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Let us continue with support vector machines, if you remember we wanted to find a w

and v b the slope and b value of a plane, which will correctly classify all the points and

give the highest margin.
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So, we formulated it as an optimization problem we converted it into a dual form; where

the  dual  problem can  be  written  like  this,  the  W alpha  which  is  the  Lagrangian  is

summation  of  all  the  alphas  the  Lagrangian  multipliers,  and  half  times  double

summation. So, this is double summation i equal to 1, j equal to 1 alpha i alpha j, y i, y j

x i dot x j which is same as xi transpose xj subject to all the alpha is being either 0 or

positive and the summation alpha i yi being 0.

So, this is an example of a quadratic programming problem and we can solve it always

and get a set of values of alpha i is equal to 1 to n, plug in those values in this equation

which you already got as the value of w, when we minimize with respect to Lagrangian

with respect to w and we can find the value of w. 



We have also seen that you can actually write it as a matrix form, where if you consider

the Hessian matrix and consider the Hessian matrix H which we construct as follows, we

have X 1 2 X n we take all pairs of xi xj and the i j th entry of the Hessian is nothing, but

the class level of i th point, class level of j th point the vector of i th point dot product the

vector of the j th point; which is same as xi transpose x Eigen. 

This y constitute the Hessian and we similarly consider another vector of the Lagrangian

multipliers and another vector u which is all 1 vector and if we do this equations can be I

am writing down in a simpler form is Lagrangian which is w also I write here as w is the

Lagrangian  vector  u  minus  half,  Lagrangian  vector  a  Hessian  matrix  Lagrangian

transport subject to alpha i greater than equal to 0 ok.

So, this is a typical quadratic programming problem and we will if we solve this there are

numerical methods to solve this, if you solve this what we will get is the, this is how we

will solve I am telling you about the this how we will solve.
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You get many numerical techniques like sequential, minimal optimization interior point

method, which will solve this and give you a set of values of alpha i and as I told you can

get alpha i to reconstruct your w. But the most interesting part of this is that if you solve

most of the times if you note that see your n can be large, n is your size of the training set

it can be large.



(Refer Slide Time: 03:58)

 

So, you can have large values of n say 1 million 1 lakh or something.

(Refer Slide Time: 04:12)

So, your Hessian matrix is really big n by n really big matrix. So, actually computational

complexity of solving this QP problem is little high there are ways to reduce it. So, if we

solve this and find out the values of alpha 1 to alpha N, you will find most maybe 95

percent values we have a restriction that alpha i should be greater than equal to 0, most

of the values actually turn out to be exactly 0.



So, if you have n equal to 1000 maybe 99 examples note that, 1 thing you also note in

this regard is that see I have as many Lagrangian multipliers alpha is as many training

points as the number of training points. So, there is a kind of correspondence for every

training point X i I have a corresponding Lagrangian multiplier alpha i. So, every large

that comes here also when you write down the constant, it comes that for every xi there

is a alpha and most of this alpha is will be 0 as I have told you, I mean if we actually

solve bit will observe it also and few of the alpha is i greater than 0.

Now, we are naturally curious since every alpha e corresponds to x I, which of the xi is

for which alpha is a 0 and which are the x i is the trading points for which alpha is a

greater than 0. So, let us try to answer that question. The answer lies in this theorem

called the Karush kuhn tucker theorem, also another thing you quickly note is that and

see this w is a summation of alpha i y i. So, if an alpha is 0, the corresponding y i x i

does not contribute to the value of w, corresponding x i y i do not contribute only the few

alpha as I said few alpha is are greater than 0, only those few x i y i contribute to the

value of w in computing the value of w ok.

So, let us see which are these ok.
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Let me state you a theorem known as the Karush Kuhn Tucker theorem, 1 minute take it

KKT theorem.  What  the  Kuhn Tucker  theorem says  is  that  so  you see  you have  2

problems  a  primal  problem  and  a  dual  problem,  what  we  optimized  in  the  primal



problem is minimize half  w transpose w, such that y i  for all  i  if  you remember the

definition and what we did in the dual problem is that introduce Lagrangain multipliers

and simplified the constant made the objective function more complex.

So,  we  had  a  objective  function  which  are  slightly  more  complex  sorry  1.  So,  the

constant basically the constant moves to the objective function and this is i equal to 1 to

n and the constant was; so that is why the duality see you had see the constant goes to

objective function whereas a simple constantly.

So, this is also actually greater than equal to 1 because for 1 point it will actually be the

minimum, 1 point it will actually be the minimum so let me for sake of clarity. So now,

this constant so what this optimization business basically is about, so if you look at say

for example, w b space hypothetically and this is the objective function L that you are

minimizing the constant sort of defines a physical area within which we should search

for the solution and what we look is that the objective function gives a takes on a value,

within the feasible area wherever objective function is minimum that is our solution.

Now, this constant can be satisfied in 2 way 1 is greater than 0 1 is exactly equal to 0,

similarly here greater than 1 equal to 1. So, the idea is like this when the constant is

satisfied as an inequality basically your solution is in the interior point and your solution

constant is equality your solution is a boundary point.

So, this is an interior point interior solution and this is a boundary point similarly here,

what the KKT theorem says of course, i am not proving it you have to accept it if you

open any optimization book will find it.  So, what the KKT condition says is that the

interior solutions in the dual problem correspond to boundary solutions in the primal

problem. And the boundary solutions in the primal problem correspond sorry, the interior

solution in the primal problem correspond to the boundary solutions in the dual problem.

