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We continue on Artificial Neural Networks. To quickly recapitulate what we had done

we had considered a perceptron, perceptron which takes a simple form like you have

inputs let us say x 1, x 2 and you have a bias let me call it as x naught, and there are

weights of this connection w 1, w naught, w 2. Then you apply a an activation function

often taking the form of a step function which whose input exceeds some threshold it

usually 0 it is 1 otherwise minus 1 and then that we get the final output.

(Refer Slide Time: 00:26)

We also discussed that this is equivalent to drawing the perceptron actually realizes a

linear line 2 plus by 2 points and w naught, w 1 are nothing, but the biases and the slopes

of this line. So, it actually implements a line of this form implements a line of this form.

And then we studied, so what we do to given in prediction problem where you are given

a training set consisting of n number of input vectors and their corresponding desired

outbreak output vectors.

What we do is to start with random values of the widths w naught, w 1, w 2 and then

update the weights over iterations till the weights become stable they do not change. And



we discussed two update rule 1 is the perceptron learning rule where what we do is to

start  with a  random weight  and then look at  a  training example.  If  the every set  of

weights random or whatever will correspond to a line if that line correctly classifies that

training point do not do anything maxim, if it misclassifies you tilt the line you tilt the

line to try to classify it.

So, what is the tilting rule? Your w new is w old plus some delta w where delta w equals

the target output for that x i let us say call it t i and the actual output for that x i let me

call  it  o i. So, given the value of weights for the input I collected,  I calculate actual

output y and I am supposed to achieve some target t i just multiply that by your x i

multiply that by x i and this correction you go on making to w till all points are correctly

classified.

We can actually show that if the points are from 2 classes are linearly separable this

algorithm will indeed converge. Then we also studied an alternate algorithm called the

gradient  descent  algorithm  what  the  gradient  descent  algorithm  does  for  differing

different values of w naught, w 1, w 2 it calculates an error surface it calculates an error

surface.

So, what is the error surface? The error surface is nothing but if you sum up over all the

training points it is the target output minus the obtained output square, mean squared

error summed up over all the training examples in number of training examples. So, and

then we can visualize as if we look at the w 1 w 2 plane for example, and plot the error in

the y axis we will get some surface like this.

And what the gradient descent does is that it starts with a random value of w 1, w 2, w

naught  or  even more  w’s are  there  then  does  what  is  called  a  steepest  descent;  that

means, it changes the value of w 1, w 2, w naught which leads to maximum decrease in

the error. They are defined like this it goes takes a direction along, which is same as

descending along the tangent of the error surface.

So, delta w is some learning constant eta times the tangent of the derivative of the error

function which I represent by this symbol. For this kind of mean square error thing error

you can actually show that delta w becomes nothing, but eta times t i, o i summed over

all the training examples because the error is itself is some about all returning examples.



So, in the inverse slides that derivation are there I am not repeating the derivation. So, if

you do it you get a real tie blue. So, that they would weight update is same in perceptron

as well as the gradient descent algorithm only difference being perceptron it looks at

every example if  it  is  misclassified  it  updates  and works with a updated value of w

whereas, the gradient descent calculates delta w based on the sum of the correction over

all the training points then update stop.

So, 1 is a incremental mode every training example changes w other is a batch mode you

go through all  the examples  then change w. So, both of these does converge for the

simple case of a perceptron.

(Refer Slide Time: 07:19)

And we also showed that you can realize logic function.  So, logic gates like and or

etcetera by choosing proper value of that weights. So, putting proper value of weights

and  the  bias  put  with  the  threshold  function  would  realize  these  gates.  So,  I  would

request you that you take some standard AND, OR functions and you try to find out what

are the values of w 1, w 2 which will give exactly the output that this logic function

should give for inputs like 1 1, 1 0 and so on.

