare section. So, you are saying these are SQL exec declaration.
So, these are, but within that what you have are pure c¢ declaration, but all the
declarations of c that are put within this can be used in SQL query with a colon at the
beginning. So, that the value can be exchanged to the SQLCA then in the next you are

specifying what will happen if you have an error.

So, you say SQL look at this EXEC-SQL whenever SQL error go to query error. So, it
will go to this level. If it is not found that is no result is there it will go to this. So, you by
making sure that if there is some error that happens in the SQL part, what will happen in
your C program. And then subsequently you have sample C program which reads the

order number, and after having read that you are doing this.

So, what does it do, EXEC-SQL is to say that this is embedded; this is the select query
starts, the fields, the relation, the condition. And then there are three attributes. So, you
are setting an association with three variables in the C program. So, if [want to the result
of this select will be a table of three attributes three columns, so we are giving a name to

each one of these three attributes in terms of our C program.

So, there is a cust id. So, I say the cust id attribute in SQL is colon cust id here which is
basically cust id variable in the C program. Let me clean up again. So, this is cust id; this
is in SQL; this is my C program, and this is my C program variable in SQL which
corresponds to this its similarly order based. Similarly, this is in SQL attribute this is a

array of character here. And this is a correspondence; this is a correspondence.

So, now, you can easily see that once this has been done I will be able to get all these
values here, normally the program would be longer the you will have to iterate over the
cursor as you did in case in the ODBC case. But in this case since we are using one order
number we know that there will be only one record. So, we have not shown the iteration

on the cursor.

So, once you have got this you are you are using those values to print out the result. And
in case this query has got into some problem because of SQL, then it will automatically

jump to SQL query this particular level. If it has got a bad number which means that no

such record was found, it was a null table then it will immediately take you to this. So,

this is how the embedded SQL worked.

So, there are these are two different styles the ODBC style and the embedding style are
two different styles. If you have if you depending on the preference you use that earlier
days people used to use more of embedding, I believe that now the preference is more for
the ODBC kind of connection oriented system ODBC jdbc kind of because they are

certainly more programmer friendly this.

(Refer Slide Time: 22:05)

Updates Through Embedded SQL

Embedded SQL expressions for database modification (update, insert,
and delete)

Can update tuples fetched by cursor by declaring that the cursor is for
update

EXEC sQL

declare ¢ cursor for

select *

from instructor

where dept_name = ‘Music'
for update

+ We then iterate through the tuples by performing fetch operations on
the cursor (as illustrated earlier), and after fetching each tuple we
execute the following code:

update instructor
set salary = salary + 1000
where current of ¢

WAYAM: NPTEL-NOC MOOCS Instructor: Prof. P P Das, IT Kharagpur. Jan-Aps, 2018

s

ER RN R AN RS)

Database System Concepts - 6% Edition

usn oy

You can do updates through embedded SQL as well. So, I will not go through the details
you can just go through this and understand that.

(Refer Slide Time: 22:15)

PPD

F *Accessing SQL From a
Programming Language
*Functions and Procedural
Constructs

*Triggers

an-Aps, 2018

s. HT Kharagpur. J.

FUNCTIONS AND PROCEDURAL
CONSTRUCTS

SWAYAM: NPTEL-NOC MOOCs Instructor: Prof. P P Da

‘PP L AL A VD

Database System Concepts - 6% Edition
Bord

Let me move onto the next advanced part of SQL which is function and procedural

construct.

(Refer Slide Time: 22:27)

FPD

A Native Language <= Query Language
~ - , ;

- \ 87} Ao i
- \ | M
8 \W | CProgram \ SQL Query
1 A ({‘?}\ P Fur_lclions ' Y Tables A A o
g % Variables |N—TF v /:mtﬁ\ atadase
i \:/ | Procedure |
H \ A
g S /I ap
! [] N]
|
6 J
o
o
3 C Program
u Functions, Variables
g SQLQuery |
% Jroi “"\:_ | Datadase
g Function Schema
$ Procedure | Tables
g
3
g
; QP
:
H
H

Database System Concepts - 8 Ediion ' L o

Now mind you again this is these are the two models that we have I have already shown
you. The two models in which the application program the native language program and
the query language can interact the ODBC mechanism and the embedded mechanism.
But what we are now empowering is so far our basic premise was that this site is a

procedural I discussed this at the very beginning. And this side is declarative. So, in SQL

you do not say that how you find out a result, you say what you want as a result, these
are more like predicates. And in C program, you cannot specify what you want as a result

you would rather say that do step one, step two, step three and you will get this result.