So, that is the duality which is the duality ok.

So, but if you remember from our previous slide is that, we said that we basically the

weight is nothing but this. So, we are interested only those alpha is which are greater

than 0 basically not equal to 0 because, it is only those alpha is which will contribute to

my w only those alpha is will contribute. So, we are interested in these alpha is, and he

also mentioned before that they are a very small minority, among all the alpha is the

onewhich are not 0 there is very small fraction of all the alpha.



So, if n is thousand they will be only 10 maybe. So, it is this which is really important for

us these alpha is so excuse me. So, by duality this interior alpha is correspond to the

boundary x is note that every alpha i as a corresponding x i. So, basically we are doing a

alpha i to xi mapping ok.

So, we are actually interested in this particular xi, which are which give y i into W T X i

plus bas 1. So, if you I have used up all the board I have to erase it keep this picture in

mind.
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Now, y i is either plus 1 or minus 1. So, if it is equal to 1 these quantities should also take

on a value 1, see magnitude of this quantity should be 1; if you remember what we did

we define when you define margin is we said distance from x i to the line, and we said

that minimum of this over i is we normalized w and b to make it 1 that is why we get a

margin of 1 by norm of w. If we remember tally I think we scale w and b each multiply

both w and bi a quantity note that the distance does not change because, both numerator

denominator  I am multiplying by the same factor. So, distance is same margin value

remains the same the numerator of the margin by scaling w and b can be normalized to

having a smallest value of 1.

So, basically this point corresponds to the smallest value of this quantity. So, when does

the smallest value appear? The smallest value corresponding to the x i which is closest, w

is same for all points. So, only these x i and there may actually multiple x i which are



closest. So, only these xi will have alpha i greater than 0 the closest 1, how to again find

this closer, as if we take the line and parallel spread out 2 lines on both side increase.

So, you sort of take this line then do these spread out and when you touch 1 of these

points stop. So, if I redraw I will get a picture like this I stop. So, there will be no other

point in this gap and these gap would be called the margin of the lines, and the points

which lie on this boundary would be called would have a alpha i; as I have said will they

will have w x i, w transpose x i plus b equal to 1 absolute value equal to 1 and they will

have a alpha i greater than 0 and they will only determine w.
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This  critical  and they  are a small  fraction expectedly, these critical  values  would be

called  the support vectors,  critical  points  would be called  the support vectors let  me

draw.

In fact, this is twice the margin is only this much these and these are the support vectors,

the points you just touched the margin, they are the support vectors and they have the

property  that  b  equal  to  1  for  them  and  all  they  also  have  their  property  that

corresponding Lagrangian multiplier a greater than 0 and this slope of this line rather I

can express as X i.

In fact, since except support vectors all other alpha i is at 0, I can rewrite this summation

as i is a support vector, only the other I can drop up the other alpha is I can consider only



the support vectors only this point and some of their a Lagrange multiplier y i x i get. So,

how do I get my b? It is very easy to get b because, I know for the support vectors this

holds I know my w I have computed w this way, I pick up a support vector, I know this

equation will hold I know w, I know x i I will find out b from this equation. So, I liquid

to 1 from 1 minus wxi will be the b, what is any support vector I can pick up and find out

b.
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So, let me summarize the steps oh by the way the this line which is actually the main

thing of our interest, which has this margin is called a optimal separating hyper plane or

a support vector machine. We already know how to get w of that point it is take all the

support vectors sorry take X i to be a support vector sum up these values, how do I find

b? I know b equal to 1 minus w transpose X i, I know w Ii have already computed, where

pick up any support vector to summarize. 
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So, Hessian matrix actually contains all the information you need to get from the data

point no other place it is used. Find for all the support vectors. So, support vector is all

the x i for which alpha i is greater than 0, for all the support vectors add up this. Can you

tell how do I classify a new point let us say call it x j, how do I classify in it point? Very

simple what I will actually do is that, I will find the sign off and find b accordingly. I will

find the sign of w T transpose x j plus b it is positive plus class negative minus class.

So, this is equivalent to sign of if we substitute w value here, what you need to do is to

just take the support vectors and take the dot product of each of the support vector with

the new point to be classified into y i actually y i x i x. So, yi xi is this support vector x is

the new point compute this summation add b look at this summation, look at the sign of

that you get here classification of a new point. So, that is how you do it all right. So, this

is the simple thing so what I want to do is that so there are actually many toolboxes.
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So, this is the pictorial representation of whole I wanted to say, this will depict the values

of  alpha  you  can  go through  the  slides,  so  I  will  go  into  that  later.  So,  this  is  the

characteristics.
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So, there are many software’s which can solve this problem solve the QP and give you

alpha is which you can use and do the training set. There are 2 more extensions to this

problem all my theory so far has been for 2 classes, can I extend it to multi class and also

I  have  affirmed  that  the  2  classes  are  separable  linearly;  what  happens  if  they  are



overlapped, what happens if they are non-linearly separable. So, we will discuss that in

our  next  lecture  on  when we extend in  2  overlapping  support  vector  machines,  soft

margin support vector machines, and Cornell machines which are a non-linear version of

the support vector machine.

Thank you for today.