What is the value of w that would give the proper input for the given logic gate. That is

in fact, easy to understand in some sense because if we say take 2 input logic functions x

1, x 2 and for example, if I take the AND function. So, if I draw which at the points for

which and is true you will see that 1 1 is and is true, rest all point 1 0 0 0 0 1 are negative



examples and is false. So, this is the AND function in x 1 x 2 space. So, this is 0, this is 1

this is 1 1, this is 0 1, this is 1 0, this is 0 0. So, this is the AND function. And since the

perceptron is a straight line you can actually draw a straight line to realize the 1 1 in one

side and the rest of the point in other side.

So, similarly you can see the OR function. So, what is the OR function? So, you have 0 0

as the negative example and rest as the positive example true examples where OR is true.

Similarly, you can draw a line to recognize the OR, so this is OR function; so many of

the gates. But now let me give you an example of a logic gate which cannot be realized

by this perceptron.

(Refer Slide Time: 10:11)

Let us look at the XOR gate. Let me write down the truth table.  Let me call  0 as 1

classification problem, 1 1 XOR is 0. So,  if  I plot it,  you can see these two are the

negative points 0 0 and 1 1, and these two are the positive points 1 0 and 0 1. So, this is

negative whereas, this is positive.

Now, you cannot draw a line to separate the positives from the negatives, no line, you

can check no line can be drawn. So, the perceptron cannot XOR function cannot realize

the XOR function. So, what is the solution? Perceptron failed because I do not I cannot

separate them by a line,  but maybe I can separate them by 2 lines.  So, maybe I can

separate them by say 1 line like this and another line like this. So, everything inside this

2 line is minus outside it is plus, maybe I can draw. So, or is inside of both the line is



plus and non origin side sorry non origin side of both the line is a plus point for XOR and

origin side of both the line is minus point for x. So, if I can use 2 lines I can realize it all

right.

So, then people thought, so how do you realize two or more lines. Let me connect up

perceptrons.  So,  it  is  like  you remember  in  your  logic  circuit  maybe a  single  AND

function cannot realize. So, what you do is that you connect up and gates I hope you are

familiar with digital logic and connect a second level up gate.

(Refer Slide Time: 13:29)

Now, you can realize this, now you can realize this all right.



(Refer Slide Time: 13:44)

So, the same idea if not a single perceptron if not a single perceptron you add up 2

perceptrons this is perceptron 1 and perceptron 2, and the output of these two perceptrons

you feed as input of a third perceptron. So, earlier inputs output of the single perceptron

as the output, now I have 2 perceptron and their output goes to the third perceptron as

input.

And output of the third perceptron is our actual output. So, this type of networks are

called because there are different layers of perceptron you can think of one layer feeding

to the next layer, feeding to the next layer, these are called multi layered perceptron or

MLP, they are called multi layer perceptrons or MLP. So, and this, the terminology is like

this the first inputs are called input layers input layer the second level perceptrons are

called hidden layer and the output is called the output layer. So, there may be multiple

hidden layers as many as you want. In fact, the modern trend is something called a deep

neural network which is nothing but you have large number of hidden layers that is why

it a (Refer Time: 16:27), large number of hidden layers.



(Refer Slide Time: 16:46)

So, what  does this  mean geometrically?  So, each layer  its  inputs or each perceptron

would give you a line like this some w 1, w 2 on another perceptron would give and the

output of these perceptrons would be by either plus 1 or minus 1 depending on which

side of the perceptron the point to be classified first. And this value plus 1 minus 1 they

are input to a third second level perceptron which look at if it is in plus side of both the

lines or plus side 1 line minus side of other line that the third perceptron looks at and

gives the result.

So, then you can see many non-linear non-linearly separable set of classes for example,

if  the classes are like this  you can sort  of classify them by considering a number of

pereptrons. So, these is a boundary piecewise linear boundary you would call it. In fact,

it can be shown that any complex surface can be realized by such things.

So, I have explained you everything with the help of a logic functions, but in general it

holds true for any kind of classification task.