So, C program is all full of functions again I am talking about C as a placeholder it is
true for most of the programming languages we use otherwise. So, there are procedural
languages. So, procedures in C are functions; whereas, in SQL you had select from

where kind of conditional clause.

Now, what we are saying that SQL also in later version have allowed certain functions
and procedures, which can be part of SQL. It also has allowed certain imperative
constructs like case like loop like while, repeat those kind of to make certain kind of
procedural programming easier in SQL. And naturally these again can be used in
conjunction with the connection oriented applications with the native or embedded
oriented mechanisms. So, we will just take a quick look into some of these function and

procedural features.

(Refer Slide Time: 24:15)

Functions and Procedures

+ SQL:1999 supports functions and procedures

Functions/pracedures can be written in SQL itself, or in an external
programming language (e.g., C, Java)

Functions written in an external languages are particularly useful
with specialized data types such as images and geometric objects.

Example: functions to check if polygons overlap, or to compare
images for similarity

Some database systems support table-valued functions, which
can return a relation as a result

+ 8QL:1999 also supports a rich set of imperative constructs, including
Loops, if-then-else, assignment

-
&
i
:
H
i
i
£
i
P
v
H
:
§
£
5
H

+ Many databases have proprietary procedural extensions to SQL that
iffer from SQL:1999

Database System Concepts - 6% Edition

B N R R A R]

So, this started coming in from SQL 1999. And you can have functions and procedure
written in SQL itself and function and procedures written external language or the host
language also. So, both of them are available. What is interesting is some database

systems support functions which are table valued. Functions, we always know functions

written objects only, but in SQL you can have functions which have table valued which

written new functions. So, and certain imperative constructs have come in.

(Refer Slide Time: 24:56)

SQL Functions

« Define a function that, given the name of a department, returns the
count of the number of instructors in that department.

create function dept_count (dept_name varchar(20))
~refums infeger —— - y f‘(\
/" “begin \
declare d_count integer;
\ select count (*) into d_count

from instructor

7 \

£

Ve where instructor.dept_name = dept_name
v (return d_count>,
| end /

' 'fhe funetion dept_count can be used to find the department name_s‘.
and budget of all departments with more that 12 instructors.

2
R
|4
i
H
¥
d
£
]
:
4
i
L
g
£
1
g
§

select dept_name, budget

from department (

where dept_count (dept_name)>12 |
\

\

R RS R N R v\

Database System Concepts - 8 Ediion

So, there are several databases have their proprietary constructs and all that also. So, at
this level of the course since we are not focusing particularly on any specific database
systems, we will not talk about those. We can do enough in terms of the standard SQL
itself. So, this is how you define a function which looks very similar to the SQL
definition, create function, give it a name certainly here are the parameters. And here is a
return type. So, if you are familiar with C, C plus plus, Java you I mean it is just that the

syntax is different, but the elements are same.

There is a begin end in the scope. And this is the pure SQL that you are writing here. So,
this is a function which is not a function in C, this is a function in SQL. So, this you can
write this function in SQL. And once you have written that function then you can
actually use that. So, if you look at the function is department name, then separately I am
writing a query, [am using this department name as function. So, whenever I whenever
this query will get executed, this function will be called, and the corresponding values

will get returned. So, this is the basic mechanism ok.

(Refer Slide Time: 26:16)

SQL functions (Cont.)

+ Compound statement: begin ... end

May contain multiple SQL statements between begin and
end.
+ returns - indicates the variable-type that is returned (e.g.,
integer)
return - specifies the values that are to be returned as result
of invoking the function
+ SQL function are in fact parameterized views that generalize
the regular notion of views by allowing parameters

H
§
i
i
:
-
.
i
{
;
3

‘PP L AL AS L ED

Database Syslem Concepls - 6% Edition

So, so there are SQL functions have several details which you can go through it has

returned naturally.

(Refer Slide Time: 26:23)

Table Functions

* SQL:2003 added functions that return a relation as a result
= Example: Return all instructors in a given department
create function instructor_of (dept_name char(20))
returns table (
ID varchar(5),
name varchar(20),

dept_name varchar(20),
salary numeric(8,2))
return table
(select ID, name, dept_name, salary
from instructor
where instructor.dept_name = instructor_of.dept_name)

= Usage

PC MOOCs Instructor: Prof. P P Das, T Kharagpur. Jan-Apr, 2018

select*
from table (instructor_of (Music'))

SR R RS R AN BN R

Database System Concepts - 6% Edition

And you can have table functions where it can return table. So, the syntax is given again
its clear to see what will happen if you return a table which is computed from the select

from where query that you have within the function.

(Refer Slide Time: 26:37)

! SQL Procedures

+ The dept_count function could instead be written as procedure:
create procedure dept_count_proc (

in dept_name varchar(20),
out d_count integer)
begin
select count(*) into d_count
from instructor
where instructor.dept_name = dept_count_proc.dept_name

end

Procedures can be invoked either from an SQL procedure or from
embedded SQL, using the call statement

declare d_count integer;
call dept_count_proc(Physics', d_count);

Procedures and functions can be invoked also from dynamic SQL

+ 8QL:1999 allows more than one function/procedure of the same name
(called name overloading), as long as the number of :

arguments differ, or at least the types of the argurpaRlERiEa -
g i S e

WAYAM: NPTEL-NOC MOOCS Instructor: Prof. P P Das, HT Kharagpur. Jan-Aps, 2018

s

Database System Concepts - 6% Edition 128

I can have SQL procedures which just performs some action, but does not have a have a
return value so to say. And you can use them they can declare and call those procedures
explicitly. Procedures can be functions and procedures can be overloaded as well if you

are on SQL 99.

(Refer Slide Time: 27:08)

;’-_ Language Constructs for Procedures & Functions

+ SQL supports constructs that gives it almost all the power of a general-
purpose programming language.

Warning: most database systems implement their own variant of the
standard syntax below.

+ Compound statement: begin ... end,
May contain multiple SQL statements between begin and end.
Local variables can be declared within a compound statements

+ While and repeat statements:

while boolean expression do
sequence of statements ;
end while

repeat

sequence of statements ;
until boolean expression
end repeat

SWAYAM: NPTEL-NOC MOOCS Instructor: Prof. P P Das. T Kharagpur. Jan-Aps, 2018

“EP R Al e ED
Database System Concepts - 6% Edition :
Now, there are several language constructs as [mentioned SQL does allow while repeat.
So, I am I am just covering them in terms of completeness it is not that these are

frequently used features or I recommend that you do lot of them right here. If you need

to do procedural thing its always better to do them outside, but in some cases it may be

easier to code a query if you can write a while, repeat kind of loop.

(Refer Slide Time: 27:37)

Language Constructs (Cont.)

+ For loop
Permits iteration over all results of a query

+ Example: Find the budget of all departments

declare n integer default 0;
forr as
select budget from department
do
setn = n +r.budget
end for

L
§
§
i
H
g
H
£
i
a
:
B
£
i
i
E
H

‘EP L 4EL LS BN

Database System Concepts - 6° Ediion

You can write a for loop which iterates over the records of a table which is certainly very
convenient. So, if you want to do something over the records of a table compute

something that the for loop will become easier.

(Refer Slide Time: 27:50)

Language Constructs (Cont.)

+ Conditional statements (if-then-else)
5QL:1999 also supports a case statement similar to C case statement

+ Example procedure: registers student after ensuring classroom capacity
is not exceeded

Returns 0 on success and -1 if capacity is exceeded
See book (page 177) for details
+ Signaling of exception conditions, and declaring handlers for exceptions

declare out_of classroom_seats condition
declare exit handler for out_of classroom_seats
begin

.. signal out_of classroom_seats
end

DC MOOCs Instructor: Prof. P P Das_ T Kharagpur. Jan-Apr, 2018

The handler here is exit - causes enclosing begin..end to be exited
Other actions possible on exception

Database System Concepts - 6% Edftion

You have a conditional statement case actually we have seen the case already. So, which

is very easy in terms of coding many of the features so, here are some of them then you

have exceptions. So, I am not going through these, these in depth, but this is just to
making you aware that while SQL continues to be predominantly a declarative language,
it does have quite a bit of procedural support which in an appropriate time can be used if
required. So, you can look up the manual for that. And there are a whole lot of things you

can do with the external language routines.