(Refer Slide Time: 18:39)

(Refer Slide Time: 18:48)

So, this is the XOR, this is the XOR, I will skip this perceptron learning rules I have

already told you all this gradient descent error minimization.



(Refer Slide Time: 19:01)

You should go through this slide for the derivation that I talked about of the update rule,

of the update rule.

(Refer Slide Time: 19:16)

So, if you have a complex function for example.



(Refer Slide Time: 19:20)

this  is  an  problem,  this  is  a  speech  recognition  problem.  So,  this  for  you  have  to

recognize the vowels the 5 vowels, the 5 vowels and the if we look at the frequencies of

utterances  of  the  speech  signal  for  these  vowels  they  would  form  a  complex  class

boundary like this, no sorry, not vowel it is some a set of words head hid and a hod, had,

howed similar words ok. Even actually the vowel also looks like this. So, you can draw a

multi layer perceptron to sort of separate them out.

(Refer Slide Time: 20:20)



As I have told this is the, please note down the structure this is the multi layer structure.

This is also called a feed forward network.

(Refer Slide Time: 20:57)

Actually let me clearly draw the, make the picture clear. Suppose I have 3 inputs each of

the input will be collected connected to all the neurons, this diagram is important. Each

input corrected to each of the input neurons, this is the hidden layer say 1. The output of

each of the input neurons let me put arrows here will be connected to all the nodes in the

next layer. So, this connects to all the nodes in the next layer, this connects to all the

nodes in the next layer this connects to all the nodes in the next layer.

Similarly, you can have a hidden layer 2, same rule holds it is connected to every node in

the next layer and finally, the output. You can have less number output for example, you

can have only one output which gives plus 1 or minus 1. You can have only one output

which would give plus 1 or minus 1. So, this is the output neuron. Again same rule will

be everything will be connected.

So, two things you observed, first thing it is a fully connected network, every node in a

layer connects to all the nodes in the next layer. Second thing every node connects to

only  nodes  up  next  layer  providing  inputs  to  only  node  of  next  layer,  there  is  no

backward connection. So, nodes of this layer contact as input of the nodes of a previous

layer. So, this would be called a feed forward network this is a feed forward network.

Because it feeds forwards no back link. There is another class of network which has back



links  which  are  called  recurrent  networks  which  is  also  an  very  important  class  of

networks, but I am not covering that right now.

So, this is a network and then you have weights, each of these links would have weights.

So, so you have directed links 1 output of 1 goes as input of another you have directed

edges and every edge has a weight value every edge has a weight value. The convention

of writing the weight is something like this, if you write W ij say input to h 1 it means it

connects the ith neuron of the input layer ith perceptron of the input layer to the jth

perceptron of the hidden layer 1, that would be this. Similarly this would be, similarly

this would be w h 1, h 2, ij; that means, ith neuron of the hidden layer 1 connects to j th

neuron of hidden layer 2.

(Refer Slide Time: 26:16)

So, now you can one more thing is missing that, I have talked about weights, but each of

this  neuron just  like  a  perceptron  we will  have  activation  function.  So,  each  of  this

neuron just like a perceptron will take inputs, weighted inputs and add them up, so it will

compute w 1, x 1, v plus w naught the bias term and add I apply a activation function of

this which usually takes a form either plus 1 or minus 1. To step like a function step

function that is the activation function that.

But  one  problem  with  this  step  back  function  it  is  not  differentiable  here,  not

differentiable at the corner of the step. But when you are taking gradient descent tangent

means some kind of derivative has to be taken differentiation has to be done. So, people



give a smooth version of step function is the sigmoid function which approximates this

step by a s, like function s, that is in between if outside it is same as the step, but here

there is a is of a jump there is a smooth transition and differentiable everywhere. It is

now differentiable which will need for the later stage all right. So, this is clear, the multi

layer perceptron.

In the next lecture we will discuss just like the perceptron weight update rule and weight

update rule for the multi layer perceptron.

Thank you.