(Refer Slide Time: 28:30)

yai External Language Routines*

+ SQL:1999 permits the use of functions and procedures written in other
languages such as C or C++

+ Declaring external language procedures and functions

as, NT Kharagpur. Jan-Apr, 2018

create procedure dept_count_proc(in dept_name varchar(20),
out count integer)

language C

external name ' /us/avi/bin/dept_count_proc’

or: Prof. P P D

create function dept_count(dept_name varchar(20))
returns integer

language C

external name '/usr/avilbin/dept_count’

NPTEL-NOC MOOCS Instruct

Swavam:

e s “EPR P AHI SO ED

That is can write a function in C and actually call it from SQL, this is just doing the other
way round. Earlier in terms of embedding or in terms of ODBC, a C function was
executing a query. Now, you are doing the reverse you are saying that I can write a SQL
query which uses a C function that already exist. So, there are external ways of binding, I
will not go through these slides in depth, because again the you will have to come a

certain way before you can actually start using such features.

But get to know that there could be as from SQL you can use any external language
library; and if some library is good for certain computation which is needed for your
query which is a non database kind of computation then you can make use of this

external language routines.

(Refer Slide Time: 29:23)

- External Language Routines (Contd.)*

é. + SQL:1999 allows the definition of procedures in an imperative programming
% language, (Java, C#, C or C++) which can be invoked from SQL queries.

0 + Functions defined in this fashion can be more efficient than functions defined
§ in SQL, and computations that cannot be carried out in SQL can be

executed by these functions.
+ Declaring external language procedures and functions

create procedure dept_count_proc(in dept_name varchar(20),
out count integer)

language C

external name ' /usr/avi/bin/dept_count_proc'

create function dept_count(dept_name varchar(20))
returns integer

language C

external name ‘/usr/avilbin/dept_count'

] £ SwAYAM: NPTEL-NOC MOOCs Instructor: Prof. P P Das, T Khara,

L - A

tabase System Concepts - 6% Edition

So, I have put together all the basic features that external language routines will need.

(Refer Slide Time: 29:30)

External Language Routines (Cont.)*

+ Benefits of external language functions/procedures:
more efficient for many operations, and more expressive power
* Drawbacks

Code to implement function may need to be loaded into database
system and executed in the database system's address space.

« risk of accidental corruption of database structures
security risk, allowing users access to unauthorized data

There are alternatives, which give good security at the cost of
potentially worse performance

Direct execution in the database system'’s space is used when
efficiency is more important than security

]
&
z
]
:
z
i
s
i
H

B e A)

Database System Concepts - 6% Edftion

But again [would tell you that there are benefits, but there are lot of drawbacks in using
them. And I would not recommend that you frequently use these features. You should
primarily restrict to SQL programming, and then anything that you need to do in the

native, you should go to choose your language and do that.

(Refer Slide Time: 29:48)

Security with External Language Routines*

+ To deal with security problems, we can do on of the following:
Use sandbox techniques

+ That is, use a safe language like Java, which cannot be used
to access/damage other parts of the database code.

Run external language functions/procedures in a separate
pracess, with no access to the database process' memory

Parameters and results communicated via inter-process
communication

+ Both have performance overheads

+ Many database systems support both above approaches as well as
direct executing in database system address space.

L
§
i
!
i
g
g
g
i
o
s
i
¢
i
-
3

‘PRI L AHL L WD

Database System Concepls - 6% Edition

There are security issues also that you will need to understand here.

(Refer Slide Time: 29:58)

*Accessing SQL From a
Programming Language
*Functions and Procedural
Canstructs

*Triggers

FPRPQEL SO EY

ase System Concepts - 6 Edition

Finally, before we close I will just mention a another feature called triggers, triggers are

very important.

(Refer Slide Time: 30:04)

Triggers

= Atrigger is a statement that is executed automatically by the
system as a side effect of a modification fo the database

» Todesign a trigger mechanism, we must:

Specify the conditions under which the trigger is to be

executed.

Specify the actions to be taken when the trigger executes.

» Triggers introduced to SQL standard in SQL:1999, but

supported even earlier using non-standard syntax by most
databases.

Syntax illustrated here may not work exactly on your

database system; check the system manuals

H
i
i
H
H
§
5
i
o
o
2
o
£
£
&
g
e
2

‘PP L QUL O LW

A trigger is a statement that is executed automatically when something happens in the
database. So, you want that well things are happening. And well I want to know if a
particular value has exceeded a certain level or if something has become null or some
violatory things are happening and so on. So, how do you know that because a database
is being accessed by hundreds and thousands of people and with hundreds of tables and

millions of records.

So, triggers are a mechanism by which you can set that under this condition, I want a
trigger, I want something specifically to happen. So, again they were introduced in 99,
but earlier also triggers were there, but in 99 standard they became formal earlier they
were somewhat you know differently structured. So, you might find that the system that
you are using for practice the trigger in that may have a different format and semantics

then the what we are discussing here.

(Refer Slide Time: 31:12)

«
B
L]
g
i
i
H
2
&
I
Fi
i
a
o
=
3
[
H
£
H
H
g
w
8
g
)

Triggering Events and Actions in SQL

= Triggering event can be insert, delete or update

« Triggers on update can be restricted to specific attributes
For example, after update of takes on grade

*« Values of attributes before and after an update can be referenced
referencing old row as : for deletes and updates
referencing new row as : for inserts and updates

« Triggers can be activated before an event, which can serve as
extra constraints. For example, convert blank grades to null.

(create trigger setnull_trigger before update of takes
referencing newrowas nfow)
o for each row N
_~" when (nrowgrade %)|
begin atomic W
set nrow.grade = null”
end; =

PP s auste L UD

Database System Concepts - 8% Edilion
wore

So, the most common triggering events are insert, delete, update. So, if something some
update is happening, so I can say that after this update, I want such and such things to
happen. Or I can during the update I can one that well I am doing an update. So, there is
an old value which is typically referred to as old row, the row that is getting updated.
And there is a new row the new set of values that are getting created. So, I might want

between the old row and the new row that certain things happen.

So, I can say that well just look into this. So, again the syntax is all similar. Create
trigger, trigger there is a name of the trigger and this is the condition. Before update of
takes, takes is a relation referencing new row as row n row. So, this is the new value that
we set. Now, what are you saying, saying that for each row what you do when n grid is
blank n row dot grade is blank that is if this is if you are updating and you have got a got

you are going to update, a grade value which is blank then you simply set it to null.

So, it is possible that the grade that has come in and grades are characters and what has
come in from the input and is going to get updated is a show a certain grade to be now
because it may not have been decided. Now, you do not want those blank values to be
present. You want because blank cannot be checked, we have we have checkers for null

and so on.

So, you want to set that to null. So, trigger can make this thing happened because
otherwise how will you know what value is actually getting changed. So, there could be

several ways trigger can be used.

(Refer Slide Time: 33:23)

Trigger to Maintain credits_earned value

create trigger credits_eamed after update of fakes on (grade) -
referencing new row as mow|
referencing old row as orow |
for each row - 7
when nrow.grade <>_',_F\‘{ and nrow.grade is not null

and (orow.grade 3 'F)or orow.grade is null)
begin atomic 7

update student |

set fot_cred= tot_cred + i
[(select credits (|

from course |

Il where caurse.course_id= nrow.course_id) ||
¥ where student.id = nrow.ic;
end;

OC MOOCs Instructor: Prof. P P Das, IIT Kharagpur. Jan-Aps, 2018

ER N RE T AN B V]

Database System Concepts - 8% Ediion
T

For example, this is showing one that as you change the grades then certainly based on
the grades credit earned value is computed. So, as a greatest change if it is now once
grades have been entered say for 200 students. Now, after reviews grades for three of
them are getting changed. So, how do you know that for those students, the change of the

grade may impact the computation of the on credits.

So, you would like to update that on credits or it may or may not be required. So, the
trigger will tell you that after update. So, whenever the update happens you take the old
and the new value n row and o row, and then you are putting some conditions that if that
new row is grade is f, and is not null; old row is grade or it is not null, then you try to do

this.

So, if it was failure, and if it continues to be failure, new grade is not f; if it is f then you
do not have to do anything; if it is null it do not have to do anything. But if it is if it was f
or it was null, and now it has become a different grade then certainly the computation to
update the credits earned is required. So, and the trigger gives you the right point when
you can do this because otherwise you will not know in terms of millions of updates

happening when this particular thing is going on.

(Refer Slide Time: 35:08)

Statement Level Triggers

+ Instead of executing a separate action for each affected row, a
single action can be executed for all rows affected by a transaction
Use foreach statement instead of for each row
Use referencing old table or referencing new table to

refer to temporary tables (called transition tables) containing
the affected rows

Can be more efficient when dealing with SQL statements that
update a large number of rows

g
g
i
i
:
-
.
i
;
;
2

Database System Concepts - 6% Edition

R R R)

Triggers can be on statements as well you can decide leave for your reading.

(Refer Slide Time: 35:12)

=
H
i
:
H
g
£
5
8
13
;
H
i
:
:
£
2

When Not To Use Triggers

= Triggers were used earlier for tasks such as

Maintaining summary data (e.g., total salary of each
department)

Replicating databases by recording changes to special
relations (called change or delta relations) and having a
separate process that applies the changes over to a replica

+ There are better ways of doing these now:

Databases today provide built in materialized view facilities
to maintain summary data

Databases provide built-in support for replication

+ Encapsulation faciliies can be used instead of triggers in many
cases

Define methods to update fields

Carry out actions as part of the update methods instead of
through a trigger

Database System Concepts - 6% Edition

But you have to be careful that triggers sounds very interesting and what happens
particularly with the early stage of programming people get overboard with triggers and
start using them severely, but triggers do have a lot of overhead. So, you should not
many of the things that triggers can do, can be done through other means for example, by
materialized, views and so on. So, as we go along we will mention that these are the

problems that need to solve get solved by triggers; otherwise normally you should think

twice before you actually use a triggers. So, there could be different other ways of

solving the same problem.

(Refer Slide Time: 35:55)

When Not To Use Triggers (Cont.)

= Risk of unintended execution of triggers, for example, when
Loading data from a backup copy
Replicating updates at a remote site
Trigger execution can be disabled before such actions.
= Other risks with triggers:

Error leading to failure of critical fransactions that set off
the trigger

Cascading execution

s, HT Kharagpur. Jan-Apr, 2018

H
8
Iy
o
2
i
;
H
E
]
3

PP LABHL SO, ED

Database System Concepts - 6* Edition

And because you have to keep in mind that triggers are expensive because once you have
triggers and actually internally database for every update. If you have an update trigger
on a field or a relation, then with every transaction with every change the database has to
check if your trigger is true or not and so therefore, there is a cost to that. The other thing

is there are triggers are for the live execution.

So, if you have offline for example, you are loading the data from a backup copy or you
are replicating your database at a remote site and so on, then you have to put off the
trigger; otherwise you know falsely the triggers will start happening and that may have a
catastrophic effect that might trigger of different alarms and all that. So, you have to be

careful with triggers in that manner so, cascading executions and all those.

(Refer Slide Time: 36:46)

Module Summary

* Introduced the use of SQL from a programming language
» Familiarized with functions and procedures in SQL
* Understood the triggers

‘PP VAL L BN

Database System Concepts - &% Edition
T

So, to summarize we have and this kind of closes our direct discussion on SQL. So, we
have introduced the use of the very important aspect the use of SQL from a programming
language, the interface between the native language and query language boundary. And
that is something which will be extremely useful for application programming. And we
are familiarized with you know the imperative extensions of SQL, the procedural
extensions of SQL in terms of functions and procedures that you can directly write in
SQL. And we have just introduced concept of triggers, so that you can sniff what is going

on in your database.

So, there is the quite a few other features of SQL as well majority of them are advanced
features dealing with olap and several others, which I chose to skip at this level of the
course. So, this will close our discussion on SQL. And next we will move onto the design

of the database looking into the algebra and the modelling.

